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Controlled nanochannel lattice formation utilizing prepatterned substrates
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Solid substrates can be endued with self-organized regular stripe patterns of nanoscopic length scale by
Langmuir-Blodgett transfer of organic monolayers. Here we consider the effect of periodically prepatterned
substrates on this process of pattern formation. It leads to a time periodic forcing of the oscillatory behavior at
the meniscus. Utilizing higher-order synchronization with this forcing, complex periodic patterns of predefined
wavelength can be created. The dependence of the synchronization on the amplitude and the wavelength of
the wetting contrast is investigated in one and two spatial dimensions, and the resulting patterns are discussed.
Furthermore, the effect of prepatterned substrates on the pattern selection process is investigated.
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I. INTRODUCTION

Prepatterned substrates are widely used as means to
control wetting and dewetting processes [1–4]. Chemically
or topographically prestructured, the substrate exhibits hetero-
geneous wetting properties and thereby enforces an extrinsic
pattern upon a covering liquid layer. A particularly interesting
scenario emerges if the liquid itself exhibits pattern formation
intrinsically, yielding regular or irregular structures even on
homogeneous substrates. This is the case, for example, in
Langmuir-Blodgett transfer of organic and metallic mono-
layers [5,6] and in controlled evaporation of nanoparticle
suspensions [7]. On a prepatterned substrate, this gives rise
to the formation of a final pattern resulting from a competition
between the extrinsic structure imposed by the substrate and
the intrinsic structure that is formed naturally in the system.

Here we want to focus on the effect of periodically prepat-
terned substrates on the transfer of monolayers of amphiphilic
molecules such as pulmonary surfactant DPPC (dipalmi-
toylphosphatidylcholine). Using homogeneous substrates, this
transfer process results in the spontaneous formation of
nanochannel lattices, that is, regular stripe patterns with a typ-
ical wavelength of merely a few hundred nanometers [5,8,9].
The corresponding experiments utilize the Langmuir-Blodgett
method, where the substrate is withdrawn from a trough
filled with water on which a monolayer has been prepared,
and are conducted under conditions close to the first-order
phase transition between the liquid-expanded (LE) and the
liquid-condensed (LC) phases of the monolayer. The observed
patterns consist of ordered arrays of LE and LC domains,
arranged into stripes oriented either parallel or perpendicular
to the contact line. For certain experimental parameters, one
can even obtain a combination of both orientations, resulting
in a rectangular structure. The formation of the nanochannels
results from a substrate-monolayer interaction, commonly
referred to as substrate-mediated condensation (SMC) [9–13]
and can be understood theoretically as a phase decomposition
process under the influence of the corresponding interaction
field [14].

Since the meniscus, where the condensated domains
are generated, moves across the prepatterned substrate, the

*m.koepf@uni-muenster.de

spatially periodic prestructure is translated into a spatiotem-
poral forcing. The effect of spatiotemporal forcing on dif-
ferent pattern forming systems, e.g., photosensitive Turing
systems [15], has been investigated earlier. However, in these
cases, an external frequency is imposed in an otherwise
nonoscillatory system, whereas even the unforced pattern
formation in monolayer transfer is an oscillatory process.

The theoretical investigation of dewetting systems with
surfactants is typically based on the lubrication approxima-
tion, which greatly facilitates the description of thin film
flow [16–18]. In this framework, surfactant-covered thin
liquid films can be modeled by two coupled nonlinear
differential equations describing the height profile of the
film and the surfactant density [17–20], whereas prepatterned
substrates can be described by a spatially varying disjoining
potential [21,22]. In addition, monolayers in the vicinity of
the LE-LC phase transition can be modeled by coupling
of the lateral pressure, that is, the surface tension, to a
Cahn-Hilliard-type free-energy functional [23]. The substrate-
mediated condensation can then be described by an interaction
field acting on the monolayer [14], whose strength depends
on the distance to the substrate, that is, the thickness of the
liquid film dividing substrate and monolayer. Due to this
interaction, the condensed state is energetically favored when
the monolayer is close to the substrate, leading to the partial
condensation necessary to form the alternating LE-LC stripes.

