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Quantum chaos of a mixed open system of kicked cold atoms
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The quantum and classical dynamics of particles kicked by a Gaussian attractive potential are studied.
Classically, it is an open mixed system (the motion in some parts of the phase space is chaotic, and in some parts
it is regular). The fidelity (Loschmidt echo) is found to exhibit oscillations that can be determined from classical
considerations but are sensitive to phase space structures that are smaller than Planck’s constant. Families of
quasienergies are determined from classical phase space structures. Substantial differences between the classical
and quantum dynamics are found for time-dependent scattering. It is argued that the system can be experimentally
realized by cold atoms kicked by a Gaussian light beam.
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I. INTRODUCTION

The quantum behavior of classically chaotic systems has
been extensively studied both with time-dependent and time-
independent Hamiltonians [1–7]. The main issue is that of
determining fingerprints of classical chaos in the quantum
mechanical behavior. For example, the spectral statistics of
closed classically integrable [8–10] and classically chaotic
[11–13] quantum systems have been predicted to have clearly
distinct properties. Many of the systems that are of physical
interest are mixed, where some parts of the phase space are
chaotic and some parts are regular. Spectral properties of mixed
systems with time-independent Hamiltonians were studied by
Berry and Robnik [14]. In the present paper we study the
classical and quantum correspondence properties of a mixed,
open, time-dependent system. (Here by “open” we mean that
both position and momentum are unbounded.)

The system we study consists of a particle kicked by a
Gaussian potential defined by the Hamiltonian,

H = p2

2m
− K ′T e

− x2

2�2

∞∑
n=−∞

δ(t − T n). (1)

Models of this form were studied by Jensen who used it
to investigate quantum effects on scattering in classically
chaotic [15] and mixed [16] systems. This system can be
experimentally approximated by a Gaussian laser beam acting
on a cloud of cold atoms, somewhat similar to the realization
of the kicked rotor by Raizen and coworkers [17]. As we
will show, the study of Hamiltonian (1) is particularly suited
to the investigation of generic behavior of kicked, open,
mixed-phase-space systems. In particular, we will focus on
issues of fidelity [18–21], decoherence [22,23], and scattering
[24–27]. Our main motivation in studying Hamiltonian (1) is
that, with likely future technological advances (see Sec. VII
for discussion), the phenomena we consider may soon become
accessible to experimental investigation.
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Quantum mechanically, it is expected that classical phase
space details on the scale of Planck’s constant are washed
out [28,29]. In contrast, one of our results will be that quantum
dynamics can be sensitive to extremely fine structures in
phase space, and this sensitivity is stable in the presence
of noise [22,23]. Phase space tunneling has been studied
extensively [30–33]. For systems with many phase space
structures complications arise due to transport between these
structures. For our Hamiltonian (1) the motion is unbounded
(i.e., the system is “open”), and therefore this system is ideal
for the exploration of tunneling out of phase space structures
and, in particular, for study of resonance assisted tunneling, a
current active field of research [31–33].

The outline of our paper is as follows. Section II presents
and discusses our model system. Section III considers the
quasienergies of quantum states localized to island chains.
Section IV introduces the fidelity concept and applies it to
study different regions of the phase space including the main,
central KAM island (Sec. IV A), island chains (Sec. IV B), and
chaotic regions (Sec. IV C). Experimentally there is always
some noise present in such systems. Furthermore, noise can
be intentionally introduced. Section V considers this issue.
Section VI presents a study of the scattering properties of
the system. Conclusions and further discussion are given in
Sec. VII.

II. THE MODEL

A. Formulation

A particle kicked by a Gaussian beam is modeled by the
Hamiltonian, Eq. (1), with the classical equations of motion,

ṗ = −∂H

∂x
= −K ′T

x

�2
e
− x2

2�2

∞∑
n=−∞

δ(t − T n),

(2)

ẋ = ∂H

∂p
= p

m
.

