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Phase synchronization of three locally coupled chaotic electrochemical oscillators: Enhanced
phase diffusion and identification of indirect coupling
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Experiments are carried out with three locally coupled phase coherent chaotic electrochemical oscillators
(A-B-C) in nickel dissolution in sulfuric acid. As the interaction strength is increased among the electrodes,
an onset of synchronization is observed where the frequencies become identical and the phase differences are
bounded. The precision of the period of the oscillators is characterized by phase diffusion coefficients from
phases and phase differences. The transition to synchronization with increase of coupling strength was found
to be accompanied by enhanced phase fluctuations that cause the precision of the oscillations to deteriorate. A
parallel synchrony analysis showed that the direct (between A and B and B and C) and the indirect (between
A and C) couplings can be correctly identified with the use of a partial phase synchrony index; therefore, the
network topology can be deduced from dynamical measurements. Numerical simulations with a locally coupled
model for electrochemical chaos confirm the presence of enhanced phase fluctuations close to the transition to
synchronization and the usefulness of the partial phase synchrony index for differentiation of direct from indirect
interactions in a small network of oscillators.
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I. INTRODUCTION

Weak interactions in small sets [1,2] and large populations
[3,4] of chaotic oscillators can produce phase synchronization
where the phase differences between oscillator pairs are
bounded. Depending on the extent of phase coherence of the
chaotic behavior three major routes to phase synchronization
were observed with the Rössler system [5]. With strongly
phase coherent chaotic behavior zero Lyapunov exponents are
associated with the phase dynamics, and phase synchroniza-
tion occurs shortly after the transition of one zero Lyapunov
exponent to a negative value. The phase of a single chaotic
oscillator exhibits diffusion on large time scales due to the
long-term unpredictable effect of amplitudes on the phase
dynamics [6–9]. This observation led to the fruitful concept of
comparing features of chaotic phase synchronization to those
of noisy periodic oscillations [1,3,7]. Stochastic phase models
have been constructed [10–12] to describe the changes of
frequencies and phase diffusion coefficients (D) of coupled
chaotic oscillators as a function of coupling strength. In
particular, it was shown in numerical simulations that D values
obtained from both phases [8,13] and phase differences [14,15]
are enlarged as the synchronization boundary is approached.
Stochastic phase models based on symmetric dichotomous
Markov noise [11,12] were shown to be capable of interpreting
the asymmetric peak of the phase diffusion coefficient (ob-
tained from the phase differences) as a function of coupling
strengths. The analyses of phase diffusion coefficients thus
imply that chaotic fluctuations are critically enhanced close to
the transition to synchronization.

The phase diffusion coefficient of a chaotic oscillator is
an important property that can be related to the precision of
the “peak-to-peak” period of the oscillations. In biology, sub-
stantial attention is dedicated to the collective enhancement of
precision in synchronous oscillating units: “noisy” oscillating
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cells are believed to improve their precision through syn-
chronization [16–18]. Regularization of synchronized bursting
oscillations was observed in chaotic maps [19]. With noisy
periodic oscillations, factors such as the manner in which noise
enters the system and coupling among oscillators are critical
in determining the improved limits of precision [20].

In this paper, we investigate experimentally the phase
dynamics and synchronization properties of a small network
of three locally coupled (phase coherent) chaotic electro-
chemical oscillators. The experiments are designed to address
the importance of the coupling induced changes in the
precision of periods and of the effectiveness of the partial
phase synchronization index [21] in differentiating direct
from indirect interactions in a small network of oscillators.
The electrochemical system, Ni dissolution in sulfuric acid
[22] on electrode arrays [23,24], was previously utilized to
characterize the transition to chaotic phase synchronization in
globally coupled two- [25] and 64- [26,27] oscillator setups.
Here we chose a locally coupled three-oscillator configuration
representing a simple network that incorporates both directly
and indirectly coupled oscillators. Experiments are performed
at various local coupling strengths and the transition to
phase synchronization is characterized by analysis of diffusion
coefficients and bivariant and partial phase synchronization
indices. Based on information from synchrony analyses, an
attempt is made to differentiate direct and indirect connections
in the small network. The experimental findings related to
the loss of precision of chaotic oscillations close to the syn-
chronization transition and the capability of the partial phase
synchronization index to differentiate direct from indirect
connections are further tested in a numerical simulation of
the chemical process.

II. EXPERIMENTAL AND NUMERICAL METHODS

A. Experimental setup

A standard electrochemical cell consisting of a nickel
working electrode array (Goodfellow Cambridge Ltd, 99.98%,
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FIG. 1. Experimental setup. (a) Schematic diagram of electro-
chemical cell. Ref., Hg/Hg2SO4/sat. K2SO4 reference electrode;
C, Pt electrode; Rind, individual resistors; R, coupling resistors.
(b) Coupling topology implemented by the applied resistors: three
locally coupled oscillators.

