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Forecasting a class of bifurcations: Theory and experiment
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Forecasting bifurcations before they occur is a significant challenge and an important need in several fields.
Existing approaches detect bifurcations before they occur by exploiting the critical slowing down phenomenon.
However, the perturbations used in those approaches are limited to being very small and this represents a
significant drawback. Large levels of perturbation have not been used mainly because of a lack of an adequate
formulation that is robust to experimental noise. This paper provides such a formulation, and discusses how this
approach to forecasting bifurcations is more accurate, especially when the dynamics are far from the bifurcation.
Both numerical and experimental results are presented to demonstrate the technique and highlight its advantages
over other prediction methods.
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I. INTRODUCTION

Forecasting bifurcations (i.e., predicting bifurcations before
they occur) is a significant challenge, especially when an
accurate model of the system of interest is not available.
In this work, we focus on a certain class of bifurcations.
Specifically, jump phenomena (via subcritical and/or saddle-
node bifurcations) are important in many applications because
they correspond to sudden and dramatic changes in the
system dynamics. These types of nonlinear phenomena have
been observed and discussed in a variety of systems (e.g.,
physical systems governed by equations of motion such as
the Schrödinger equation [1] or the Swift-Hohenberg equation
[2]), climate systems [3], ecological systems [4,5], biomedical
systems (exhibiting behaviors such as asthma [6] or epileptic
seizures [7,8]), neuron systems (exhibiting pulse propagation
[9]), and global finance systems [10].

Several system characteristics have been explored for fore-
casting bifurcations of interest (e.g., noise-induced spectrum
[11], virtual Hopf phenomenon [12], skewness of probability
distributions [13], or flickering in bistable regions before
bifurcations [14,15]). In particular, the critical slowing down
phenomenon [16] has been employed as the underlying
physical basis of various existing approaches for forecasting
the occurrence of bifurcations [17]. Consider an attractor of
the dynamics of a system (e.g., a stable fixed point, a stable
limit cycle, or a chaotic attractor). When a small perturbation
is applied to the system, the dynamics converge toward the
attractor at some (recovery) rate. The critical slowing down
means that this recovery rate approaches zero as a parameter
of the system varies and the size of the basin of attraction
shrinks to nil [18]. As a consequence, in the prebifurcation
regime, the recovery rates (from small perturbations) decrease
as the system approaches the bifurcation. These effects can be
observed quite far from the bifurcation [17]. Hence, quanti-
fying the effects of the critical slowing down is one method
which can be used as an indicator of nearby bifurcations.
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Nearby bifurcations have been predicted in various complex
systems by monitoring the recovery rates of the system from
small perturbations. Methods used have included monitoring
changes in the autocorrelation [19] or the variance [20]
of the system response to small perturbations (which are
consequences of the critical slowing down [17]). These
techniques for forecasting bifurcations have been studied
for various systems, such as ecosystems [20–22], climate
dynamics [23], cell signaling [24], and ocean dynamics [19].
Such studies are still far from being able to predict or forecast
the most complicated bifurcations when an accurate model
of the system is not available. Furthermore, in current
techniques there are often two implicit assumptions that the
dynamics of the system takes place on a very low dimensional
manifold, and that the bifurcations are codimension one. Even
more importantly, when a physical system is available for
testing, the level of perturbations which can be applied to the
system have to be very small. That is because the formulations
based on observations of critical slowing down have been
derived in close proximity to the attractor (by linearization
after eliminating higher order terms).

In this paper, an alternate approach to characterizing the
recovery rates of dynamical systems is proposed. Specifi-
cally, the rate of change of the amplitude of the dynamics
(including certain higher order terms) is quantified. This new
characterization shows that critical slowing down can also
be observed when using much larger levels of perturbation.
By tracking the change of the recovery rate from large
perturbations, it is possible to predict both stable and unstable
branches in a bifurcation diagram. Of course, when an accurate
numerical model is available, bifurcation branches can be com-
puted using several computational bifurcation tools (e.g.,
AUTO [25], MATCONT [26], DDE-BIFTOOL [27], and PDDE-CONT