We rewrite the equations of motion in dimensionless form by
defining x̄ = x/�, t̄ = t/T . The dimensionless momentum
is correspondingly defined as p̄ = pT/(m�). Thus we obtain
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the dimensionless equations of motion,

˙̄p = −Kx̄e− x̄2

2

∞∑
n=−∞

δ(t̄ − n),

(3)
˙̄x = p̄,

where

K = K ′T 2

m�2
. (4)

Since in what follows we deal with the rescaled position,
momentum, and time we will drop the bar notation for
convenience. By integrating (2) and defining pn = p(t = n−),
xn = x(t = n−), where t = n− is a time just before the nth
kick, we can rewrite the differential equations of the motion
as a mapping, M ,

M :

{
pn+1 = pn − Kxne

− x2
n
2 ,

xn+1 = xn + pn+1.
(5)

The corresponding quantum dynamics in rescaled units is
given by the Hamiltonian,

H = p2

2
− Ke− x2

2

∞∑
n=−∞

δ(t − n), (6)

where p = −iτ∂x , and τ = h̄T /(m�2) is the rescaled h̄,
namely, [x,p] = iτ . The quantum evolution is given by

iτ∂tψ = −τ 2

2
∂xxψ − Ke− x2

2

∞∑
n=−∞

δ(t − n)ψ, (7)

or by the one kick propagator,

U1 = e−i
p2

2τ exp

(
i
K

τ
e− x2

2

)
. (8)

B. Properties of the classical map and the phase portrait

In this subsection the classical properties of the map Eq. (5)
will be presented. The first property is reflection symmetry,
(x,p) → (−x, − p). Phase portraits such as these presented
in Figs. 1 and 2 are clearly seen to satisfy this property. Like
the standard map, Eq. (5) can be written as a product of two
involutions, M = J2J1, where

J1 : (p,x) → (−p,x + p),
(9)

J2 : (p,x) → (−p − Kxe− x2

2 ,x).

We will use this property for the calculation of the periodic
orbits. From (5) we see that the only fixed point is (x = 0,

p = 0). Linearizing around this point, we find that the trace
of the tangent map is 2 − K . Therefore, this point is elliptic
for 0 < K < 4, and, for K = 1, the phase portrait of Fig. 1
is found, while for K > 4 this point is hyperbolic, leading
to phase portraits like that of Fig. 2. Since the kicking as a
function of x is bounded by K , for large initial momentum the
particle is nearly not affected by the kicks, and continues to
move in its initial direction. For 0 < K < 4 we find a large
island around the elliptic point (x,p) = (0,0), and, for nearly
all initial conditions near x = p = 0, the motion is regular

FIG. 1. (Color online) The phase space for K = 1. Colors
(shades) distinguish different orbits.

(i.e., lies on KAM surfaces). Further away from this fixed
point, one finds island chains embedded in a chaotic strip.
And even further away, the motion is unbounded.

III. QUASI-ENERGIES OF AN ISLAND CHAIN

In the semiclassical regime quasi-energies are related to
classical structures. In this section we assume the existence of
quasi-energy eigenfunctions un(x),

U1un(x) = e−iEnun(x), (10)

such that un(x) is strongly localized to an island chain of
order r , and we attempt to calculate the quasi-energy En. For
this purpose we use the one-kick propagator U1 to generate

FIG. 2. (Color online) The phase space for K = 4.5. Colors
(shades) distinguish different orbits.
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successive jumps in the island chain,

U1ψi = ψi+1, (11)

where ψi is a wave function which is localized in island number
i within the island chain. Further, we assume that this wave
function can be expanded using the quasieigenstates of the
island chain,

ψi =
∑

n

cinun(x). (12)

Using this expansion we obtain a system of equations,

U1ψi =
∑

n

cinun(x)e−iEn , (13)

and

Ur
1 ψi =

∑
n

cinun(x)e−iEnr . (14)

Classically the ith island is transformed to itself by r successive
applications of the map M . In particular, an elliptic fixed point
of the map Mr is located in the center of the island. In the
semiclassical limit the eigenstates of Ur

1 are determined by
Mr and are close to the eigenstates of a harmonic oscillator
centered on the fixed point of Mr . The frequency of the
oscillator, νi , is such that the eigenvalues of the tangent map
of Mr , which transforms the ith island to itself, are e±iνi .
This tangent map can be written in terms of the product of the
tangent maps of M(i → i + 1), which transform the ith island
to the (i + 1)th island. Consequently, since the eigenvalues are
determined by the trace of the product of the tangent maps,
they are independent of i (due to the invariance of the trace
to cyclic permutations). In what follows we therefore drop the
index i from νi .