1.0 mm diameter), a Hg/Hg2SO4/saturated K2SO4 reference
electrode, and a platinum counterelectrode is used in the
experiment [Fig. 1(a)]. The electrode array is made of three
1 mm Ni wires in linear configuration with 2 mm spacing
embedded in epoxy so that reaction takes place only at the end.
The electrode array is wet polished with a series of sandpapers
(P180–P4000) with a Buehler Metaserv 3000 polisher. The
experiments are carried out in 4.5 mol/l sulfuric acid solution
at 10 ◦C maintained by a Neslab RTE-7 circulating bath. An
external resistance Rind = 1300 � [see Fig. 1(a)] is added
to each electrode in the array. The currents (obtained from
potential drops across the external resistances) are acquired
with a National Instruments (PCI 6255) data acquisition
board with 200 Hz data acquisition rate. The electrode array
connected to a potentiostat (ACM Instruments, Gill AC) is
polarized at a constant circuit potential V. Two identical
coupling resistances R (varying between 0.1 and 1000 k�)
are introduced between the Ni electrodes in order to induce
local interactions between electrodes 1, 2 and 3 as shown
in Figs. 1(a) and 1(b). A typical data file consists of about
670 oscillations with 182 data points per cycle. The solution
is stirred slowly with a magnetic stirrer in order to remove O2

formed by water electrolysis.

B. Frequency and phase of oscillation

The Hilbert transform of the current i(t),

H (t) = 1

π
PV

∫ ∞

−∞

i(τ ) − 〈i〉
t − τ

dτ (1)

is used in defining the phase [7,28] φ(t),

φ(t) = arctan
H [i(t)]

i(t)
. (2)

PV in Eq. (1) implies that the integral should be evaluated in the
sense of the Cauchy principal value. 〈 〉denotes the temporal

average. The frequency of an oscillator is obtained from a
linear fit of φ(t) vs t,

ω = 1

2π

〈
dφ

dt

〉
. (3)

For further analysis, the phase of the oscillations φ(t) was
filtered with a first order Savitzky-Golay filter [29] with a
width corresponding to the period (1/ ω) of the oscillations.
The filter removes in-cycle fluctuations that are often observed
with the Hilbert-transform phase reconstruction method [30].

C. Phase diffusion coefficient

In order to evaluate the extent of phase fluctuations, the
phase variance [7,13] is defined as

σ 2(τ ) = 〈[�(t + τ ) − �(t)]2〉, (4)

where �(t) = φ(t) − 2πωt is the “detrended phase.” To
evaluate the variance the data file was divided into segments
withτ time lengths and initial time of t0. σ 2 is obtained as the
variance of the �(t0 + τ ) − �(t0) values for the segments. The
phase diffusion coefficient D is obtained from the slope of a
linear least squares fit to the σ 2(τ ) vs τ plot [13,14]:

σ 2(τ ) = B1τ + B2 (5)

and

D = B1/2. (6)

The error of D is evaluated from the 95% confidence
interval obtained from the linear least squares fit for B1.
(The confidence interval for D was typically found to be
±1%–5%; close to the transition to synchronization we
have observed errors about ±5%–10%.) The phase diffusion
coefficient was also determined from the phase difference
	φk,l = φk(t) − φl(t) between any two oscillators k and l.
In this case, the detrended phase is obtained by replacing the
phase φ(t) with the phase difference between oscillators. The
phase diffusion coefficient from the phase difference (Dk,l) is
obtained from the slope of a linear least squares fit to the σ 2(τ )
vs τ as discussed above. The phase diffusion coefficient was
treated as a measure of the precision of the period of chaotic
oscillations in a previous study with a single electrode [31].

D. Synchronization index

The extent of synchrony between two oscillators in the
locally coupled three-oscillator setup is characterized by two
indices [21] : the bivariant phase synchronization index (ρ)
and the partial phase synchronization index (ρz). The absolute
value of the bivariant phase synchronization index,

|ρk,l| = |〈ej	φk,l (t)〉|, (7)

is a measure of the extent of phase synchronization based on the
phase difference between two oscillators. ( j is the imaginary
unit.) The partial phase synchronization index is defined as

∣∣ρz
k,l

∣∣ =
∣∣S−1

k,l

∣∣√
S−1

k,kS
−1
l,l

, (8)
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where S−1
k,l denotes the elements of the inverse of the synchro-

nization matrix S:

S =

⎛
⎜⎝

1 ρ1,2 ρ1,3

ρ∗
1,2 1 ρ2,3

ρ∗
1,3 ρ∗

2,3 1

⎞
⎟⎠ . (9)

The combined application of bivariant and partial phase
synchronization measures can be utilized to infer topological
features of the coupling of a small network of oscillators:
numerical simulations of three locally coupled phase coherent
Rössler oscillators show [21] that direct connections between
oscillators k and l are indicated by large values of both |ρk,l|
and |ρz

k,l|; with indirect interactions large values of |ρk,l| are
accompanied by low values of |ρz

k,l|.