Investigating the influence of periodically prepatterned
substrates on this pattern formation process we shall find
synchronization phenomena [24] of various orders, leading
to the formation of complex periodic patterns depending on
the amplitude and the wavelength of the substrate’s wetting
contrast. We will further show that a periodic prepattern can be
used to inhibit an orientation transition from stripes arranged
parallel to the contact line to perpendicular stripes and even
allows us to produce new structures such as well-ordered
domains of circular LE domains alternating with LE-LC
stripes.

II. GOVERNING EQUATIONS

A. Thin film flow

Let us consider an evaporating thin film of water on a
periodically prestructured substrate that is withdrawn with
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FIG. 1. (Color online) Schematic drawing of a surfactant-covered
meniscus on a prepatterned substrate. The height profile h(x,y,t)
indicates the film thickness at location (x,y) and time t , whereas
γ (x,y,t) describes the surfactant density at the surface above (x,y).

constant velocity v in the negative x direction from a water
reservoir that ensures a constant film height at the right
boundary of the system (see Fig. 1). A meniscus is then
given by the balance of evaporation and the supply of fresh
water, which is carried from the reservoir by the moving plate,
yielding a contact line moving relatively to the substrate. The
water reservoir is assumed to be covered with a surfactant
monolayer of constant density, which is then carried by the
flow toward the contact line.

The liquid film is described by its height profile h(x,t),
which indicates the local film thickness, whereas the surfactant
density at the surface above the point x = (x,y) is described by
the function γ (x,t). Introducing the scales h0, l0, t0, and γ0 for
height, length, time, and surfactant density, the time evolution
equations for the height profile H (X,T ) := h(x/l0,t/t0)/h0

and the surfactant density �(X,T ) := γ (x/l0,t/t0)/γ0 can be
written in dimensionless form as [14]

∂T H = −∇ ·
(

−H 3

3
∇P̄ + H 2

2
∇�̂ − V eXH

)
− Eevδμ,

(1)

∂T � = −∇ ·
(−�H 2

2
∇P̄ + �H∇�̂ − V eX�

)
, (2)

with the generalized pressure P̄ = −ε3Ca−1σ̂∇2H + 	(H )
and �̂ = εCa−1σ̂ . Here the parameter ε = h0/l0 signifies the
ratio of the characteristic height and length scales of the
system and is assumed to be small in thin film problems.
The inverse capillary number Ca−1 = σ0/(ηU0) is the ratio of
a characteristic surface tension σ0, the dynamic viscosity η,
and the characteristic velocity U0 = l0/t0. The scaled surface
tension σ̂ = σ/σ0 of the water film depends on the density �

of the surfactant monolayer. Therefore, spatial variations of �

lead to spatial variations of σ̂ , inducing Marangoni forces that
are accounted for by the terms ∼∇�̂ in Eqs. (1) and (2). The
dependence of σ̂ on the monolayer density can be described
in terms of a lateral pressure [25] and, as we will outline, is
deeply related to the surfactant thermodynamics.

Since the substrate is withdrawn with a constant velocity
v, both Eqs. (1) and (2) include an advective term involving
V = v/U0.

Note that the generalized pressure P̄ comprises not only the
Laplace pressure ∼∇2H , which is present in every free fluid
interface problem, but also the disjoining pressure 	(H ) due
to the interaction of substrate and liquid. These interactions
become significant for liquid films of heights lower than a few
hundred nanometers. In the literature, different expressions

for 	(H ) have been considered (see Ref. [18] and references
therein for a discussion of possible choices). Here we employ
the dimensionless expression

	(H,X) = M(X)(A3H
−3 − A6H

−6), (3)

where A3 = ε2t0a3/(h3
0η), A6 = ε2t0a6/(h6

0η) with Hamaker
constants a3,a6 > 0, yielding, for M = const., a precursor
height defined by 	(Hp) = 0 ⇔ Hp = 3

√
A6/A3. The func-

tion M(X) accounts for the spatially heterogeneous wettability
of the prepatterned substrate. This approach is similar to the
one in Refs. [21,22]. Since we are interested in periodically
prestructured substrates, we choose M(X) to be a periodic
modulation

M(X) = 1 + ρ ξ (X + V T ) ,

which moves along with the substrate and has the form of a
kink-antikink train

ξ (X) = tanh

[
10 tri(X/Lp)

κp

]
,

with the periodic triangle function

tri(x) = 1 − 2
∣∣{x} − 1

2

∣∣ , (4)

where {x} := xmod 1 denotes the fractional part of x. This
means that we have a modulation with amplitude ρ and
wavelength Lp. For ρ → 0 the homogeneous substrate is
obtained. The constant κp determines the sharpness of the
contrast. It has to be noted that very small κp would violate
the assumption of slow variation in x and y directions, which
is the basis of the lubrication approximation.