Choosing ψi as the eigenstate of Ur
1 , means that

Ur
1 ψi = eiβ̄ψi, (15)

where β̄ = τν/2 and we have taken ψi to be the ground state
of the harmonic oscillator. Therefore,

ψi =
∑

n

cinun(x)e−i(Enr+β̄). (16)

Using the orthogonality of the un(x), Eqs. (16) and (12) yield

e−i(Enr+β̄) = 1. (17)

The quasienergies, obtained from (17) are, therefore,

En = 2π

r
n + β, 0 � n � r, (18)

where β = −β̄/r . Approximations to the quasienergies can be
calculated numerically by launching a wave packet into one
island in the island chain and propagating it in time, which
gives

ψ(x,N ) =
∑

n

cinun(x)e−iEnN . (19)

Taking a Fourier transform with respect to N gives the
quasienergies. We have found that for K = 1 the chains with
r = 8 and r = 16 accurately satisfy (18).

IV. FIDELITY

The concept of quantum fidelity was introduced by Peres
[18] as a fingerprint of classical chaos in quantum dynamics.
It has subsequently been extensively utilized in theoretical
[19,20,34,35] and experimental studies [35–38] (for a review
see [21]). Most of this research has focused on the difference
between chaotic and regular systems. Here we discuss fidelity
for a mixed system. We have calculated the fidelity,

S(t) = |〈φ0|eiH1t/τ e−iH2t/τ |φ0〉|2, (20)

where H1,2 are Hamiltonians of the form (6) with with
slightly different kicking strengths, K1,2, and φ0 is the
initial wavefunction. We note that the fidelity S(t) can be
experimentally measured by the Ramsey method, as used in
Ref. [37]. The fidelity is related to an integral over Wigner
functions,

S(t) = 2πτ

∫
dxdp Pφ1 (x,p)Pφ2 (x,p), (21)

where Pφ1,2 are the Wigner functions of φ1,2 = e−iH1,2t/τ φ0,
respectively.

We study separately the fidelity in the central island, in the
island chain, and in the chaotic region [i.e., Eq. (20) with φ0

localized to these regions].

A. Fidelity of a wave packet in the central island

First we prepare the initial wave function φ0 as a Gaussian
wave packet with a minimal uncertainty, namely, �x = �p =
(τ/2)

1
2 ,

φ0(x) = 1

(2π (�x)2)
1
4

e−ip0x/τ exp

[
− (x − x0)2

4(�x)2

]
. (22)

We place φ0 in the center of the island, namely, x0 = p0 = 0.
Since the center of the wave packet is initially at the fixed
point, for �x and �p classically small, its dynamics are
approximately determined by the tangent map of the fixed
point. For this purpose we linearize the classical map (5)
around the point x = p = 0. This gives the equation for the
deviations, (

δxn+1

δpn+1

)
=

(
(1 − K) 1

−K 1

) (
δxn

δpn

)
. (23)

The eigenvalues of this equation are

α1,2 = (2 − K)

2
± i

√
K(4 − K)

2
≡ e±iω, (24)

with

ω = arctan

√
K(4 − K)

(2 − K)
, (25)

which is the angular velocity of the points around the origin.
In the vicinity of the fixed point, the system behaves like a
harmonic oscillator with a frequency ω. Classically, the motion
of the trajectories, starting near the elliptic fixed point, x =
p = 0, stays there because the region is bounded by KAM
curves that surround this point. For small effective Planck’s
constant, τ , the quantum behavior is expected to mimic the
classical behavior for a long time. Inspired by the relation
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FIG. 3. (Color online) Quantum fidelity, S(t), (dashed red) and
classical fidelity, Sc(t) (solid blue). K1 = 1, K2 = 1.01, τ = 0.01,
x0 = −0.25, and p0 = 0.

between the fidelity and the Wigner function [see (21)], we
have defined a classical fidelity, Sc(t), as the overlap between
coarse-grained Liouville densities of H1 and H2 (this is similar
to the classical fidelity defined in [39]). To do this we first
randomly generate a large number of initial classical positions
using the initial distribution function,

f0(x,p) = 1

2π�x�p
exp

{
− 1

2

[(
x−x0

�x

)2

+
(

p−p0

�p

)2]}
,

(26)

corresponding to our initial φ0 given by (22). The coarse-
grained densities for H1 and H2 are then computed by first
integrating these initial conditions and then coarse graining to
a grid of squares in phase space of area τ [40]. The motivation
for this procedure is to check if structures in phase space of size
smaller than τ are of importance to the fidelity. A comparison
between S(t) and Sc(t) for x0 = −0.25, p0 = 0, and τ = 0.01
is presented in Fig. 3 The initial wave packet is smeared on