E. Model and numerical methods

To support the experimental results, numerical simulations
are carried out with a prototype model of electrochemical
chaos proposed by Koper and Gaspard [32]. The model has
three (dimensionless) variables for each oscillator l = 1,2,3:
the double-layer electrode potential (el) and the concentrations
of electroactive species near the electrode surface and at the
diffusion layer, ul and wl , respectively. The model for a
three-oscillator setup coupled through cross resistances is as
follows:

cl

del

dt
= V − el

rind
− 120k(el)ul + El

r
,

dul

dt
= −1.25d0.5k(el)ul + 2d(wl − ul), (10)

dwl

dt
= 1.6d(2 − 3wl + ul),

where k(e) is the dimensionless heterogeneous rate constant
defined as

k(e) = 2.5θ2 + 0.01 exp[0.5(e − 30)] (11)

and θ is the surface coverage of inhibiting chemical species
given by a sigmoidal function

θ =
{

1 for e � 35,

exp[−0.5(e − 35)2] for e > 35.
(12)

Model parameters d = 0.119 13, V = 36.7395, and rind =
0.02 were chosen to produce phase coherent chaotic dynamics
[25,32]. As in previous studies [25], the inherent hetero-
geneities of the oscillators due to varying surface conditions
are modeled by slightly different values of the model parameter
cl = 1.003,0.995,0.988 897, for l = 1,2,3, respectively.

The electrical coupling among the electrodes imposed by
the resistors is modeled by the coupling terms El in (10):

E1 = e2 − e1,

E2 = e1 − 2e2 + e3, (13)

E3 = e2 − e3.

The set of ordinary differential equations was solved with
MATLAB using a variable stepsize fourth-order Runge Kutta
algorithm (ODE45).

FIG. 2. (Color online) Experiments: Phase dynamics of a single
phase coherent chaotic oscillator. (a) Time series of current. (b) Two-
dimensional embedding using the Hilbert transform of the current.
(c) Detrended phase vs time. (d) Phase variance vs time; line indicates
least squares fit used to determine phase diffusion coefficient, 5.65 ×
10−3 ± 0.06 × 10−3 rad2/s. V = 1293 mV.

III. RESULTS

A. Experiments

1. Single phase coherent chaotic oscillator

Dynamical features of the chaotic oscillations observed
in the experiments are shown in Fig. 2. As reported in a
previous study [31], the time trace of currents shown in
Fig. 2(a) exhibits phase coherent character at a temperature of
10 ◦C. The two-dimensional phase space reconstructed using
the Hilbert transform approach [Fig. 2(b)] exhibits a unique
centre of rotation around the origin; therefore, the phase and
frequency of the time series can be obtained. In accordance
with the phase coherent character, the detrended phase of
the time series shows small fluctuations in Fig. 2(c): for an
experimental time of 1500 s corresponding to 1662 oscillations
the largest deviation (5 rad) was less than one cycle. The
diffusion coefficient obtained from the phase variance vs time
plot in Fig. 2(d) was found to have the small value of 5.65 ×
10−3 ± 0.06 × 10−3 rad2/s. We shall use this phase coherent
chaotic behavior to investigate the effects of coupling in locally
coupled three-oscillator configurations.

2. Three phase coherent oscillators without added coupling

The current vs time series of three chaotic oscillators with-
out added coupling, i.e., with infinite coupling resistance R, are
shown in Fig. 3(a). As in previous two- [25], three- [23], and
64- [33] oscillator experiments, we have not observed phase
synchronization among the oscillators without added coupling;
the phase differences between the oscillators increase linearly
with time as shown in Fig. 3(b) without the presence of
preferred phase differences or phase slips. The three oscillators
had slightly different frequencies of ω1 = 1.167 Hz, ω2 =
1.174 Hz, and ω3 = 1.191 Hz. The phase fluctuations of the
three oscillators were very small [see Fig. 3(c)] resulting in
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FIG. 3. (Color online) Experiments: Dynamics of three oscilla-
tors without added coupling. (a) Current time series of oscillators.
(b) Phase differences (	φ1,2, 	φ2,3, and 	φ1,3) vs time. (c) Detrended
phases vs time. V = 1300 mV. In (a) and (c) oscillators 1, 2, and 3
are shown with dashed, thick, and thin curves, respectively.

small values of the phase diffusion coefficients D1 = 5.70 ×
10−3 ± 0.07 × 10−3 rad2/s, D2 = 4.49 × 10−3 ± 0.08 ×
10−3 rad2/s, and D3 = 6.00 × 10−3 ± 0.09 × 10−3 rad2/s.
The three-electrode setup without added external coupling thus
represents three phase coherent chaotic oscillators with small
heterogeneities in frequencies and phase diffusion coefficients.