Due to evaporation, a sink term is present in the evolution
equation for H , so that the fluid volume is not conserved.
Here δμ = μw − μv denotes the difference of the chemical
potentials of the water film and the ambient vapor phase,
whereas Eev = ηl2

0Qe/h3
0 is the evaporation number with

effective rate constant Qe. The pressure in the vapor above
the film is assumed to be close to the saturation pressure,
allowing us to identify the chemical potential of the water
film with the negative generalized pressure [26,27]; that is,
μw = P̄ ,μv = const.

It has to be noted that monolayer rigidity is not taken into
account in the model given by Eqs. (1) and (2). This is due to the
fact, that, going from low to high densities, a significant surface
rigidity Kc is observed experimentally only after the LC to
solid phase transition. To give a more precise estimation of the
influence of surface rigidity, one can supplement lubrication
theory by a contribution resulting from minimization of the
corresponding Helfrich energy of a stiff interface. As a result,
an additional quantity σ2 = Kc/l2

0 enters the equations with
exactly the same prefactors as the surface tension σ . Thus, σ2

can be regarded as a second surface tension and can be directly
compared in its magnitude to σ . Even in the solid phase, which
is significantly more rigid than the liquid-condensed phase
considered in our problem, the bending rigidity of a DPPC
monolayer is only Kc � 70 kBT [28], that is, of order 10−19 J.
Since l0 ≈ 10−7 m one can estimate that in this case σ2 ≈
10−5 J/m2, which is three orders of magnitude smaller than
the surface tension of water and therefore neglected. For other
materials, however, the rigidity can be significantly larger, so
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that it might have to be taken into account for an accurate
description of thin films covered with such monolayers. That
is, the applicability of the description presented here is limited
to materials where the rigidity Kc of the monolayer is less than
a few hundred kBT .

B. Surfactant thermodynamics and
substrate-mediated condensation

The flow of a thin liquid film on a substrate depends on
the surface tension σ at the free liquid-vapor interface. In the
presence of a surfactant monolayer, the surface tension varies
across the surface, depending on the local surfactant density
� and its spatial derivatives. This dependence is described by
the lateral pressure Plat and the relation [25]:

σ̂ = σ̂abs − Plat, (5)

where σ̂abs = σabs/σ0 denotes the scaled surface tension in
absence of any surfactant.

The relation between lateral pressure and surfactant density
is determined by an equation of state that can be obtained from
the free energy of the monolayer. Since the density � may vary
across the surface, its free energy can be written in the form
proposed by Cahn and Hilliard for a general nonhomogeneous
system [29], i.e., F[�] = ∫

d2XF (�(X)) with a free-energy
density

F = ε2 K

2
(∇�)2 + Fhom(� − �cr). (6)

Here K = κγ 2
0 /(h2

0σ0) denotes the nondimensionalized form
of the line tension κ between domains of different densities,
while the function Fhom represents the free energy of a system
with homogeneous surfactant density �̃. To focus on the LE-
LC first-order phase transition of the monolayer, we consider
a bistable system where the low- and high-density minima
of Fhom correspond to the liquid-expanded and the liquid-
condensed phase, respectively. For the sake of simplicity we
assume the function Fhom to be a symmetric double well,
centered around a critical density �cr. It has to be emphasized
that this assumption is no real limitation, since, around the
coexistence plateau, a wide range of experimentally obtained
pressure-area isotherms can be fitted under the assumption of
a symmetric Fhom. Using �̃ = � − �cr, we write

Fhom(�̃) = Fcr + M1

4M2
2

�̃2
(
�̃2 − 2M2

2

)
. (7)

Here M1 equals the curvature of the function Fhom in its center
�̃ = 0 and M2 denotes the difference between the densities
�LE, �LC of the pure LE and LC phases and the critical density
�cr, that is M2 := |�LE − �cr| = |�LC − �cr|. The constant Fcr

is the free energy of a homogeneous monolayer with the critical
density �cr.