[28]). Only a few recent studies consider detecting unstable
periodic orbits in the bifurcation diagram experimentally
[29–31]. These approaches use controllers to stabilize unstable
orbits and track them while a parameter of the system is
varied. Such approaches are useful in detecting many types
of bifurcations. However, controller-based approaches have
many requirements. In contrast, the proposed approach does
not require a controller and does not need the parameter to
vary (or to enter the postbifurcation region). Instead, this
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approach predicts the bifurcation and the unstable branches
simply by tracking the recovery rate of the system dynamics.
These advantages come at the price of limiting the class of
bifurcations which can be tracked. Specifically, only Hopf
and saddle-node bifurcations can be handled. Nonetheless, the
characterized recovery rates can be used to predict both the
occurrence and the type of bifurcations (i.e., supercritical or
subcritical) before they occur.

Numerical simulations and experimental results are pro-
vided to demonstrate the use of our technique for forecasting
bifurcations. Limit cycle oscillations of a simple mechanical
system are used in the experiments. To simulate bifurcations of
limit cycle oscillations, properly designed nonlinear feedback
excitations are applied so that the desired types of bifurcations
take place in an otherwise linear system. Nonlinear feedback
excitations have been employed in structural health monitoring
[32,33] and sensing [34] as an active interrogation approach.
However, the feedback control, in this paper, is only used as a
tool to simulate a desired nonlinear dynamics. The proposed
approach does not require any type of control to be applied.
As the time scale of the system used herein is very short
(compared to several systems used in current studies [17]),
our experimental setup provides large amounts of data in a
short time. Moreover, the results obtained using the proposed
approach suggest that predictions of bifurcations by critical
slowing down can be sufficiently accurate for applications
to engineered systems which generally require high preci-
sion (such as sensing). Many of the engineered systems
experience the class of bifurcations of interest here (sub-
critical or supercritical Hopf bifurcations and/or saddle-node
bifurcations), for example, relief valves [35], shape memory
oscillators [36], aeroelastic systems [37], machine tools [38],
and automotive components such as torque converter clutches
[39].

II. THEORY

This section presents a method to forecast bifurcations by
using time series collected only in the prebifurcation regime.
The method is based on observation of how the system
recovers to its equilibrium state from perturbations. Such a
recovery of the oscillation amplitude to equilibrium is shown
in Fig. 1. Discussion focuses on forecasting codimension-one
supercritical or subcritical Hopf bifurcations and saddle-node
bifurcations.

Consider a nonlinear system with the perturbed dynamics
characterized by an amplitude r , and a fixed point or periodic
dynamics characterized by an amplitude r̃ . Consider also that
a perturbation with a certain level r0 is applied initially to the
system. When the system has a stable behavior, it converges
from the initial perturbation r0 back onto the (stable) fixed
point or the (stable) limit cycle of amplitude r̃ as shown in
Fig. 1. When the system has an unstable fixed point or an
unstable limit cycle, the amplitude r diverges away from r̃ .
The time rate of change of the amplitude in either of these
cases is considered to be of the form,

ṙ = r[α(μ − μc) − p(r)], (1)

where α is a fixed parameter of the system, μ is a controlled
and monitored parameter of the system, μc is the critical
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FIG. 1. (Color online) The rate function λ can be measured at
each level of perturbation by measuring r−, r , and r+ at times t − �t ,
t , and t + �t . Note that perturbations do not have to be small. Only
�t needs to be small.

value of the parameter μ where a bifurcation occurs, and
p(r) is a polynomial function of r with p(0) = 0. Note that
p(r) is assumed to be independent of the control parameter
μ. This is an important assumption which delineates the
range of application of the proposed method. Here α > 0,
and the prebifurcation regime corresponds to μ < μc. In the
prebifurcation regime, the dynamics of the system has a fixed
point at r = 0. In the postbifurcation regime, the dynamics has
one fixed point at r = 0 and another at r̃ , where r̃ is given by
p(r̃) = α(μ − μc). Furthermore, note that, in general, α is not
known unless an accurate model for the system is available.
Herein, we consider α an unknown that has to be identified or
detected.