3. Three weakly coupled phase coherent oscillators

The effect of weak coupling through the addition of two
150 k� coupling resistances between oscillators 1, 2 and
3 is shown in Fig. 4. Although the time series data of
currents in Fig. 4(a) do not exhibit any obvious (e.g., identical)
synchronization, the phase dynamics plots in Figs. 4(b) and

FIG. 4. (Color online) Experiments: Dynamics of three mod-
erately coupled oscillators. (a) Current time series of oscillators.
(b) Phase differences vs time. (c) Detrended phases of oscillators.
V = 1307 mV, R = 150 k�. In (a) and (c) oscillators 1, 2, and 3 are
shown with dashed, thick, and thin curves, respectively.

FIG. 5. (Color online) Experiments: Dynamics of three strongly
coupled oscillators. (a) Current time series of oscillators. (b) Phase
differences vs time. (c) Detrended phases of oscillators. V =
1307 mV, R = 25 k�. In (a) and (c) oscillators 1, 2, and 3 are
shown with dashed, thick, and thin curves, respectively.

4(c) show striking differences compared to the uncoupled
[Figs. 3(b) and 3(c)] results. The phase differences of the
oscillators alternate periods when phase locking is observed
as a plateau in 	φ vs t plots (such as for 200 < t < 320 s
for oscillators 1 and 2), with periods of phase drifts (such
as for 320 < t < 430 s for oscillators 1 and 2). Because
of the intermittent phase locking behavior, the frequencies
of the oscillators are close to each other: ω1 = 1.101 Hz,
ω2 = 1.113 Hz, and ω3 = 1.109 Hz. In addition, detrended
phases exhibited relatively high fluctuations [see Fig. 4(c)]
compared to those of the uncoupled oscillators in Fig. 3(c).
The enhanced phase fluctuations were marked by large
phase diffusion coefficients D1 = 2.26 × 10−2 ± 0.01 ×
10−2 rad2/s, D2 = 8.26 × 10−2 ± 0.05 × 10−2 rad2/s,
and D3 = 9.72 × 10−3 ± 0.01 × 10−3 rad2/s, i.e.,
the values have increased by factors of 4.0, 18.4, and 1.6
for oscillators 1, 2, and 3, respectively. Thus we can see
that before phase synchronization is fully established, the
oscillators exhibit enlarged phase diffusion coefficients.

4. Three strongly coupled phase coherent oscillators

With further increase of the coupling strength, a transition
to phase synchronized behavior was observed. Figure 5 shows
the behavior at about six times the coupling strength (with
coupling resistance of 25 k�) as that in Fig. 4. Although
identical synchronization is still not observed in the current
vs time series data in Fig. 5(a), it is clearly seen that the
oscillators “spike” at about the same time (with small jitter)
for every oscillation. At this coupling strength the frequencies
of all the oscillators were found to be 1.110 Hz and the
phase difference between any two oscillators was close to
a constant value (zero) [Fig. 5(b)]. The detrended phase of
oscillators shown in Fig. 5(c) exhibited small fluctuations
similar to those observed with the uncoupled oscillators. Note
that the detrended phases exhibit almost identical long-range
trends; therefore the diffusion coefficients were found to be
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FIG. 6. (Color online) Experiments: Pairwise frequency dif-
ferences vs coupling strength {log10[1/R (k�)]}. Circles, 	ω1,2;
triangles, 	ω2,3; diamonds, 	ω1,3.

D1 = 3.09 × 10−3 ± 0.08 × 10−3 rad2/s, D2 = 2.90 × 10−3

± 0.08 × 10−3 rad2/s, and D3 = 3.40 × 10−3 ± 0.07 ×
10−3 rad2/s, i.e., oscillators 1, 2, and 3 exhibited 46%, 35%,
and 43% decrease compared to the values obtained with
uncoupled oscillators, respectively. These results indicate that
the strong enhancement of phase diffusion observed before the
onset of phase synchronization cannot be observed after strong
phase synchronization has been established.

5. Effect of coupling strength: Frequency difference
and phase diffusion coefficient

In order to further characterize the effect of local interac-
tions on the dynamical features of the three-oscillator setup,

we carried out a series of experiments with ten coupling
strengths utilizing coupling resistances in the range of 2.5
to 1000 k�. The frequency differences for each of the three
pairs of oscillators as a function of coupling strength (1/R on a
logarithmic scale) are shown in Fig. 6. With increase of cou-
pling, there is a strong tendency for the frequency differences to
decrease; however, the transitions are not monotonic as would
be expected for a pair of oscillators with symmetrical coupling
[34]. The nonmonotonic variations are probably affected by
the inherent drift of the oscillator frequencies which are on
the order of 0–5 mHz/experiment; however, as will be shown
in the numerical simulation section, coupling can increase the
frequency difference between oscillators due to effects similar
to anomalous phase synchronization [35]. Oscillators 2 and 3
become synchronized at R = 50 k�, after which full synchrony
is achieved with R = 25 k�[log10(1/R) = −1.40]. With an
increase of the coupling strength above these threshold values,
the frequency differences remained zero.

