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Topology of magnetic field lines: Chaos and bifurcations emerging from two-action systems
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Nonlinear dynamics of magnetic field lines generated by simple electric current elements are investigated. In
general, the magnetic field lines show behavior similar to that of the Hamiltonian systems; in fact, they can be
generally transformed into Hamiltonian systems with 1.5 degrees of freedom, obey the Kolmogorov-Arnold-
Moser (KAM) theorem, and generate chaotic trajectories. In the case where unperturbed systems are described
by two action (slow) and one angle (fast) variables, however, it is found that the periodic orbits of the unperturbed
systems vanish for arbitrarily small symmetry-breaking perturbations (a breakdown of the KAM theorem) and
drifting or periodic trajectories appear. The mechanism of this phenomenon is investigated analytically by weak
nonlinear stability analysis. It is also shown numerically that scattering processes of the perturbed system exhibit
typical features of chaotic dynamical systems.
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I. INTRODUCTION

Although the phase space dimensions of Hamiltonian
systems are of even order, there are also conservative dy-
namical systems with odd dimensions. Among such systems,
three-dimensional volume-preserving flows and maps are
the most important, because they are associated with many
physical phenomena. For example, the ordinary differential
equations describing magnetic field lines (MFLs) are volume
preserving—namely, the vector fields are divergence-free
[1–3]. Since MFLs are common tools for visualization of
magnetic fields [4,5], from the viewpoint of applications it
is important to understand their dynamics. In addition, MFLs
play an essential role in understanding the confinement of
tokamak plasma [1,6–8], and studies of chaotic phenomena in
Hamiltonian systems were strongly motivated by the practical
importance of MFLs in plasma physics. One prominent
characteristic of MFLs is that they are conservative systems
with no approximation, because MFLs are defined simply by
the stream lines of magnetic fields, which are divergence-free.
Another famous example of a volume-preserving system is
passive scalars (PSs) in incompressive fluid flows [9,10]. The
dynamics of PSs are also an important field of research because
of their significance in combustion and chemical reactions, and
therefore they have been intensively investigated [9–15] since
the pioneering work by Arnold who studied the so-called ABC
flow [16]. However, the dynamics of PSs are different from
those of MFLs in that the equations for PSs are derived by
neglecting thermal fluctuations and the influence of PSs on the
fluids [9].

Three-dimensional volume-preserving flows and maps can
be classified according to the number of action (slow) vari-
ables. In the case where an unperturbed system has only one
action variable (action-angle-angle case), the general methods
and theorems for Hamiltonian systems such as the Melnikov
method and Kolmogorov-Arnold-Moser (KAM) theorem can
be applied [17], and therefore the perturbed system generally
exhibits chaotic behavior similar to that in Hamiltonian
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systems. For example, in recent studies [2,3,18], chaotic MFLs
created by several current elements were investigated and
found to be generated by realistic current configurations. In
particular, in Ref. [3], it was demonstrated numerically that
electric circuits such as power wires and printed circuit boards
can also produce chaotic MFLs, and in Ref. [2], chaotic MFLs
generated through a scenario based on the Poincaré-Birkhoff
theorem [19] were studied. In the case where the unperturbed
system has two action variables (action-action-angle case),
however, the behavior of the perturbed system is different
from that of generic Hamiltonian systems; for example the
KAM theorem does not always hold [20]. This two-action
case has already been studied on PSs [9,17,20–22], but,
to the authors’ knowledge, there has been no investigation
on MFLs. The main purpose of the present paper is there-
fore to examine the nonlinear dynamics of MFLs for the
two-action case.

This paper is organized as follows. In Sec. II, we study
the topology of MFLs of a system with a single coil and a
straight wire. We introduce the ordinary differential equations
describing the MFLs of this system, and show numerical
results for both one- and two-action systems. Moreover it is
shown that the periodic orbits of the unperturbed system vanish
for arbitrarily small perturbations for the two-action case. The
mechanism of this phenomenon is studied analytically by weak
nonlinear stability analysis using a Lyapunov function. The
scattering process of the perturbed two-action system is also
studied and it is shown that some features typical in chaotic
dynamical systems appear in this scattering process. In Sec. III,
we show numerical results for a system with two coils and a
straight wire; this system has a hyperbolic fixed point and
shows more complex behavior than the single coil system.
Finally, Sec. IV is devoted to a conclusion.