FIG. 4. (Color online) Classical density, which was initially
placed at x0 = −0.25 and p0 = 0 after 500 kicks. Blue (dark) dots
are for K1 = 1 and green (light) dots are for K2 = 1.01.
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FIG. 5. (Color online) A numerical (solid blue) and an analytical
(dashed green) computation of the period of the fidelity revival as a
function of K , δK = 0.1, x0 = p0 = 0, τ = 0.01.

a ring in the phase space due to the twist property of the
map. Since the probability density is preserved, the “whorl”
which is formed contains very dense and thin tendrils. In Fig. 4
two such “whorls” are presented for H1 with K1 = 1 and H2

with K2 = 1.01. When the two “whorls” coincide a fidelity
revival is formed. Coarse graining the densities to boxes of
size τ averages the differences between the two “whorls,”
obtained by H1 and H2. This explains why the classical fidelity
approaches 1 as the number of kicks becomes large. On the
other hand, the quantum fidelity shows strong revivals which
suggests that it feels the difference in trajectories between the
two Hamiltonians. To understand the period of the revivals,
we calculate δω, the frequency difference between the two
Hamiltonians H1,2. Expanding ω around K1 gives

ω(K) = ω(K1) + K − K1√
K(4 − K)

+ O((K − K1)2). (27)

Therefore, the difference in angular velocity between two
orbits of Hamiltonians, H1 and H2 is given by

δω = ω(K2) − ω(K1) = δK√
K2(4 − K2)

, (28)

for δK = K2 − K1. This suggests that the fidelity, S(t) will
be periodic, with the period T = π/δω. Note that we predict
T = π/δω, rather than T = 2π/δω. This is because of the
symmetry of the initial condition. Each point of H1 is chasing
a point of H2 which is its reflection through the origin of the
phase space and, therefore, is found first at an angle of π

and not 2π . To check this, we have calculated the period of
the revivals numerically for 0 < K < 4. First, fidelity was
computed and Fourier transformed, then the second most
significant value was taken as the period. In Fig. 5 we present
a comparison of the analytic calculation of the period of the
fidelity and the numerical computation. The correspondence
is good through the whole range of the stochasticity parameter
K but degrades near K = 4, where the elliptic point at the
origin becomes unstable. Also, near K = 2, resonance chains
appear near the fixed point x = p = 0, which results in poor
agreement with the theoretical prediction (see Fig. 7). Very
often it is assumed that quantum mechanical behavior is
insensitive to phase space structures with areas smaller than
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FIG. 6. (Color online) A numerical (blue circles) and an analyti-
cal (solid blue line) computation of the period of the fidelity revival
as a function of K , δK = 0.01, x0 = −0.25, p0 = 0, τ = 2 × 10−4.

Planck’s constant, which results in an effective averaging on
this scale [28,29]. While this assumption is often correct [32],
sometimes it is not [41–46]. The difference between S(t)
and Sc(t) demonstrated in Fig. 3 shows that fidelity may be
sensitive to extremely small details in the classical phase space.
In particular, a “whorl” [28,29] affects the quantum dynamics.
The small decay of the quantum fidelity seen in Fig. 3 is a
result of tunneling.

We stress that to observe the oscillations which appear
on Fig. 3 requires sensitivity to the structure of the “whorl”
of Fig. 4. In our quantum calculation the effective Planck’s
constant is τ = 0.01 and it is obvious that the “whorl” of Fig. 4
exhibits structures on smaller scale, for example, in a square
with sides of length 0.1 in phase space (of Fig. 4) one finds
several stripes of the “whorl.” Indeed, averaging over such
a square leads to the classical fidelity that does not exhibit
oscillations as the quantum fidelity does. We conclude that
the structures on the scale smaller than the effective Planck’s
constant τ are crucial for the oscillations in the quantum
fidelity. Hence, structures of scales smaller than Planck’s
constant may dominate fidelity, which is a quantum quantity.

For a wave packet started around an initial point (x0,p0) 	=
(0,0) the behavior is similar, but with a slightly different period
due to a decrease in the angular velocity for points far from the
fixed point. Similarly to the case of (x0,p0) = (0,0), we have
calculated numerically the revival period for different values
of K; this is shown in Fig. 6.