The rate of change of the phase θ of the system is
not considered because we do not focus on infinite period
bifurcations or other similar bifurcations. The phase of the
system can be defined for any system exhibiting a limit cycle
oscillation of period T to reveal the fact that the dynamics is
periodic. Hence, θ varies by 2π when time varies by T . Only
a generic phase definition is needed because the proposed
approach uses only the amplitude of the oscillations as input
data (and the system response is assumed to be periodic).
Hence, θ and θ̇ do not significantly influence the analytic
formulation.

The rate of amplitude variation at time t is defined as

λ(μ,r) = d ln r

dt
. (2)

Using Eq. (1) one obtains

λ(μ,r) = 1

r
ṙ = α(μ − μc) − p(r). (3)

The rate of amplitude variation λ in Eq. (3) is a function of μ

(the controlled or measured parameter) and r (the amplitude
at time t), and is composed of two terms. The first term α(μ −
μc) is the distance from the current parameter value μ to the
critical value μc scaled by the fixed coefficient α. The second
term p(r) is a polynomial which characterizes the type of
bifurcation.
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FIG. 2. (Color online) (a) Sketch of the dependence of λ on r

for a fixed μ. (b) Bifurcation diagram for the parameter μ. Once λ

is obtained for a certain μ, the shape of the actual bifurcation can
be predicted without exploring the postbifurcation regime. For each
i, λ(μ,r̃i) = α(μ − μ̃) and the actual distance between μ and μ̃ can
be estimated (for a known α). Note that α can be easily obtained by
measuring (as few as only) two values of λ for two distinct values
of μ.

Consider that measurements are collected at times t − �t ,
t , and t + �t to obtain three amplitudes r−, r , and r+ as
shown in Fig. 1. To determine λ, one can employ the following
approximation:

λ(μ,r) = d ln r

dt
∼= ln r+ − ln r−

2�t
, (4)

which holds for small �t . Note that the measured perturbations
r−, r , and r+ do not have to be infinitesimal as long as �t is
small.

Generally, λ can be exploited in either the r-λ space or
the μ-λ space. First, consider the dynamics of the system for a
fixed parameter μ and a varying perturbation level r . As shown
in Fig. 2(a), the dependence of λ on r is a polynomial given by

λ(μ,r) = λ0 − p(r), (5)

where λ0 = α(μ − μc) represents the rate of amplitude varia-
tion when r tends to zero, λ(μ,r = 0). Different polynomials
p(r) correspond to distinct types of bifurcations. Therefore, the
shape of λ(μ,r) in the r-λ space can be used to determine the
type of bifurcation which takes place at μ = μc. Note that
the bifurcation is forecasted, that is, it is identified before it
takes place (using only μ values which are less than μc). This

ability to forecast is not found in other existing techniques
[25–31].

In general, for a given parameter value μ = μ̃, a system may
have several coexisting fixed points or limit cycles. Consider
the amplitude r̃i of one of those stable or unstable fixed
points or limit cycles. As shown in Fig. 2(b), all points (μ̃,r̃i)
on the bifurcation curve satisfy the equation of motion and
correspond to fixed points for r . Hence,

ṙ(μ̃,r̃i) = r̃i [α(μ̃ − μc) − p(r̃i)] = 0. (6)

Now, recall the dependence of λ on r expressed in Eq. (3) [and
presented in Fig. 2(a)]. For all r̃i , the value of λ(μ,r̃i) is the
same, as we show here:

λ(μ,r̃i) = α(μ − μc) − p(r̃i)

= α(μ − μ̃ + μ̃ − μc) − p(r̃i). (7)

Using Eq. (6), one obtains

λ(μ,r̃i) = α(μ − μ̃) +
����������0
α(μ̃ − μc) − p(r̃i)

= α(μ − μ̃). (8)

Equation (8) reveals the fact that the value of λ at r̃i represents
the distance (scaled by α) from the current μ to μ̃. Note that
for each i, λ(μ,r̃i) is a line in the μ-λ space, which has the
slope of α and crosses the μ axis (λ = 0) at μ̃. An example
of such a line [defined by Eq. (8)] is shown in Fig. 4. One
can measure λ(μ,r̃i) for as few as two distinct values of μ

to obtain this line. This requirement is distinct from classical
approaches where μ has to have many values which span both
the prebifurcation and the postbifurcation regimes. Next, the
fixed coefficient α can be estimated as it is the slope of the
line [defined by Eq. (8)]. One can then measure λ (for a given
value of r̃ , and a given value of μ) and compute μ̃ as

μ̃ = μ − 1

α
λ(μ,r̃). (9)

Finally, the bifurcation diagram can be predicted by the set of
points (μ̃, r̃).