II. SINGLE COIL SYSTEM

A magnetic field line r(τ ) ∈ R3, parametrized by a pseudo-
time-variable τ obeys the ordinary differential equation ṙ = B
[7,8], where B is the magnetic field. Let us begin with a system
with a single coil and a straight wire, as shown in Fig. 1(a).
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FIG. 1. (Color online) (a) The wire configuration of the single
coil system. (b) and (c) The rotation number and the Poincaré
section φ = π/2 in the one-action case. Parameters are set as
IC = 0.1,IL = 1.0, and Bx = 0.005. (d) For the two-action case, the
Poincaré section z = 0 is shown for six orbits that start at points
(−r0/

√
2,r0/

√
2,0)(0.38 � r0 � 0.455). The parameters values are

IC = 0.1,IL = 0.0, and Bx = 0.001. (e) A typical orbit in the
invariant subspace φ = 0. The parameter values are the same as
in (d) except that B = 0.02. (Inset) An orbit of the approximated
equations (4) and (5).

The magnetic field lines for this system can be described by
the following equations:

ż = 1

r

∂(rAφ)

∂r
, ṙ = −∂Aφ

∂z
, φ̇ = �̃L(r), (1)

where (z,r,φ) are the cylindrical coordinates. In Eqs. (1),
the function �̃L(r), which is the contribution from the
linear current along the straight wire, is defined as �̃L(r) =
μ0IL/(2πr2), where μ0 and IL are the permeability and
the intensity of the linear current, respectively. The function
Aφ(z,r,φ) is the φ component of the vector potential of the coil,
which is expressed using the complete elliptic functions of the
first and second kinds, K(k) and E(k), as follows [23,24]:

Aφ(z,r,φ) = μ0IC

πk

(
a

r

) 1
2
[(

1 − 1

2
k2

)
K(k) − E(k)

]
, (2)

where the variable k is defined by k2 = 4ar/[(a + r)2 + z2],
and the parameters a and IC are the radius and the current
intensity of the coil, respectively. In all of the following
numerical simulations, we set a = 0.5 and μ0 = 1.0. In
Eq. (1), let us change the variables as q = z and p = r2, so
that

q̇ = ∂H

∂p
(q,p), ṗ = −∂H

∂q
(q,p), φ̇ = �L(p), (3)

where the Hamiltonian H (q,p) is defined by H (q,p) := 2rAφ

and the function �L(p) by �L(p) := �̃L(r(p)). In Eq. (3), q

and p are the canonical variables of the one-degree-of-freedom

Hamiltonian H (q,p). This transformation into the integrable
Hamiltonian system is a consequence of the continuous
rotational symmetry [17,25]. Note that in the case where
IL = 0, φ is a constant, and hence the system has two slow
variables, φ and the action variable defined for the one-degree-
of-freedom Hamiltonian system H (q,p) (a two-action case).
In the case where IL �= 0, however, φ is a fast variable, and
hence the system has only one slow variable (a one-action
case).

In the one-action case, in which IL �= 0, the effect of
perturbations to the system has been studied in the context
of plasma physics [6–8], and also in a recent paper [2]. In
the present paper, in order to compare with the two-action
case described below, the behavior of a one-action system
under a perturbation is first briefly explained. We adopt a
uniform magnetic field in the x direction, B = (Bx,0,0), as
a perturbation—the type of the perturbation is not important
as long as it breaks the rotational symmetry. Note also that
this perturbation can be considered as being weak only in a
region near the coil. A Poincaré surface φ = π/2 is shown
in Fig. 1(a); in this case, the unperturbed nonresonant orbits
form two-dimensional invariant surfaces. In Fig. 1(b), the
rotation number ρ(p0) of the unperturbed orbit starting at the
point (q,p,φ) = (0,p0,π/2) is displayed as a function of p0.
More precisely, ρ(p0) is defined by the number of rotations
around the coil during one iteration of the Poincaré map.
Figure 1(c) is the Poincaré surface under the perturbation;
from this figure, it is clear that chains of island tori are formed
in a neighborhood of the resonant torus of the unperturbed
system, and that chaotic orbits fill the regions between these
island tori. Therefore, in this case, the chaos can be considered
to be generated through the Poincaré-Birkhhoff type scenario.