The variation of the phase diffusion coefficients with cou-
pling strength for oscillators 1, 2, and 3 is shown in Figs. 7(a),
7(b), and 7(c), respectively. The common feature of the curves
is the strongly enlarged phase diffusion coefficient before the
onset of phase synchronization. Oscillators 1 and 2 exhibit
an approximately single-peak variation with a maximum
at R = 75 and 150 k�, respectively; oscillator 3 exhibits
an approximate double-peak behavior with local maxima at
R = 75 and 200 k�. All these peaks occur close to but

FIG. 7. Experiments: Measures of phase fluctuations as functions of the coupling strength. Top: Phase diffusion coefficient vs coupling
strength, (a) D1, (b) D2, (c) D3. Middle: Phase diffusion coefficient determined from phase difference between oscillators vs coupling strength,
(d) D1,2, (e) D2,3, (f) D1,3. Bottom: Sum of phase diffusion coefficients vs coupling strength, (g) D1 + D2, (h) D2 + D3, (i) D1 + D3. Arrows
indicate onset of phase synchronization.
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distinctly before the transition to phase synchronization (R =
25–50 k�). These peaks represent a dramatic enlargement
of D at the global maxima; for oscillators 1, 2, and 3, the
D values increase by factors of 14, 18, and 10, repectively,
compared to the values of the uncoupled oscillators. After
the maximum (for oscillator 3 the second maximum) the
D values decrease. In this region, with a pair of Rössler
oscillators it was found that D1,2/(2π	ω1,2) ≈ π [11]. For
the experimental data with three oscillators, close to the
synchronization transitions where the frequency differences
were smaller than 6 mHz, the Dk,l/(2π	ωk,l) values were
found to be within a range of 0.3π–1.5π . We thus see that
for the three-oscillator setup the order of magnitude of the
phase diffusion coefficient is consistent with the theoretical
prediction [11]. Immediately after the transition to phase
synchronization, the phase diffusion coefficients take up values
similar to those seen with the uncoupled oscillators.

The dependencies of the phase diffusion coefficients
determined from the phase differences between two oscillators
(D1,2, D2,3, and D1,3) on the coupling strength are shown in
Figs. 7(d)–7(f). Before the phase synchronization transition,
the oscillators are weakly correlated and therefore the varia-
tions are expected to follow the sum of the phase diffusion
coefficients of the individual oscillators (Dk,l ≈ Dk + Dl). For
convenience, the Dk + Dl quantities are plotted in Figs. 7(g)–
7(i). Before the transition to synchronization, the values of
Dk + Dl are good indicators of Dk,l : for oscillators 1–2
[Fig. 7(d)] and 1–3 Fig.7(f)] a double-peak structure, while for
oscillators 2–3 [Fig. 7(e)] a wide single-peak structure, were
observed. Just before the onset of phase synchronization the
Dk,l values become diminished due to the appearance of strong
correlations; after phase synchronization sets in Dk,l = 0.

The analysis of the phase diffusion coefficients based
on the individual phases of oscillators and on the phase
differences between oscillators thus indicates that there is great
deterioration in the precision of the period of chaotic oscillators
before the onset of synchronization.

6. Distinguishing direct interactions from indirect interactions

The effect of local coupling strength on the extent of syn-
chronization was characterized with an analysis of the bivari-
ant (7)] and partial [(8)] synchronization indices. The bivariant
phase synchronization index as a function of the coupling
strength is shown in Figs. 8(a)–8(c) for the oscillator pairs. The
synchronization index varies between 0 (lack of synchrony)
and 1 (full synchrony). For simplicity we consider it an
increased level of synchrony between the oscillators if the
index reaches above 0.5 (dashed line in the figures). (A more
sophisticated analysis based on a twin surrogate significance
level analysis [36] and recurrence based synchrony measures
[37] also indicated [38] that the 0.5 value is a good cutoff level
for this specific experimental system.)