Note that λ is derived without eliminating higher order
terms. Hence, its definition can be used at any level of
perturbation. Based on the values of λ at large amplitudes,
one may predict the distance to μc from the current μ by
estimating λ0 = α(μ − μc) from Eq. (5). In most cases, it is
a challenge to observe the system dynamics (and estimate λ)
from very small perturbations because the measurements of
actual dynamics can be obscured by noise. Therefore, the
estimated value of λ0 is more accurate if obtained using data
collected for sufficiently large amplitudes.

The general algorithm for forecasting the bifurcation
diagram using this approach is as follows:

(1) For a given value of the parameter μ = μk (with
k = 1 · · · M , where M is chosen by the user), a perturbation
is applied to the system, and amplitude values rj (with
j = 1 · · · N , where N is chosen by the user) are collected at
various time instances tjk .

(2) Using Eq. (4), the rate of amplitude variation λjk =
λ(μk,rj ) is computed at time tjk for all j = 1 · · · N .

(3) The slope αj of the line λ(μk,rj ) versus μk is computed
for each rj (j = 1 · · · N ). Note that these N values of αj can be

016203-3



JOOSUP LIM AND BOGDAN I. EPUREANU PHYSICAL REVIEW E 83, 016203 (2011)

averaged over j to obtain an average value of α for improved
noise rejection.

(4) A value of μ̃jk is obtained for each μk (k = 1 · · · M)
and each rj (j = 1 · · · N ) using Eq. (9) (where r̃ has a value
r̃j of rj ) and the slope α obtained at step 4. Note that these
M values of μ̃jk can be averaged over k to obtain an average
value for μ̃j for improved noise rejection.

The bifurcation diagram is finally obtained as the plot of r̃j

versus μ̃j for j = 1 · · · N (where r̃j = rj ).

III. RESULTS

In this section we demonstrate our approach by applying it
first to a numerical model and then to an experimental system.

A. Numerical results

Forward (supercritical) and backward (subcritical) Hopf
bifurcations are considered. The governing equations of
motion for systems with such bifurcations are of the form
shown in Eq. (1). They are characterized by two different
types of polynomials p(r) as follows:

pf (r) = βr2, (10)

pb(r) = −βr2 + γ r4. (11)

The values of β = 1 and γ = 1 are used to obtain numerical
data. The values of μc and α from Eq. (1) are considered
to be μc = 0 and α = 1. The results obtained for λ, and the
predictions made for both bifurcations are presented in Figs. 3
and 5.

(a)

(b)

FIG. 3. (Color online) (a) Exact and predicted supercritical Hopf
bifurcation. (b) λ versus r for a supercritical Hopf bifurcation.
Predictions based on λ are demonstrated using a numerical model
for a supercritical Hopf bifurcation.

FIG. 4. (Color online) Each predicted point for r̃ in Fig. 3(a)
is estimated by line fitting the measurements of λ(μ,r̃) for various
μ. The slope of the line fitting all measurements (for a given r̃)
is α.

For a supercritical Hopf bifurcation, values for λ were
obtained in a range of μ from μmin = −1 to μmax = −0.5,
with a given initial perturbation amplitude r0 = 0.8. The curve
shown in Fig. 3(a) is the exact bifurcation diagram obtained
by analytically solving ṙ = 0 for r at every μ between −1.2
and 1. The points (μ̃, r̃) in Fig. 3(a) are predictions obtained
by the proposed approach using multiple curves of λ collected
for distinct values of μ between μmin and μmax. Specifically,
the values of λ for a certain amplitude r̃ on the dotted line
shown in Fig. 3(b) are projected onto the μ-λ space as shown
in Fig. 4. As discussed in Sec. II, this line has the slope of
α and crosses the μ axis (λ = 0) at μ̃. All predicted points
shown in Fig. 3(a) are obtained by the same approach under
the assumption that α is unknown (and must be measured).
Note that, once α is identified, measurements of λ for a single
μ value are sufficient to obtain a prediction for the entire
bifurcation diagram in Fig. 3(a).