For K > 1.5 resonances appear near the launching point
which introduce additional periods into the fidelity, making
the analysis more complicated.

B. Fidelity for a wave packet in an island chain

We consider two different island chains occurring for
different values of K . For K = 2.1 we have examined a chain
of order r = 4 (see Fig. 7), and for K = 1 we have studied
a chain of order r = 8 (see Fig. 1). The initial wave packet
was launched inside one of the islands of the chain, and then
we numerically computed the fidelity. In Figs. 8 (K1 = 2.10,

FIG. 7. (Color online) The phase space for K = 2.1. Colors
(shades) distinguish different orbits.

K2 = 2.11) and 9 (K1 = 1.00, K2 = 1.01) we show the results
of these computations.

It is notable that there are three time scales in the graph
of the fidelity. The shortest time scale is visible only in the
inset of Fig. 9 and may be understood taking into account
the symmetry of the equations of motion, x → −x, p → −p.
This symmetry implies that each island has a “twin” which is
found by reflection through the origin, x = p = 0. Therefore,
the overlap between the islands of H1 and H2 is a periodic
function with a period of r

2 , where r is the number of islands
in the chain. Consequently, for the island chains used to obtain
Figs. 8 and 9, the fidelity has periods of 2 and 4, respectively,
on its shortest time scale. The intermediate time scale is due
to a rotation of the wave packet around the elliptic points
of the island where it is initially launched. The central point
in the island is a fixed point of Mr . In r iterations, points in
the island rotate with an angular velocity ω1 and ω2 for H1

and H2, respectively. The angular velocities can be calculated
numerically by linearization of the tangent map of Mr around
the fixed point of the map Mr . We find the fixed point by
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FIG. 8. (Color online) Fidelity of packet started inside an island
chain of order 4. K1 = 2.10, K2 = 2.11, τ = 2 × 10−4, and the center
of the packet is started at x = 0.3198, p = 0, in the center of one of
the islands of the chain.
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FIG. 9. (Color online) Fidelity of packet started inside an island
chain of order 8. K1 = 1, K2 = 1.01, τ = 2 × 10−4, and the center
of the packet is started at x = 1.1312, p = 0, in the center of one of
the islands of the chain. The inset is a zoom on the graph.

reducing M to a product of involutions (9), which allows us
to reduce the search for the fixed points to the line p = 0 in
the phase space since any point on this line is a fixed point of
J1 [47,48]. For K1 = 1 and K2 = 1.01, the angular velocities
are found to be ω1 = 1.10 and ω2 = 1.147. For K1 = 2.10 and
K2 = 2.11, the angular velocities are found to be ω1 = 0.391
and ω2 = 0.429. Therefore, the time it takes for a packet to
accomplish a full revolution around the fixed points of Mr

is 2πr/ω̄, where ω̄ = 1
2 (ω1 + ω2) ≈ ω1 ≈ ω2 (see Table I).

The longest time scale of the fidelity is the time scale when
the difference between the angular velocities is resolved
T = 2πr/δω. In Table I we compare those periods deduced
directly from Figs. 8 and 9 and the periods calculated by
finding ω1,2 from the tangent map. We see that the agreement is
excellent.

C. Fidelity of the wave packet in the chaotic strip

For the fidelity of a packet started inside the chaotic strip
(see Fig. 10), we notice a strong revival after six kicks which
is dependent on K1. This is half a period in this chain or
strip. After this revival the fidelity decays to zero, which is a
characteristic of chaotic regions. Detailed exploration of this
region is left for further studies.

TABLE I. This table compares two ways of calculating the periods
of revivals for the resonance chains. In one way we have deduced them
from Figs. 8 and 9, and in the other way we have calculated them
using the tangent map. This is done for two different resonances:
r = 4, for K1 = 2.1, K2 = 2.11; and r = 8 for K1 = 1, K2 = 1.01.
For both cases τ = 2 × 10−4.

r = 4 r = 8

Fig. 8 Tangent map Fig. 9 Tangent map

Shortest period 2 2 4 4
Medium period 62 61.3 44 44.7
Longest period 651 657.8 1061 1077.4
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FIG. 10. (Color online) Fidelity of packet started inside a chaotic
layer. K1 = 1, K2 = 1.01, τ = 2 × 10−4, and the center of the packet
is started at x = −2, p = 0.