The behavior of MFLs in the two-action case, in which
IL = 0, is different from that in the one-action case. In the
two-action case, the variable φ is constant for unperturbed
flow and hence the periodic orbits in the unperturbed system
are one-dimensional closed curves, and none of them form
two-dimensional invariant surfaces. Under arbitrarily weak
perturbations of the uniform magnetic field, Bx > 0, the
orbits drift in the x direction, transiently forming spirals,
and then escape to infinity as shown in Fig. 1(d), where
Poincaré section z = 0 is plotted for six trajectories started
from (−r0/

√
2,r0/

√
2,0)(0.38 � r0 � 0.455). In the numer-

ical simulations, all the periodic orbits of the unperturbed
systems vanished in this manner for arbitrarily small pertur-
bations; this contrasts with the situation for the one-action
case described above, in which the KAM theorem ensures
the preservation of nonresonant tori under weak perturbations.
This instability in two-action systems can be well understood
by analyzing the dynamics on the xz plane with x > 0, which
is an invariant subspace of the perturbed system. On this
subspace, the orbits initially located near the coil spiral out
from the singular point (z,x) = (0,a) as shown in Fig. 1(e).
For Bx < 0, however, the orbits spiral into the point. Thus the
stability around the point (z,x) = (0,a) bifurcates at Bx = 0.

For the purpose of clarifying this bifurcation, we derive
approximate equations near the point (z,x) = (0,a). Because
the equation for φ is given by φ̇ = −Bx sin(φ), it is obvious
that φ = 0 (φ = π ) is a stable (unstable) subspace with respect
to φ. Let us consider the equations for the orbits inside the
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subspace φ = 0. Using the infinitesimal quantities z̃ and x̃

defined by z = z̃ and r = x = a + x̃, the orbits near the point,
(z,x) = (0,a) are described by the following equations:

˙̃z = − Cx̃

z̃2 + x̃2
− C

2a
ln(z̃2 + x̃2), (4)

˙̃x = Cz̃

z̃2 + x̃2
+ Bx, (5)

where C = μ0IC/2π is a constant. The first terms of the
right hand sides of Eqs. (4) and (5) are the leading order
contributions from the coil, and are equivalent to the vector
field generated by a linear current. The second terms are
influences from the curvature of the coil, 1/a, and the uniform
magnetic field, Bx . If any one of these second terms is 0, the
orbits form closed curves, whereas if both have nonzero finite
values, the orbits form an unstable (stable) spiral around the
singular point (z̃,x̃) = (0,0) for Bx > 0 (Bx < 0) [see the inset
of Fig. 1(e)].

Although the point (z̃,x̃) = (0,0) of Eqs. (4) and (5) is a
singular point, it can be regularized by a standard procedure
[26]. In fact, by changing the time scales as dt/ds = r2/C,
we obtain the regularized equations

dz̃

ds
= −x̃ − 1

2a
r̃2 ln r̃2, (6)

dx̃

ds
= z̃ + Bx

C
r̃2, (7)

where r̃ > 0 is defined by r̃2 = z̃2 + x̃2. The stability of
the fixed point (z̃,x̃) = (0,0) of these equations cannot be
analyzed by linear analysis, because the linearized equations
are equivalent to the equations of a harmonic oscillator.
Therefore we perform a weak nonlinear stability analysis using
a Lyapunov function [27,28]. Let us define a scalar function
L(z̃,x̃) as follows:

L = r̃2

[
1

2
− Bx

C
z̃ − B2

x

C2
x̃2

]
+ αBx

aC
(x̃2 − z̃2)x̃z̃

+ r̃2 ln r̃2

[
x̃

2a
+ x̃2

4a2
− Bx

aC
x̃z̃

]
+ x̃2r̃2

4a2
(ln r̃2)2,

where α = (2 − √
2)/8. For z̃,x̃ � 1, the function L(z̃,x̃)

is positive, L(z̃,x̃) ≈ r̃2/2 > 0, except at the origin, where
L(z̃,x̃) = 0. Moreover, the derivative with respect to s can be
approximated as dL/ds ≈ αBx(z̃2 + βx̃2)2/a, where β is a
constant defined by β = 1 + 2

√
2. Thus, for Bx > 0, we have

dL/ds > 0 and hence the fixed point is unstable; for Bx < 0,
we have dL/ds < 0 and hence the fixed point is stable. These
results are consistent with the numerical simulations.