For the directly coupled oscillator pairs 1–2 and 2–3, below
a coupling strength corresponding to R = 75 and 150 k�,
respectively, the bivariant synchrony index is smaller than
0.5, indicating lack of synchrony [see Figs. 8(a) and 8(b)].
Above the given coupling strengths, |ρ| rises above 0.5 and
increases monotonically as the coupling strength is increased.
As in the results of the frequency analysis, the bivariant
synchrony measures indicate that directly coupled oscillators 2
and 3 synchronize at weaker coupling strength than oscillators
1 and 2. At coupling strengths R < 50 k�, where both
directly coupled oscillators are synchronized, the bivariant
synchronization index for the indirectly coupled oscillator pair
1–3 also indicates synchronized behavior [see Fig. 8(c)]. By
comparison of the variations of |ρ| with the coupling strength
of the directly coupled [Figs. 8(a) and 8(b)] and the indirectly
coupled oscillators [Fig. 8(c)], it can be seen that the trends
and values are very similar; the indirectly coupled oscillators
typically have only slightly smaller values of |ρ|. Based on
these small differences, the distinction between directly and
indirectly coupled oscillators would be very difficult.

The partial phase synchronization index for the directly
coupled oscillators is shown in Figs. 8(d) and 8(e). Below the
transition to phase synchronization (for coupling strengths at

FIG. 8. Experiments: Pairwise synchronization indices vs coupling strength. Top: Bivariant synchronization index (|ρ|) vs coupling strength,
(a) |ρ1,2|, (b) |ρ2,3|, (c) |ρ1,3|. Bottom: Partial phase synchronization index (|ρz|) vs coupling strength, (e) |ρz

1,2|, (f) |ρz
2,3|, (g) |ρz

1,3|.
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which |ρ| < 0.5), the partial phase synchrony index is smaller
than the cutoff level (|ρz| < 0.5) and the values are similar to
the corresponding values of |ρ|. Above the transition to phase
synchronization, |ρz| has an increasing trend with increase
of the coupling strength; however, the typical values of |ρz|
are smaller than |ρ| by 0.1–0.2. Nonetheless, for coupling
strengths where strong phase synchrony is indicated for the
directly coupled oscillators [|ρ| > 0.8 in Figs. 8(a) and 8(b)],
the partial phase synchrony index is above the 0.5 cutoff value.

The dependence of the partial phase synchronization index
on coupling strength for the indirectly coupled oscillator
pair 1–3 is shown in Fig. 8(f). |ρz| remains a small value
(<0.5) for all coupling strengths; in fact it has a decreasing
trend with increase of the coupling strength for strong
coupling (R < 50k�) where the corresponding bivariant phase
synchronization index has an increasing trend [Fig. 8(c)] with
values >0.5.

These results confirm the proposition [21] that the partial
phase synchronization index characterizes the synchrony
induced by direct coupling. For the directly coupled oscillator
pairs 1–2 and 2–3, the partial and bivariant phase synchroniza-
tion indices have similar trends and similar values. In contrast,
for the indirectly coupled oscillator pair 1–3, the bivariant
phase synchronization index characterizes the existing high
level of synchrony due to indirect coupling through oscillator 2,
but the partial phase synchronization index correctly indicates
the lack of synchrony induced by direct coupling.

B. Numerical simulations

We carried out numerical simulations with a prototype
electrochemical model [Eqs. (10)–(13)] to confirm the ex-
perimental findings and shed light on the details of the
synchronization transition.

The dynamical features of a single phase coherent oscillator
obtained by integrating Eqs. (10)–(13) for l = 1 and with
c1 = 1 are shown in Fig. 9. The chaotic oscillations with
the chosen set of parameters are obtained through a periodic-
doubling bifurcation with increasing parameter V [25,32];
chaotic time series data of the variable e are shown in Fig. 9(a).
A two-dimensional embedding using a Hilbert transform
[see Fig. 9(b)] produces a unique center of rotation as the
origin. The phase was successfully obtained using the Hilbert
transform approach. The frequency of the oscillations was
found to be 0.475. The detrended phase exhibited extremely
small fluctuations in the chosen parameter region [Fig. 9(c)].
The phase diffusion coefficient, obtained from the phase
variance plot in Fig. 9(d), was found to have a very small value
of 4.0 × 10−5 ± 0.2 × 10−5. (Note that the actual values of the
frequency and phase diffusion coefficients cannot be directly
compared to the experimental data because the numerical
model is a dimensionless, prototype model that simulates
general dynamical and some limited chemical characteristics
of electrochemical oscillations.)