V. DEPHASING

We now investigate the effect of dephasing by adding
temporal noise to the time between the kicks. The classical
equations of motion with the dephasing are given by

pn+1 = pn − Kxne
− x2

n
2 ,

(29)
xn+1 = xn + (1 + δtn)pn+1,

and the quantum one kick propagator is

U1 = e−i
p2

2τ
(1+δtn) exp

(
i
K

τ
e− x2

2

)
, (30)

where δtn is a random variable which is normally distributed
with zero mean and a standard deviation σt . The standard
deviation of the δtn, corresponds to the strength of the noise.
We find that the noise results in an escape outside of the island,
which yields additional decay in the fidelity. Since we are
interested in the difference between the two wave functions
only inside the main island, for each kick we normalize the
wave functions of H1 and H2 such that their norm is equal
to 1 inside a region of |x| � xb = 3. This gives the following
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FIG. 11. (Color online) Quantum fidelity S(t) (dashed red) and
classical fidelity Sc(t) (solid blue) for a dephasing noise of strength
σt = 0.01, K1 = 1, K2 = 1.01, τ = 0.01, x0 = −0.25, and p0 = 0.
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FIG. 12. (Color online) Quantum fidelity S(t) (dashed red) and
classical fidelity Sc(t) (solid blue) for a dephasing noise of strength
σt = 0.001, K1 = 1, K2 = 1.01, τ = 0.01, x0 = −0.25, and p0 = 0.

expression for the fidelity:

S(t)

=
∫ xb

−xb
(e−iH1t/τ φ0(x ′))(e−iH2t/τ φ0(x ′)) dx ′

(∫ xb

−xb
|e−iH1t/τ φ0(x ′)|2dx ′) 1

2
(∫ xb

−xb
|e−iH2t/τ φ0(x ′)|2dx ′) 1

2

,

with the classical fidelity Sc(t) defined in a similar way. We
have numerically calculated the fidelity for the same situation
as in Fig. 3 with added relative noise of σt = 0.01 (Fig. 11)
and σt = 0.001 (Fig. 12). We notice that the noise introduces
additional decay in the quantum fidelity.

To isolate the effect of noise from the decay in the fidelity
due to the difference between K1 and K2 we set K1 = K2 and
use two different noise realizations with the same strength σt .
From Fig. 13 we notice that classical fidelity initially decays
very fast due to the noise and then slowly recovers approaching
a value of 0.8. This is due to the coarse graining to the scale
of τ . To illustrate this we plot in Fig. 14 the classical densities
after 5 × 104 kicks for a packet initially launched at x0 =
−0.25. We notice that the densities for the two Hamiltonians
highly overlap, which explains the high fidelity. In Fig. 15 we
observe the corresponding quantum wave packets. Contrary to
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1

No. kicks
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ity

FIG. 13. (Color online) Quantum fidelity S(t) (dashed light red)
and classical fidelity Sc(t) (solid dark blue) for two different real-
izations of a dephasing noise of strength σt = 0.001, K1 = K2 = 1,
τ = 0.01, x0 = −0.25, and p0 = 0.

FIG. 14. (Color online) Classical density, which was initially
placed at x0 = −0.25 and p0 = 0 after 5 × 104 kicks, K1 = K2 = 1.
Colors (shades) correspond to two different realizations of a dephas-
ing noise of strength σt = 0.01.

the classical fidelity, the quantum fidelity decays rather slowly
with the noise, suggesting that it is more robust to noise than
the classical fidelity.

VI. SCATTERING

We now investigate the difference between quantum and
classical scattering behavior by studying the evolution of a
wave packet initialized outside of the main island of the phase
space, Eq. (22) with x0 = −2, p0 = 0, �x = �p = (τ/2)

1
2 .

In the classical case both the classical chaos, as well as the
numerous small island structures, introduce an erratic behavior
for the transmission and reflection coefficients as a function
of the initial launching position and energy [15,16]. Due
to effective phase space smoothing of areas much smaller
than our effective Planck’s constant, τ , we expect that fine
scale fractal-like features in the classically erratic scattering
dependence will be averaged out. To quantify this behavior,
we measure the transmission and reflection coefficients for a
wave packet defined as the transferred or reflected probability
mass, either quantum or classical. Classically, it is the fraction
of initial trajectories [generated using (26)] reflected or