Here let us consider the following question: is the scattering
process of this system chaotic? For the Hamiltonian systems
with chaotic phase space, fractal structures usually appear in
escape times T (r i) of the the scattering orbits when T (r i)
is plotted as a function of initial coordinates r i = (xi,yi,zi)
[7,29,30]. This is caused by fractal repellers (unstable periodic
orbits) or fractal phase space structures such as the fractal
island torus. In the present system with two actions, however,
neither fractal repellers nor island torus exist, and in fact
no fractal behavior is observed in the escape times T (r i).
Nevertheless, there are still some chaotic features in the
scattering process.
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FIG. 2. For the single coil system with a uniform magnetic field,
the two-dimensional scattering map (yf ,zf ) = S(yi,zi) is displayed
(see the text). The parameters are set as IC = 0.1,IL = 0.0, and
Bx = 0.005 (two-action case). The values of the final coordinates yf

(a) and zf (b) are shown in grayscale; the horizontal and vertical axes
are the initial coordinates yi and zi , respectively. In (c) and (d), the
final coordinates yf (c) and zf (d) are shown as functions of yi , while
the value of zi is fixed to 0.4.

In order to see these chaotic properties, let us define
the initial coordinates as r i = (xi = −2,yi,zi), and let rf =
(xf = 2,yf ,zf ) be the final coordinates of the MFL starting
from r i . This defines a two-dimensional map S: (yf ,zf ) =
S(yi,zi). In Figs. 2(a) and 2(b) we plotted the values of
yf and zf as functions of the initial coordinates (yi,zi),
respectively. Similarly, in Figs. 2(c) and 2(d), yf and zf are
plotted as functions of yi , while zi is fixed to 0.4. From
Figs. 2(a) and 2(c), we found that the final coordinate yf

changes almost continuously (not smoothly), but as shown
in Figs. 2(b) and 2(d) zf changes discontinuously at some
points. This means that the final coordinates depend sensitively
on the changes of initial coordinates, which is a familiar
feature of chaos. Moreover the mapping from the initial to
final coordinates S(yi,zi) depicted in Figs. 2(c) and 2(d)
shows repetitive structures, and each piece of this repetition
is qualitatively similar to the well-known chaotic dynamical
systems called logistic and Bernoulli maps [31,32].

III. PARALLEL COIL SYSTEM

For the single coil system, chaos appears through the
Poincaré-Birkhoff scenario, but for systems with parallel
current elements, other scenarios are also important [7,33,34].
Here we study the system shown in Fig. 3(a), which consists of
two parallel coils with their centers on the z axis and a straight
wire along this axis. This type of current configuration is used,
for example, in magneto-optical traps [5]. We assume that the
intensities IC and the directions of the currents carried by the
two coils are the same, and that one of the coils is located
on the xy plane and the other at z = a. Because this system,
similar to the previous system, has rotational symmetry around
the z axis, the equations for the MFLs are transformed into a
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FIG. 3. (Color online) (a) The wire configuration of the parallel
coil system. A hyperbolic fixed point is indicated by an arrow. (b) The
Poincaré surface φ = π/2 in the one-action case. The parameters are
set as IC = IL = 1.0 and Bx = 0.002. (c)–(e) For two-action cases
with uniform magnetic fields Bp = (Bx,0,0). The current intensities
are set as IC = 0.1 and IL = 0. (c) A Poincaré section z = 0 for
six orbits that start from the points (−r0/

√
2,r0/

√
2,0)(0.38 � r0 �

0.455). The strength of the uniform magnetic field is set as Bx =
0.0002. (d) A projection of a typical orbit with positive y values
onto the xz plane for Bx = 0.02. (e) The hyperbolic fixed point,
and stable and unstable manifolds on the invariant subspace φ = 0
for Bx = 0.02. The arrows indicate the directions of the stable and
unstable manifolds. (f)–(h) For two-action cases with nonuniform
magnetic fields Bp = ((z − a/2)Bx,0,0). (f) A Poincaré section z =
0 for six orbits that start from the points (−r0/

√
2,r0/

√
2,0)(0.38 �

r0 � 0.455). The strength of the uniform magnetic field is set as
Bx = 0.005. (g) A projection of a typical orbit with positive y values
onto the xz plane for Bx = 0.02. (h) The hyperbolic fixed point, and
stable and unstable manifolds on the invariant subspace φ = 0 for
Bx = 0.05.

one-degree-of-freedom Hamiltonian form, Eqs. (3). The phase
space of this system on the surface φ = π/2 is shown in
Fig. 3(a). Important aspects of this system are that a hyperbolic
fixed point is present, as indicated by an arrow in Fig. 3(a),
and that homoclinic orbits emanate from it. The emergence of
such a hyperbolic fixed point is due to the presence of parallel
electric currents.