A series of simulations were carried out for a set of coupling
resistances r for the three-oscillator setup using Eqs. (10)–(13)
with l = 1,2,3 and cl = 1.003, c2 = 0.995, and c3 =
0.988 897. These conditions result in a state which is similar
to that observed in the experiments: phase coherent chaotic
oscillations with slightly different (∼1%–2%), monotonically

FIG. 9. (Color online) Numerical simulations: (a) Time series
of variable e (electrode potential). (b) Two-dimensional embedding
using Hilbert transform. (c) Detrended phase vs time. (d) Phase
variance vs time; line indicates least squares fit used to determine
phase diffusion coefficient D = 4.0 × 10−5 ± 0.2 × 10−5.

distributed frequencies. For uncoupled oscillators (r = ∞) the
frequencies are (0.4761, 0.4733, 0.4712) with D1 = 2.6 ×
10−6 ± 0.3 × 10−6, D2 = 4.39 × 10−5 ± 0.05 × 10−5,
and D3 = 3.36 × 10−5 ± 0.05 × 10−5. The frequency
differences between the oscillator pairs as a function of
the coupling strength are shown in Fig. 10. The frequency
difference between oscillators 1 and 2 has a decreasing
trend with a smoothed out transition point characteristic for
a pair of coupled phase coherent oscillators [14]. Phase
synchronization sets in for oscillator pair 1–2 at r = 284 where
the frequencies become identical. While the center oscillator 2
is being synchronized to oscillator 1 with increase of coupling
strength, the frequency difference between oscillators 2 and
3 increases. After synchronization of oscillator pair 1–2, the
	ω2,3 values decrease with increasing coupling strength and
full phase synchronization sets in at r = 160. The frequency
difference between the two “edge” oscillators 1 and 3 with
increasing coupling strength first slightly increases up to
the establishment of synchrony between oscillators 1 and 2;
thereafter, it quickly decreases. The results show that, as in the
experimental results, synchronization is a two-step process: the

FIG. 10. (Color online) Numerical simulations: Pairwise fre-
quency differences vs coupling strength. Circles, 	ω1,2; triangles,
	ω2,3; diamonds, 	ω1,3.
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MAHESH WICKRAMASINGHE AND ISTVÁN Z. KISS PHYSICAL REVIEW E 83, 016210 (2011)

FIG. 11. Numerical simulations: Measures of phase fluctuations as a function of coupling strength. Top: Phase diffusion coefficient vs
coupling strength, (a) D1, (b) D2, (c) D3. Middle: Phase diffusion coefficient determined from phase difference between oscillators vs coupling
strength, (d) D1,2, (e) D2,3, (f) D1,3. Bottom: Sum of phase diffusion coefficients vs coupling strength, (g) D1 + D2, (h) D2 + D3, (i) D1 + D3.
Arrows indicate onset of phase synchronization.

directly coupled 1–2 and 2–3 oscillators become synchronized
at r = 284 and 160, respectively.

1. Enhanced phase fluctuation before the
onset of synchronization

The effect of local coupling strength on the phase diffusion
coefficient of the oscillators is shown in Figs. 11(a)–11(c). As
in the experimental results, strongly enlarged D values were
obtained at coupling strengths somewhat weaker than those
required for full phase synchronization. All oscillators exhibit
one major peak in the D vs coupling strength plots; however,
the monotonic increase or decrease is often interrupted by
small local peaks or shoulders that often coincide with the
synchronization transition for a pair of oscillators (indicated by
arrows). The maximum phase diffusion coefficients represent
1737-, 327-, and 562-fold enhancements over those observed
with the uncoupled oscillators 1, 2, and 3, respectively. At
coupling strengths with values close to phase synchronization
where the frequency differences were smaller than 0.3, the
Dk,l/(2π	ωk,l) values were found to be within a range of
0.5π–0.9π . At coupling strengths above full phase synchro-
nization (r < 160), the D values are relatively low (at least ten
times lower than the maximum values).

The phase diffusion coefficients obtained from phase
differences are shown Figs. 11(d)–11(f). The single-peak
[oscillators 1–2, Fig. 11(d) , and 1–3, Fig. 11(f)] and double-
peak [oscillators 2–3, Fig. 11(e)] trends in the figures at

coupling strengths weaker than for the corresponding onset of
synchronization can be explained by the behavior of the sum of
the individual phase diffusion coefficients shown in Figs. 11(g)
and 11(h). Above the synchronization transition the Dk,l values
go to zero as expected for phase synchronization [7].

2. Distinguishing direct and indirect interactions

The effect of the coupling strength on synchrony features is
shown in Fig. 12. The bivariant phase synchronization index
[Figs. 12(a)–12(c)] has low values for weak, and strongly
elevated (|ρ| > 0.5) values for strong coupling. For oscillator
pairs 1–2, 2–3, and 1,3 the critical resistances at which |ρ|
passes 0.5 are 310, 207, and 207, respectively. For directly
coupled pairs [1–2, Fig. 12(a), and 2–3, Fig. 12(b)] |ρ| seems to
saturate at around a value of 0.7–0.8 for the coupling strength,
stronger than the critical value; for the indirectly coupled pair
[1–3, Fig. 12(c)] the saturation occurs at a somewhat lower
value of |ρ| ≈ 0.6.