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

x

|ψ
|

FIG. 15. (Color online) Wave packets, which were initially placed
at x0 = −0.25 and p0 = 0 after 5 × 104 kicks, K1 = K2 = 1. Colors
(shades) correspond to two different realizations of a dephasing noise
of strength σt = 0.01.
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FIG. 16. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities for scattering to the left of the island
(x < −xb) as a function of the number of kicks. K = 1, τ = 0.01,
x0 = −2, p0 = 0.

transmitted by the main island for a given time, while quantum
mechanically, we measure the total escaped probability up to
time t from the island area, |x| � xb,

L(t) =
∫ t

0
dt ′

∫ −xb

−∞
|ψ(x,t ′)|2dx,

(31)

R(t) =
∫ t

0
dt ′

∫ ∞

xb

|ψ(x,t ′)|2dx,

where xb is the margin of the main island (we choose xb = 4),
L(t) and R(t) are probabilities to be scattered to the left or the
right of the island until time t , correspondingly. To determine
those probabilities, we use the continuity equation for the
probability,

∂t

(∫ b

a

|ψ |2dx

)
= τ Im [(ψ∂xψ

∗)|x=b − (ψ∂xψ
∗)|x=a],

(32)
so that,

L(t) = τ

2i

∫ t

0
dt ′

∫ t ′

0
dt ′′(ψ∂xψ

∗ − ψ∗∂xψ)|x=−xb
,

(33)

R(t) = − τ

2i

∫ t

0
dt ′(ψ∂xψ

∗ − ψ∗∂xψ)|x=xb
.
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FIG. 17. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities for scattering to the right of the
island (x > xb) as a function of the number of kicks. K = 1, τ = 0.01,
x0 = −2, p0 = 0.
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FIG. 18. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities to stay in the island (|x| � xb) as a
function of the number of kicks. K = 1, τ = 0.01, x0 = −2, p0 = 0.

In Figs. 16–21 we compare the quantum and classical
scattering of a wave packet launched from the left of the main
island. We notice that there is a substantial difference, which
decreases when we decrease the effective Planck’s constant, τ .
Figures 16–18 and Figs. 19–21 differ in the initial launching
position of the wave packet (x0 = −2 for Figs. 16–18, and
x0 = −3 for Figs. 19–21). We notice that the scattering is
sensitive to x0. Different aspects of chaotic scattering for this
problem were explored in [16] and, in particular, the effect of
small h̄ on washing out rainbow singularities of the classical
scattering function.

VII. DISCUSSION AND CONCLUSIONS

A. Discussion of experimental realizability

In the present work the classical and quantum dynamics
of a system with a mixed phase space were studied. It is
proposed to realize this system by injecting cold atoms into
a coherent, pulsed, Gaussian light beam. The phase space
structures, which can be seen on Figs. 1, 2, and 7 are
controlled by the parameters of the beam via the parameter K .
Since it is relatively straightforward to control the parameters
of Gaussian beams, the proposed system is ideal for the
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FIG. 19. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities for scattering to the left of the island
(x < −xb) as a function of the number of kicks. K = 1, τ = 0.01,
x0 = −3, p0 = 0.
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FIG. 20. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities for scattering to the right of the
island (x > xb) as a function of the number of kicks. K = 1, τ = 0.01,
x0 = −3, p0 = 0.

exploration of dynamics of mixed systems. In what follows,
limitations on experimental realizations are discussed. First we
consider the realizability of an approximately one-dimensional
situation necessary for the validity of our theoretical results.
Let us assume that the Gaussian beam propagates in the z

direction. Its profile in the xy plane is

e
− x2

2�2 − y2

2�2
y . (34)

Assuming that the extent of the light beam is much smaller
than the Rayleigh length, zR = π�2/λ where λ is the
wavelength, and the z dependence of the potential can be
ignored. The potential of Eq. (34) can be well approximated
by exp(−x2/(2�2)) in (1), for sufficiently small values of
y2/�2

y , and, to facilitate this, it is appropriate to consider
�y � � (i.e., a quasi-sheetlike beam). Such beams are
experimentally realizable via routine methods. To analyze
this situation, the normalized map M of (5) should be
replaced by one with exp(−x2/2) replaced by exp(−[x2/2 +
y2(�/�y)2]). In addition, there are equations for yn and its
conjugate momentum py,n, which in dimensionless units with
y and py,n rescaled by � and T/(m�), respectively, take
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FIG. 21. (Color online) Total quantum (solid blue line) and
classical (blue dots) probabilities to stay in the island (|x| � xb) as a
function of the number of kicks. K = 1, τ = 0.01, x0 = −3, p0 = 0.