The lateral pressure can be obtained from the surfactant
equation of state, which is related to the free energy by

Plat = −F + �μ, (8)

where the chemical potential μ is obtained from F by
functional derivation with respect to �, yielding

μ = δF
δ�

= −ε2K∇2� + ∂Fhom

∂�
. (9)

Inserting Eqs. (7) and (8) into Eq. (5), the physical meaning of
Fcr becomes obvious:

Fcr = σ̂ (�cr) − σ̂abs.

This description is still incomplete as inhomogeneous systems
are considered. In the case of a spatially varying density � the
pressure is given by a tensor P with the components [30,31]

Pij = Platδij + ε2K(∂i�)(∂j�). (10)

However, in the Laplace pressure, which is of order ε3, the
derivative terms of P are of fifth order in ε. Since ε is assumed
to be small, they can be safely ignored. In the Marangoni term
∇�̂, the lateral pressure enters in the form ∇ · P = ∇(Plat +
ε2K(∇�)2). Therefore, one can simply use the scalar pressure

P = Plat + ε2K(∇�)2 (11)

throughout all calculations.
It is an experimentally well-established fact that interaction

with the substrate influences the thermodynamic behavior
of the monolayer, when the liquid subphase dividing them
becomes very thin [9–13]. It is by this influence that a pure
monolayer condensates at the substrate even under conditions
where it would still be perfectly stable on a subphase of
∼100 nm thickness. This substrate-mediated condensation
effect can be modeled by inclusion of an external field in
the free energy of the monolayer, whose strength depends
on the distance to the substrate, which, in our case, is given
by the thickness of the water film H . The free-energy density in
presence of the substrate-monolayer interaction is then given
by

F
(SMC)
hom = F (�̃) + S(H )�̃. (12)

Here S(H ) describes the functional dependence of the strength
of the substrate-mediated condensation on the distance.
Unfortunately, the exact form of S(H ) still remains to be
determined by experiment or from a microscopic theory.
Nevertheless, there exist rough estimates of the overall lateral
pressure difference caused by SMC: For DPPC and DMPE
the LE-LC coexistence pressure at the substrate can be several
millinewton per meter lower than for a floating monolayer [12],
yielding an overall difference of more than 40%. In terms of
S(H ) this means that S(H ) goes to a finite negative value for
H → Hp, leading to a tilt of Fhom toward its higher density
minimum, that is, the LC phase, as the monolayer approaches
the substrate. Also, S(H ) should vanish quickly for H → ∞,
since the SMC can only be observed very close to the substrate.

Although the results presented in this article are quali-
tatively valid for a class of functions S(H ) meeting these
minimal constraints, without loss of generality we choose
S(H ) = B�(H ), where �(H ) = ∫

dH ′	(H ′) with integra-
tion constant zero is the potential of the substrate-liquid
interaction and B is a positive coupling constant. By this
choice, SMC acts on length scales comparable to the substrate-
liquid interaction.

C. Choice of scales

So far, we did not specify a certain set of scales h0,
l0, t0, and γ0. A convenient choice results from demanding
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ε3Ca−1 = ε2K = Hp = 1. This means that we use the pre-
cursor height as a natural height scale of the system by
setting h0 = hp. Due to this choice we have A := A3 = A6 =
(γ 2

0 κa3)/(σ 2
0 h4

p) in Eq. (3).
The characteristic length scale l0 of the system is then

given by the ratio of the surface tension σ0 and the domain
line tension κ as l0 = γ0

√
κ/σ0, and the natural timescale of

the problem is obtained from the relation t0 = γ 4
0 κ2η/(h3

0σ
3
0 ).

With this choice of scales, ε obtains a direct physical meaning
as

ε =
√

σ0

γ 2
0 κ

(
a6

a3

)2/3

(13)

relates the forces acting at the monolayer covered surface,
characterized by σ0,γ0, and κ , to the forces acting between
substrate and liquid, determined by the constants a3 and a6.

Since we are interested in systems in vicinity of the LE-LC
phase transition, it is convenient to set the scale γ0 equal to
the critical surfactant density, that is, γ0 = γcr and to define
the characteristic surface tension σ0 = σ (γcr) as the surface
tension of water covered with a monolayer of density γcr. The
resulting scaled expression for the surface tension is given by

σ̂ = 1 − ε2Phom + [
��� − 1

2 (∇�)2
]
, (14)

with

Phom = Fcr − Fhom + �
∂Fhom

∂�
(15)

= M1

M2
2

�̃

[
�̃2 − M2

2

(
1 + �̃

2

)]
+ S(H ). (16)

Analogously, the generalized pressure P̄ in the Eqs. (1)
and (2) is obtained as

P̄ = −(1 − ε2Phom)∇2H + 	(H ) (17)

whereas ∇�̂ can be written in the form

∇�̂ = −∇Phom + ε−2�∇3�. (18)

Note that P̄ does not contain any derivatives of �, due to the
argument following Eq. (10).