For a subcritical Hopf bifurcation, the range considered
for μ was from μmin = −2 to μmax = −1, and the initial
perturbation amplitude was r0 = 1. The results shown in
Fig. 5 were obtained by exactly the same procedure as for the
supercritical Hopf bifurcation (Fig. 3). However, the curves
obtained are distinct because the polynomial used to generate
the (numerical) data is that given in Eq. (11) instead of Eq. (10).
Additional important results are observed in the subcritical
case. For example, the new approach can successfully predict
the saddle-node bifurcation of cycles located at point S in
Fig. 5(a). The predicted points approximate very well the exact
location of the saddle-node bifurcation. In addition, the large
amplitude of the emerging limit cycle at point S is captured
accurately.

The predicted bifurcation diagrams obtained based on λ

measured in the pre-bifurcation regime perfectly match the
analytical diagrams for the numerical models of general
Hopf bifurcations considered. The predicted information
includes the locations of the bifurcation points, and the
whole bifurcation diagram, including the unstable limit cycles.
The curves of λ vs. r were obtained by tracking the time
history of the system during its recovery from the initial
perturbations.

Several time history plots shown as inserts in Figs. 3(a)
and 5(a) demonstrate that it is not easy to discern spe-
cific bifurcation characteristics without proper analysis. Our
approach presents a clear characterization of the time histories
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(a)

(b)

FIG. 5. (Color online) (a) Exact and predicted subcritical Hopf
bifurcation. (b) λ versus r for a subcritical Hopf bifurcation.
Predictions based on λ are demonstrated using a numerical model
for a subcritical Hopf bifurcation.

both qualitatively (between different types of bifurcations),
and quantitatively (between different values of μ for the same
bifurcation). Our technique is experimentally demonstrated
and verified in the next section for limit cycle bifurcations of
a mechanical oscillatory system.

B. Experimental results

A clamped-free aluminum beam is used in the experiments.
To induce supercritical or subcritical Hopf bifurcations in the
system dynamics, nonlinear feedback excitations are applied
to enhance the nonlinearity of the system [32]. A diagram of
the experimental system is shown in Fig. 6. As shown in the
figure, a piezo-sensor and a pair of piezo-actuators are attached
to the aluminum beam. The sensor output signal is conditioned
through a charge amplifier and is the input to a real-time
processor. In the real-time processor, the sensor output data are
stored while the data are also used to form a designed nonlinear
feedback excitation, which is then amplified and sent to the
piezo-actuators on the beam. Note that the feedback controller
is not a requirement of the proposed approach to forecast
bifurcations, but is used only for creating a system which
exhibits the desired bifurcations. The proposed approach only
uses the time-series data from the sensor. The controller
actuation is used to provide an excitation which repeatedly
induces large level perturbations to the system. That is done

Piezo-Sensor

Nonlinear
Feedback

Piezo-Actuator

+

+

-

Real-time
processor

Host PC

Aluminum beam

Charge

F

S

FIG. 6. (Color online) An aluminum beam is used for experi-
mental tests. Nonlinear feedback is designed and applied to generate
supercritical or subcritical Hopf bifurcations. Only one of the sensors
on the beam is used in these experiments. From the piezo-sensor
output signal s which is proportional to the amplitude of oscillation,
nonlinear feedback F is formed and applied to the base of the beam
(as a locally distributed bending) by a pair of piezo-actuators.

for the sake of experimental validation and is not needed when
other external perturbations exist or can be easily applied.
Also, note that the large level perturbations applied do not
have to be identical.