As before, we use a uniform magnetic field Bp = (Bx,0,0)
as a perturbation. First, in the case where there is a linear
current (IL �= 0), corresponding to the one-action case, the
Poincaré surface (φ = π/2) is shown in Fig. 3(b). It is
clear that chaos appears in a vicinity of the hyperbolic
fixed point, and the cause of chaos can be considered to be
homoclinic intersections of the stable and unstable manifolds.
In regions far from the hyperbolic fixed points, however, the
tori are persistent under the perturbation, consistent with the
prediction of the KAM theorem. See Refs. [7,33,34] for more
detail.

In the case where there is no linear current (IL = 0), MFLs
of the parallel coil system behave in a similar manner to those
of the single coil. Namely, for arbitrarily weak perturbations,
each periodic orbit of the unperturbed system is destroyed; the
perturbed orbits circle around one of the coils transiently and
then drift in the x direction (Bx > 0), as shown in Figs. 3(c)
and 3(d). From numerical calculations, no chaotic transition
between the upper and lower coils is found. When these orbits
come close to the invariant subspace φ = 0, they spiral out
from the coil as is the case for the single coil system. In this
case, however, the structure of the invariant subspace is more
complex than in the previous case as shown in Fig. 3(e); in
this figure, each stable manifold of the hyperbolic fixed point
spirals out from one of the coils, and two unstable manifolds
emanate from the hyperbolic fixed point. The bifurcations of
the fixed points, (z,x) = (0,a) and (a,a), are the same type
as in the single coil system. In fact, they are characterized
by the same Lyapunov function L(z̃,x̃). It is important to note
that similar instability results from other types of perturbations
such as inclination or symmetry-breaking parallel translation
of one of the coils.

However, such vanishing of all periodic orbits is not always
the case. For example, if we apply a nonuniform magnetic
field Bp = ((z − a/2)Bx,0,0) as a perturbation, then periodic
orbits exist. A typical periodic orbit of this type is shown in
Fig. 3(g); the orbit twining one of the coils transits to the other
near the invariant subspaces φ = 0,π . The remarkable point
is that these are closed periodic orbits; in other words, none of
the periodic orbits forms an invariant two-dimensional surface
such as a torus. This is because, if an orbit forms an invariant
surface, such as a tube around a coil, this surface will intersect
with the coils at the transitions near the invariant subspaces.

IV. CONCLUSION

In this paper, two models for MFLs were investigated.
The first one was a system consisting of a single coil and a
straight wire with the linear current IL. In the one-action case
(IL �= 0), this model exhibits chaotic behavior similar to that in
Hamiltonian systems. In contrast, in the two-action case
(IL = 0), all the periodic orbits of the unperturbed system
vanish under a perturbation of a uniform magnetic field.
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This phenomena was analyzed using a Lyapunov function,
and it was found that a bifurcation associated with nonlinear
effects occurs. The second model was a system consisting
of two parallel coils and a straight wire, again with IL. For
the one-action case (IL �= 0), this system has a hyperbolic
fixed point, which causes chaotic behavior through homoclinic
intersection. It is also found that the scattering process shows
sensitive dependence on small changes of the initial coordi-
nates. In particular, the map from initial to final coordinates
has structures similar to chaotic maps. In the two-action case
(IL = 0), it was found that the periodic orbits vanish under
arbitrarily small perturbations of uniform magnetic fields due
to a bifurcation similar to that in the single coil system.
However, if the two fixed points on the invariant subspace
have different stability types, which is the case for some
perturbations of nonuniform magnetic fields, it was found that
closed periodic orbits exist.

The bifurcations which emerged in two-action cases are
typical in dissipative systems, but not usually observed in
Hamiltonian systems.1 It is interesting that characteristics

1The bifurcations observed in the invariant subspaces of the two-
action cases are roughly characterized by the following changes of
the eigenvalues of the fixed point: (±iβ) → (α ± iβ), where α and

of both Hamiltonian and dissipative systems appear in these
models. From a linear stability analysis of three-dimensional
volume-preserving flows and maps with two action variables,
the existence of bifurcation similar to that described in this
paper has been reported [20]. In the models used in the present
work, however, the bifurcation occurs through nonlinear
effects.
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β are real numbers. Obviously, this type of bifurcation does not
occur in one-degree-of-freedom Hamiltonian systems because of the
conservation of the phase volume. However, in Hamiltonian systems
with two or more degrees of freedom, the following bifurcation
can happen: (±iβ,± iβ) → (−α ± iβ,α ± iβ). This bifurcation is
similar to the one observed in the models of this paper, but this is
not generic in Hamiltonian systems in the sense that there should
be degeneracies of the eigenvalues (±iβ,± iβ) in the unperturbed
system.
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