the form,

py,n+1 = py,n − Kyyne
− x2

n
2 − 1

2 ( �
�y

)2y2
n ,

(35)
yn+1 = yn + py,n+1,

where

Ky = K

(
�

�y

)2

. (36)

Since K ≈ 1 and �/�y  1, it can be assumed that Ky  1.
Therefore, the motion in the y direction is slow relative
to the motion in the x direction. Thus exp(−x2

n/2) can
be approximated by its time average 〈exp(−x2/(2�2))〉 ≡ ρ

(which is of order unity), and, for sufficiently small y the y

motion (35) can be described by a Harmonic oscillator with a
force constant 2Kyρ  1. Conservation of energy Ey implies
that the maximal value of y satisfies

Ey = 2Kyρy2
max. (37)

The energy Ey is determined by the initial preparation. Let
us assume that initially the atoms form a Bose-Einstein
condensate (BEC) and are in a harmonic trap that is anisotropic
where the frequency in the y direction is ν ′

y in experimental
units, and νy = T ν ′

y in our rescaled units. We assume that
the center of this trap y0 satisfies y0  ymax. The experiment
starts when the trap is turned off. Assuming the atoms are in
the ground state, their energy in our rescaled units is

1

2
h̄ν ′

y

(
T 2

m�2

)
= 1

2
νyτ � Ey. (38)

We desire the effect of the motion in the y direction on
the motion in the x direction [Eq. (1) with exp(−x2/(2�2))
replaced by V of (34)] to be negligible. Thus it is required that

η ≡ y2
max

(
�

�y

)2

 1. (39)

In this case the y motion corresponds to a variation in K

of the order �K ∼ Kη. Using (37) and (38), condition (39)
reduces to

1

4

νyτ

K
� Ey

2K
= η  1, (40)

where, since we are interested only in crude estimates, we have
replaced ρ by one. The initial spread in y is given by the ground
state of the harmonic oscillator, where 〈y2〉 = τ/(2νy), and we
require that the expectation value of y2 satisfies 〈y2〉  y2

max,
resulting in (

�

�y

)2
τ

2νy

 η. (41)

For both inequalities (40) and (41) to be satisfied it is
required that (

�

�y

)2
τ

2η
 νy � 4K

τ
η. (42)

The resulting fundamental lower bound on η is(
�

�y

)2
τ 2

8K
 η. (43)
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Reasonable experimental values are �/�y ≈ 10−2 and νy ≈
0.1. For τ = 10−2 and K ≈ 1 the lower bound on η is 10−5

leaving a wide range for “engineering” of BEC traps so
that the νy is in the range (42). For νy ≈ 0.1 and τ = 10−2

and K ≈ 1 we can make η � 10−3. Since this value of η is
small compared to the value of �K = K2 − K1, used in our
fidelity calculations (Figs. 3, 5, 11, and 12), those calculations
are expected to be unaffected by y motion for our assumed
parameters. It is also encouraging to see that noise of a higher
level does not destroy fidelity oscillations (see Fig. 12). One
should note, however, that the variation of the effective K of
the motion in the x direction is slow, with effective frequency
�/�y that for �/�y ≈ 10−2 is of order 10−2. For these
reasons, we expect that the model that we have explored
theoretically in the present work should be realizable for a
wide range of experimental parameters.

B. Conclusions

The main result of this paper is that the quantum fidelity is
sensitive to the phase space details that are finer than Planck’s
constant, contrary to expectations of Refs. [28,29]. In par-
ticular, the fidelity was studied and predicted to oscillate with
frequencies that can be predicted from classical considerations.
This behavior is characteristic of regular regions. Fidelity

exhibits a periodic sequence of peaks. For wave packets in
the main island, it was checked that the peak structure is stable
in the presence of external noise but the amplitude decays
with time. For wave packets initialized in a chain of regular
islands, it was found that the fidelity exhibits several time
scales that can be predicted from classical considerations. For
wave packets initialized in the chaotic region, the fidelity is
found to decay exponentially as expected. It was shown how
quasienergies are related to classical structures in phase space.
Substantial deviation between quantum and classical scattering
was found. These quantum mechanical effects can be measured
with kicked Gaussian beams as demonstrated in the present
work.
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