To induce desired supercritical or subcritical Hopf bifurc-
ations, nonlinear feedback is generated from the piezo-sensor
output signal s which is proportional to the oscillation
amplitude. The nonlinear feedback is applied to the beam
(as a locally distributed bending) by a pair of piezo-actuators
attached on both (upper and lower) sides of the beam. The
nonlinear feedback F can be expressed as a function of the
sensor output s as

F = μs + βs3 + γ s5, (12)

where μ is the control parameter, and β and γ are the
nonlinear feedback gains, which are fixed for each desired
bifurcation. For creating a supercritical Hopf bifurcation,
nonlinear gain parameters are fixed as β = −0.01 and γ = 0,
with 20 dB of charge amplifier gain. For creating a subcritical
Hopf bifurcation and a saddle-node bifurcation, nonlinear gain
parameters are fixed as β = 5 and γ = −0.05, with 10 dB of
charge amplifier gain. These parameters were chosen based on
a few preliminary experimental tests.

One can also express the equation of motion for a finite
element model of the beam with nonlinear feedback excit-
ation as

Mü + Cu̇ + Ku = Gs + Nβpβ(s) + Nγ pγ (s), (13)

where matrices M, C, and K are mass, damping, and stiffness
matrices, G is a linear feedback gain matrix, Nβ and Nγ are
nonlinear feedback gain matrices, u is the vector of nodal
displacements and rotations, and s is the sensor output. The
vectors pβ(s) and pγ (s) contain terms like s, s2, s3, s4, and
s5. The details of such a model, however, are not discussed
in this paper because the presented method does not require a
numerical model. In fact, one of the advantages of the proposed
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approach is precisely that it does not require an accurate model
and can be applied experimentally.

Each experiment consists of two steps. The first step
is to obtain the actual bifurcation diagram by the classic
method of parameter sweeping. This step is performed so
that the predictions obtained using our approach can be
compared to the actual bifurcation diagram. To obtain the
actual bifurcation diagram, the linear feedback gain (the
controllable parameter μ) is changed from prebifurcation
values to postbifurcation values in the parameter space. For
subcritical bifurcations, a reverse sweep in the parameter
is also applied (to capture the jump phenomenon at the
saddle-node bifurcation of cycles). After ignoring transients,
the amplitude of the limit cycle oscillations is obtained and
plotted versus its corresponding parameter value to obtain
a bifurcation diagram. The bifurcation diagram obtained by
this classic method is shown in Fig. 8 in the form of dashed
lines. Note that the lines in Figs. 8(b) and 8(c) which (at a
first glance) may look like an imperfect bifurcation are an
artifact of the plotting of the results. They are caused by the
finite step size between each parameter value considered in the
classical method. Lines (connecting actual measured points)
are used instead of points for better visibility because the
results of our approach are marked as circles (with error bars).
Furthermore, the jump phenomena presented in Figs. 8(d)–8(f)
are caused by subcritical Hopf bifurcation and saddle-node
bifurcation. Note that the jump phenomena may also be
observed for supercritical Hopf bifurcations as a delay effect
for systems with slowly varying parameters [40]. However,
in the experiment herein the applied nonlinear feedback is
designed specifically to induce a subcritical Hopf bifurcation,
and the parameters of the system are maintained constant long
enough to reach steady state for each parameter value.

The second and critical step is to predict the bifurcation
location and shape using only λ values obtained in the
prebifurcation regime. To obtain the curve of λ for a fixed
parameter μ, a perturbation is applied to the system. The
perturbation is caused by a harmonic excitation (with a
high frequency and a certain amplitude) which is applied
to the system for a very short time, to provide a desired
perturbation. After the perturbation, the dynamics of the
system in its transient regime (as the system recovers from
its perturbed state) are recorded. Specifically, the amplitude
of the oscillation is measured during the transient phase. In
this case, recovery is complete when the transients decay to
zero. Note that the frequency of the short perturbations is
chosen close to the resonant frequency of the system. Other
types of perturbations can be applied, however, they may place
more stringent restrictions on the data acquisition (sampling
rate and resolution). Although interesting, the study of other
perturbations is beyond the scope of this paper.

The resonant frequency of the system (close to the
bifurcation) was measured experimentally and found to be
approximately 6.1 kHz for both supercritical and subcritical
Hopf bifurcations. The sampling rate of the data acquisition
was approximately 200 kHz.