The variation of the partial phase synchronization index
with coupling strength is shown in Figs. 12(d)–12(f). For the
directly coupled oscillator pairs [Figs. 12(d) and 12(e)] |ρz|
follows the same trend as |ρ| [Figs. 12(a) and 12(b)] with |ρz|
having a value of 0.1–0.2 lower than |ρ| for the strong coupling
strengths. In contrast, for the indirectly coupled oscillator pairs
[1–3, Fig. 12(f)] the partial phase synchronization index re-
mains low for every coupling strength (|ρz| < 0.4). The results
thus confirm that with strongly phase synchronized oscillators
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FIG. 12. Numerical simulations: Pairwise synchronization indices vs coupling strength. Top: Bivariant synchronization index (|ρ|) vs
coupling strength, (a) |ρ1,2|, (b) |ρ2,3|, (c) |ρ1,3|. Bottom: Partial phase synchronization index (|ρz|) vs coupling strength, (e) |ρz

1,2|, (f) |ρz
2,3|,

(g) |ρz
1,3|.

(r < 160), the directly coupled oscillator pairs (1–2 and 2–3)
exhibit large (>0.5) values of both |ρz| and |ρ|; oscillator pairs
(1–3) exhibit large values of |ρ| along with small values |ρz|,
correctly indicating the lack of direct connections.

IV. DISCUSSION

Coupling through cross resistors was found to induce
phase synchronization in three locally coupled chaotic phase
coherent oscillators in Ni electrodissolution. The transition
to synchronization took place in two steps during which
with increase of coupling strength the center oscillator first
synchronized to one of the edge oscillators; with further
increase of coupling strength the remaining edge oscillator
joined the synchronized group above a critical coupling
strength.

The bivariant synchronization index [21] successfully char-
acterized the synchronization transition by showing elevated
values for each oscillator pair with coupling strengths above
that for the transition to full synchronization. This result
implies that, based on the bivariant phase synchronization
index, it is very difficult to differentiate direct from indirect
coupling in a small network. In contrast, the partial phase
synchronization index [21] indicated direct corrections by
elevated values for the coupling of the edge oscillators to
the center oscillator. The small value of the partial phase
synchronization index for the two edge oscillators indicated the
lack of direct coupling. The presented results therefore provide
experimental evidence that the partial phase synchronization
index proposed by Schelter et al. [21] is a useful tool
for the identification of missing coupling links in a locally
coupled three-oscillator setup. The method of the partial phase
synchronization index requires a definition of phase for the
chaotic oscillator. For strongly non-phase-coherent chaotic
oscillators, a recurrence based analysis [38] or methods based
on directionality analysis [39] and permutation entropy [40]
can be applied. Because in the given experimental system

the extent of phase coherence can be controlled by changes
in temperature [31], the experimental applicability of these
methods could be tested as well.

Analysis of the variation of the phase diffusion coefficient
in electrochemical experiments and numerical simulations
confirmed the prediction that the precision of chaotic oscilla-
tors strongly deteriorates before the onset of synchronization.
Close to (but before) the transition to synchronization at least a
10- 18-fold enhancement of phase diffusion was observed. The
order of magnitude of this enhancement was in good agreement
with the theoretically predicted relationship D1,2/(2π	ω1,2)
≈ π for a pair of oscillators [12]. In addition, we observed
that D values obtained from both the individual phases and
phase differences are enlarged. With weak coupling strengths,
where the correlation between the oscillators is weak, the
phase diffusion values from phase differences (Dk,l) can be
approximated by the sum of the phase differences (Dk + Dl).
This relationship could be a valuable tool in characterization
of a “significant” level of coupling induced synchrony among
oscillators in addition to the presently used twin surrogate [36]
methodology.

We also observed that the enhancement of the phase
diffusion exhibited multipeak behavior with increase of the
coupling strength. When one pair of oscillators approached
phase synchronization and thus exhibited enlarged phase
diffusion, the remaining, weakly coupled oscillator might also
exhibit at least some enhancement of phase diffusion. The
multipeak behavior in curves of D vs coupling strength has
been observed in numerical simulations with three globally
coupled Rössler oscillators [15]; therefore it seems that the
theory of two coupled oscillators [11,12,14,15], at least
qualitatively, is applicable to the three-oscillator configuration.

The experiments in this study were carried out with
electrochemical oscillations; however, the studied underlying
phenomena related to synchrony features of directly and indi-
rectly coupled oscillations and the precision of the period of
oscillations have important roles in many biological examples
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such as the precision and coupling of circadian oscillators [41].
We note that the oscillators in this study are nonprecise
because of some inherent dynamical causes that result in
chaotic behavior. The deterioration of precision is related to
the appearance of complicated correlated amplitude (noise)
effects. This scenario could be important in the functioning
of dynamical clocks that are strongly intertwined but exhibit
very different time scales so that that a “stochastic” approach

could be applied to simplify the long-term effect of chaotic
variations.
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