III. TRANSFER ONTO PERIODICALLY PREPATTERNED
SUBSTRATES

A. Methods

The system (1)–(2) is simulated numerically in one and two
spatial dimensions using second-order finite differences for
discretization of space and an embedded adaptive Runge-Kutta
scheme of order 4 (5) for time stepping [32]. In the one-
dimensional (two-dimensional) case, the integration domain is
[0,L] ([0,L] × [0,L]) with L = 1200, discretized on a grid of
384 (384 × 384) gridpoints. For a more detailed investigation
of some of the obtained patterns, a larger domain with L =
2000 is simulated using 640 gridpoints. In the X direction the
boundary conditions are

�(L) = �L, ∂2
X�(L) = 0 = ∂X�(0) = ∂2

X�(0),

H (L) = HL, ∂2
XH (L) = 0 = ∂XH (0) = ∂2

XH (0),

with �L = 0.835, corresponding to transfer from a reservoir
that is covered with a homogeneous monolayer in the pure
LE phase. The choice of boundary conditions at X = 0 is not
obvious, since ideally the material would simply leave the
integration domain to the left. However, such nonreflective
boundary conditions are extremely complicated to realize for
equations such as (1) and (2). Therefore, we use this simple set
of conditions that we tested on three different domanins with
L = 1200, 2400, and 3600 without finding any influence of
the boundaries on the pattern formation at the meniscus. In the
two-dimensional simulations, periodic boundary conditions
hold in the Y direction.

We investigate periodically prepatterned substrates with
wavelengths Lp = 200, 300, and 400, each for wetting con-
trast amplitudes between ρ = 0.001 and ρ = 0.01. All three
prepattern wavelengths are on the same order of magnitude as
the natural wavelengths of the system. For comparison, we will
start with a discussion of the case of homogeneous substrates,
ρ = 0.

For each value of ρ, one can find a range of transfer
velocities V for which the surfactant monolayer is deposited
in regular patterns of periodically alternating stripes of liquid
expanded and liquid condensed material. The wavelength of
the patterns, as well as the ratio of the widths of the LE and
LC domains depend on V . The patterns consist of traveling
domains, which are created at the contact line and then
advected by the moving substrate (see Fig. 2 for a spacetime
plot of patterns evolving on a homogeneous substrate as
obtained from one-dimensional simulations). Away from the
contact line, the surfactant domains are subject to coarsening.
The mobility of the surfactants during this process is dependent
on the height of the liquid film underneath [see Eq. (2)].

We start with a systematic investigation of the synchro-
nization behavior of the one-dimensional system. To isolate
the effect of the prepatterned substrate on the time-periodic
formation of surfactant domains from the coarsening, we
first determine the location Xf behind the contact line,
where the domains are created (see Fig. 3). Note that
this location depends on the transfer velocity V , since the
meniscus is more and more elongated with growing V .
Then s(T ) := �(Xf ,T ) is sampled as a time series. By
use of a standard procedure from signal analysis, one can
unambiguously define an instantaneous phase φs(T ) of the
“signal” s(T ). To this end, one constructs the analytic signal
ζ (T ) = s(T ) + isH (T ) =: C(T ) exp[iφs(T )], where sH (T ) is
the Hilbert transform of s(T ) [24]. Finally, we obtain the
frequency of the domain formation as ω = 〈dφs/dT 〉, where
〈. . .〉 denotes the time average. This frequency can then be
compared to the frequency � = 2πV/Lp of the time periodic
forcing due to the prepatterned substrate moving underneath
the position Xf .

B. Choice of parameters

The substrate-liquid interaction is quantified by the
Hamaker constant a3. Here we use a typical value a3 =
0.5/(12π ) × 10−20 J and assume a precursor height of hp ≈
5.8 nm, yielding the dimensionless Hamaker constant A =
6.5 × 10−2.