The measured dependence of λ on r for supercritical and
subcritical Hopf bifurcations is shown in Fig. 7. For a given
value of μ, a time series of 4000 individual r values was
obtained as the system decayed to the equilibrium (zero) state.
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0
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FIG. 7. (Color online) (a) λ for supercritical Hopf bifurcation
(μ = 0.9). (b) λ for subcritical Hopf bifurcation (μ = 2). 4000 values
of λ are obtained for distinct r values from a transient phase. The
process is repeated 16 times for each μ value.

Then the values of λ were obtained using Eq. (4) for those r

values. This process was repeated 16 times for each μ value. In
obtaining λ values using Eq. (4), experimental noise can affect
small values of r and lead to large errors in λ. Hence, r values
below a preset minimum amplitude were eliminated. This
minimum amplitude depends on the data acquisition system
used. For the results herein, the value used was 50 mV. Note
that our method is designed to provide estimates for the values
of λ even when these values are small. This is accomplished by
taking advantage of data obtained from larger perturbations,
and by using the curves of λ in the r-λ plane. These results are
demonstrated in Fig. 7, where the amplitude of the dynamics
r is proportional to the output voltage of the sensor.

For the supercritical Hopf bifurcation, values of μ were
chosen between μmin = 0.45 and μmax = 0.95. Similarly, for
the subcritical bifurcation, μ values between μmin = 1 and
μmax = 2 were used. Eleven distinct values of μ were selected
for the experiments in each of these ranges. In the μ-λ space,
line fitting was conducted to predict the location of each corre-
sponding limit cycle amplitude (similar to what was done using
numerical data to obtain the results in Fig. 4). Furthermore, the
value of α was estimated based on the slopes of the lines in the
μ-λ space. The value of α obtained for the supercritical Hopf
bifurcation is αf = 195.82 (with a standard deviation of 1.56),
and for the subcritical Hopf bifurcation is αb = 66.81 (with a
standard deviation of 2.93). As shown in Fig. 8, the predictions
using Eq. (9) match the actual bifurcation diagrams very well.
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FIG. 8. (Color online) Predictions for the bifurcation diagram obtained based on λ are demonstrated for supercritical and subcritical Hopf
bifurcations. (a) Based on multiple μ values; (b) μ = 0.45; (c) μ = 0.95; (d) based on multiple μ values; (e) μ = 1; (f) μ = 2. The upper plots
(a)–(c) are for a supercritical Hopf bifurcation, and the lower plots (d)–(f) are for a subcritical Hopf bifurcation. The dashed lines represent the
actual bifurcation diagram measured by applying actual parameter variations in the postbifurcation regime. Results show that predictions are
more accurate when they are based on λ values obtained at multiple μ values. Furthermore, once α is calculated, predictions are most accurate
when they are based on measurements at a value of μ close to the actual bifurcation (i.e., for μ close to μc). The horizontal bars represent
standard deviation error bars computed for each predicted point on the bifurcation diagram.

Our results also show that a bifurcation can be predicted
quite well even when measurements obtained at a single
value of μ are used (once α is obtained). Note that in all
measurements, μ is lower than the value where the system
actually encounters the bifurcation (at μc).

Figures 8(b), 8(c), 8(e), and 8(f) present the predictions
obtained using measurements at single values of μ.
Figures 8(b) and 8(e) show results obtained using a value
of μ which is μmin, and is the farthest from the actual
bifurcation (at μc). Figures 8(c) and 8(f) show results obtained
using a value of μ which is μmax, and is the closest to the
actual bifurcation (at μc). As the parameter μ approaches
its bifurcation value μc, the predictions based on λ are more
accurate. Note, however, that the bifurcation is well predicted
even when using measurements collected at μmin. These
measurements are quite far from the bifurcation (halfway
between zero feedback and the actual bifurcation point).
For the subcritical Hopf bifurcation [Figs. 8(d)–8(f)], one
can observe a small difference between the actual and the
predicted bifurcation points. However, these results are
reliable, especially considering that the values of μ are chosen
in a range well below μc (where the saddle node emerges).