The critical number density of the first-order phase tran-
sition between the LE and the LC phase is taken to be
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FIG. 2. (Color online) Spacetime plots of solutions on homo-
geneous substrates (ρ = 0) at different transfer velocities, obtained
from one-dimensional simulations: (a) V = 0.385, (b) V = 0.500,
(c) V = 0.700. Only the monolayer density � is shown. Blue (dark)
indicates the liquid expanded phase; yellow (bright) corresponds to
liquid condensed parts of the monolayer.

γcr = 1.539 × 1018 m−2. We assume the surface tension of
water covered with a monolayer of density γcr to be 10%
lower than the surface tension in absence of any surfactant:
σ0 = 0.9 σabs = 65.48 mN/m. Then, the experimental lateral
pressure isotherm obtained for DPPC at 20 ◦C is reasonably
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H
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(a) V=0.4
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1

2 X
f

X

H
,Γ

(b) V=0.795

FIG. 3. (Color online) Patterns of equal wavelength, λ0 ≈ 200,
obtained from one-dimensional simulations at different velocities V

on a homogeneous substrate: (a) V = 0.4 and (b) V = 0.795. The red
line (solid line) corresponds to monolayer density �, and the blue line
(dashed line) represents the height profile H . The patterns are almost
inverse to each other. The solid vertical lines indicate the location Xf

where new domains are perpetually created.

well approximated by using the parameters M1 = 50 and
M2 = 0.2 in Eqs. (7) and (16). Estimating the surfactant
domain line tension κ = 5 × 10−52 Jm4, we obtain the time
and length scales l0 = 134.49 nm and t0 = 25.23 μs. This
yields the smallness parameter ε = 4.31 × 10−2.

The evaporation parameters used in our simulation are
given by Eev = 0.45 and μv = 5 × 10−4, amounting to a rate
constant Qe = 4.93 × 10−9 m2s/kg.

The SMC coupling constant is set to B = 1500, cor-
responding to a lateral pressure shift �plat = S(Hp) σ0 =
−3ABσ0/10 ≈ −3.60 mN/m caused by SMC. Thus, the
coexistence lateral pressure at the substrate is roughly 5%
lower than for the floating monolayer.

C. Homogeneous substrates

On a homogeneous substrate, ρ = 0, spatiotemporal
oscillations are found in a velocity range 0.38 � V � 0.83.
Since the corresponding wavenumbers and frequencies are
intrinsic quantities of the system, they are denoted by k0

and ω0, respectively, in order to distinguish them from the
wavenumbers k and frequencies ω obtained on prepatterned
substrates. Figure 4 shows k0 = ω0/V as a function of transfer
velocity, obtained from one-dimensional calculations. Note
that k0(V ) is nonmonotonous, yielding pairs of patterns with
equal k obtained at different velocities. The two patterns
comprising such a pair are roughly inverse to each other but
differ in detail. This is shown in Fig. 3 where two patterns of
equal wavelength, λ0 ≈ 200, exhibit different structure: The
LE domains in Fig. 3(a) are narrower than the LC domains in
Fig. 3(b). As will be shown, these different types of patterns
will react slightly different to the periodic forcing caused by
prepatterned substrates.

For most velocities, the two-dimensional system behaves
analogously, yielding stripes parallel to the contact line, cor-
responding to the alternating domains of the one-dimensional
case. These solutions are symmetric with respect to transla-
tions along the y axis; that is, the system behaves just as
expected from the results obtained in the one dimensional
case. However, for values of V chosen close to the upper
or lower bound of the velocity range where patterns are
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FIG. 4. Wavenumber k0 of patterns transferred onto homoge-
neous substrates against transfer velocity V , as obtained from
one-dimensional computations. The curve is nonmonotonous, so that
the same k0 can be obtained for high and for low V . The origins of
the Arnold tongues in Fig. 7 can be determined from the intersection
points of the curve with horizontals at the corresponding n:m ratio.
This is shown here for 1:1 and 3:2 synchronization with Lp = 200.

obtained, the stripe formation is not stable. Instead, after a few
stripes are produced, the regularity is destroyed and disordered
domains are created. Remarkably, this disordered state is only
transient for velocities chosen from the range V � 0.47 and
marks an orientation transition from parallel to perpendicular
stripes [14].

D. Prepatterned substrates

For ρ > 0 the wettability contrast of the moving substrate
leads to an oscillation of the meniscus, going along with a
change of the wavelength of the produced pattern. Within
certain velocity ranges, the pattern synchronizes with the
substrate, yielding commensurate frequency ratios ω/� =
n:m with integer n,m. This can be seen from the pronounced
plateaus shown in Fig. 5. It is also noteworthy that the overall
velocity range where patterns are obtained is extended beyond
V = 0.83, the upper limit on homogeneous substrates.

As an alternative to the representation used in Fig. 5, one
can also use the ratio �/ω0 as the abscissa, thereby directly
relating the observed frequencies to the natural frequencies
of the system without referring to the transfer velocity V . In
the case considered here, this approach has two disadvantages.
First, velocities V > 0.83, where patterns are only obtained on
prepatterned substrates, could not be included in the diagrams,
since for them ω0 = 0. Second, as has been mentioned in
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FIG. 5. Synchronization plateaus obtained from one-dimensional
simulations of transfer onto a prepatterned substrate with Lp = 400
and ρ = 0.006.
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FIG. 6. (Color online) Staircase obtained from one-dimensional
simulations using Lp = 400 and ρ = 0.006, after elimination of the
transfer velocity in favor of the natural frequency scale �/ω0. Red
crosses indicate patterns obtained for velocities higher than 0.52;
black squares correspond to lower V .

the explanation of Figs. 3 and 4, patterns obtained for higher
V differ from those obtained for lower V , even if they
have exactly the same period. Due to these differences, the
synchronization plateaus of the low and the high transfer
velocity regimes do not match perfectly. Instead, one obtains
two staircases, one for low and one for high V , as is shown in
Fig. 6. Therefore, we will keep the V representation throughout
the remainder of this article.

Naturally, the frequency plateaus broaden with increasing
amplitude of the wettability contrast ρ. This dependence can
be visualized in a ρ-V diagram, where the synchronization
regions are drawn for different values of ρ, yielding the famous
Arnold tongues [24]. Figure 7 shows these diagrams for the
three different considered wavelengths Lp. Generally, an n:m
Arnold tongue meets the V axis at the velocity corresponding
to the n:m ratio of the intrinsic wavenumber k0 and the forcing
wavenumber k�. This velocity can be easily found by looking
at the intersections of a horizontal line at k0 = k�n/m with
the curve k0(V ). This is shown in Fig. 4 for the examples of
1:1 and 3:2 synchronization with Lp = 200.

In comparison to the case of homogeneous substrates (see
Figs. 3 and 5), transfer onto prepatterned substrates yields
patterns of higher complexity. Figure 8 shows snapshots of
transfer using a periodic wettability contrast of wavelength
Lp = 400 and amplitude ρ = 0.005. One has to distinguish
two cases. For velocities that belong to one of the synchro-
nization plateaus, the obtained pattern is periodic. Figure 8(a),
for example, shows a periodic train of domain pairs produced
by 2:1 synchronization. If the chosen velocity instead lies
outside the plateaus, a nonperiodic train of domains is obtained
[see Fig. 8(b)]. By eye, it is generally difficult to distinguish
a nonsynchronous pattern from a synchronous pattern with
higher values of n and m as can be seen by comparison
of Figs. 8(b) and 8(c). For the system under consideration,
this difficulty is even enhanced since, as has been mentioned,
the domains are subject to coarsening from the moment they
detach from the contact line. The coarsening is obvious in
Fig. 8(d), where the leftmost, that is oldest, pair of domains
already differs visibly from the rightmost pair that has just
been formed at the meniscus.

Like on homogeneous substrates, in the case of two spatial
dimensions, stripe patterns arranged parallel to the contact
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FIG. 7. Arnold tongues resulting from one-dimensional compu-
tations for prepatterned substrate with (a) Lp = 200, (b) Lp = 300,
and (c) Lp = 400. The dashed lines show how the Arnold tongues are
expected to go to ρ = 0. The vertical solid line indicates the velocity
corresponding to the maximum of the intrinsic frequency ω0.

line are obtained analogously to the domains found in the one-
dimensional case. The periodicity of these patterns matches the
one-dimensional solutions. Figure 9 shows two snapshots of
numerical simulations for a prepattern of period Lp, However,
as has been mentioned in the discussion of transfer onto
homogeneous substrates, there exists a velocity range where
the formation of stripes arranged parallel to the contact line
competes with a stationary pattern of perpendicular stripes.
Due to the presence of the prepattern, this competition gives
rise to the formation of new intermediate patterns, which are
neither stripes parallel nor stripes perpendicular to the contact
line and which are not observed on homogeneous substrates.
This is explained in detail in the next subsection.
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(a) 2:1, V=0.405
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(b)        V=0.685
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(c) 5:2, V=0.72

0 500 1000 1500 2000

1

2

X
H

,Γ

(d) 2:1, V=0.815
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FIG. 8. (Color online) Patterns in the one-dimensional system,
obtained during transfer with five different velocities on a prepat-
terned substrate with Lp = 400, ρ = 0.005. The velocities in (a) and
(c–f) are chosen from different n:m synchronization regions, while
(b) shows a pattern obtained at a velocity from between the right 3:1
and 2:1 regions [compare Fig. 7(a)].

E. The orientation transition

During transfer onto homogeneous substrates, a transition
from stripes parallel to the contact line to perpendicular stripes
was observed for velocities 0.38 � V � 0.47. On prepatterned
substrates, these perpendicular stripes are stable only for small
wetting contrast ρ. To illustrate this, we consider the solution
obtained for ρ = 0,V = 0.44, that is, a stable, stationary
pattern of stripes perpendicular to the contact line obtained

FIG. 9. (Color online) Two-dimensional patterns obtained on
a prepatterned substrate with Lp = 400 for two different transfer
velocities V . The height information corresponds to the film profile
H , and the monolayer density � is color coded.
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FIG. 10. (Color online) Two-dimensional solutions in the velocity
range of the parallel-perpendicular orientation transition for various
wetting contrasts ρ.

on a homogeneous substrate. This solution is then used as the
initial condition for computations with nonzero ρ. In these sim-
ulations, the wetting contrast is not activated instantaneously
across the whole domain. Instead, the region with ρ > 0 is
moving in from the right boundary with the transfer velocity V ,
thereby mimicking transfer onto a substrate, which is divided
into an homogeneous and a prepatterned part. This means that
the monolayer is first transfered onto a homogeneous substrate,
where it forms stripes perpendicular to the contact line. Then,
at T = 0, the contact line reaches the prepatterned part of the
substrate. Figure 10 shows how the wetting contrast impacts
the initially regular stripe pattern. For small amplitudes such
as ρ = 0.002, the stripes persist but are periodically undulated
across the X direction. These undulations travel along with

the moving prepattern underneath. For higher values of ρ

the stripes break up into well-arranged arrays of circular
LE domains, aligned like beads on a string parallel to the
contact line and advected with the substrate. For even higher
amplitudes ρ ≈ 0.007, these linearly arranged LE domains
alternate with solid LE stripes. Finally, for very strong wetting
contrasts ρ � 0.01, the extrinsic structure of the prepattern is
completely enforced upon the system, resulting in a regular
Lp-periodic stripe pattern.

IV. CONCLUSIONS AND OUTLOOK

A theoretical investigation of monolayer transfer onto
chemically prepatterned substrates has been presented. In our
model, a spatially varying disjoining pressure accounts for the
wetting heterogeneity due to the prepattern. Focusing on the
case where the wetting properties change periodically in the
direction perpendicular to the contact line, complex periodic
patterns were obtained as a result of synchronization effects of
various orders. In addition, it has been shown that a sufficiently
strong wetting contrast can be used to inhibit the transition
from stripes parallel to the contact line to perpendicular
stripes. Also, for moderate wetting contrasts, well-ordered
arrays of circular LE domains are obtained, as well as mixed
patterns consisting of alternating stripes and circular domains.
These results demonstrate that even simple prepatterns provide
means to create various complex, well-ordered patterns in
monolayer transfer systems and therefore open new perspec-
tives for the controlled nanopatterning of surfaces.

It can be expected, from our findings that patterns of higher
complexity might be obtained by use of more complicated
prepatterns that are not necessarily structured periodically. But
even using a periodic wetting heterogeneity as is considered
in this article, interesting new patterns might emerge if the
substrate is withdrawn under another angle, so that the stripes
of the prepattern are no longer parallel to the contact line.
These possibilities remain to be elaborated in a joint effort of
theoretical and experimental research.
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[15] S. Rüdiger, D. G. Mı́guez, A. P. Muñuzuri, F. Sagués, and
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