IV. DISCUSSION AND CONCLUSIONS

A new method of characterizing the dynamics of a nonlinear
system during its transient recovery to a stable limit cycle or
a stable fixed point after perturbations (in the prebifurcation
regime) was presented. The proposed approach is designed

for forecasting bifurcations of fixed points or limit cycles.
By keeping all higher order (nonlinear) information in the
formulation, the perturbation levels do not have to be small.
Allowing for large perturbations is important because it can
be challenging to measure recovery from small perturbations
due to a loss of accuracy caused by noise and/or a lack of
resolution in measurement. In most cases, operating with larger
perturbations is a good way to resolve such accuracy issues and
obtain better predictions of the bifurcations without the need to
explore the postbifurcation regime. Furthermore, the recovery
rates obtained using large perturbations enable the prediction
of locations in parameter space where the stable or unstable
limit cycles lie as well as the amplitudes of those limit cycles.

Another important feature of the proposed method is its
ability to accurately predict saddle-node bifurcations and
unstable limit cycles for the case of subcritical Hopf bifur-
cations. There are several recent studies to experimentally
follow unstable branches by means of feedback control.
However, those studies differ fundamentally from the approach
in this paper. The proposed method predicts the unstable
branches without following them [i.e., in the prebifurcation
regime (where the system always recovers to its equilibrium)].
From a practical standpoint, this is clearly the safest way to
investigate a system. Furthermore, the use of feedback in
this paper is only for the purpose of creating a well-known
system which can be used for quantitative evaluation of
the predictions our method provides. In contrast to other
experimental techniques [29–31], the feedback is not needed
(and not used) for forecasting the bifurcations or the unstable
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branches. Due to its minimal requirements (i.e., time-series
data), the proposed method has strong potential for application
to other areas, such as biological systems or natural systems,
where the implementation of feedback control for the purpose
of forecasting bifurcations or measuring unstable branches
may be difficult.

A clamped-free aluminum beam with a nonlinear feedback
excitation was introduced for experimental verification of the
proposed method. The oscillatory system with nonlinear feed-
back has several advantages for testing nonlinear techniques.
First, desired types of bifurcations can be induced easily in
the system because the nonlinearity of the system comes
from the control feedback (which can be designed for each
specific case of interest). Second, the predicted shape of the
bifurcation can be obtained very quickly because (once α is
known) a single time history of the recovery from a large
perturbation contains all necessary information for the range
of the corresponding amplitudes as well. This contrasts with
classical techniques where the bifurcation parameter has to be
varied and many steady-state curves have to be measured to
obtain the bifurcation diagram. In addition, the results using
the proposed approach are very accurate when compared with
results of classical techniques.

In the experiments, the actuation (by the controller) was
used to induce perturbations repeatedly. Multiple perturbations
were used for two reasons: (1) to enhance the accuracy of the
predictions, and (2) to develop a method to predict unstable
branches, to be used precisely when the response of the
system is available for multiple perturbations. Note that, when
multiple perturbations are available, they do not have to be the
same (e.g., they do not have to have a similar level). Some can
be large and some small, or they can be large and of different
levels. In fact, natural (small or large) perturbations can be
used. The only requirement here is that the system recovers to
its equilibrium state from these perturbations. For example, the
proposed method (using time series) can be applied to a system
which undergoes an impulse-type disturbance during opera-
tion (e.g., an aeroelastic system encountering a gust during
flight) which causes (large or small) perturbations after which
the system recovers to its regular (stable) operating conditions.

Of course, the proposed approach has restrictions on its
applicability. First, the dynamics are assumed to be effectively

one dimensional and periodic, and the bifurcation is assumed
to be codimension one. Currently available techniques also
consider limited types of dynamics and codimension-one
bifurcations. These studies (and ours) are still far from being
able to predict or forecast bifurcations for the most complex
systems, especially when an accurate model of the system
of interest is not available. Second, if the system does not
experience large perturbations (either induced or natural),
then one cannot fully take advantage of the proposed method.
However, the proposed approach can still be used (in a limited
sense) by monitoring small perturbations (either induced or
natural) to locate the bifurcation point. Third, the perturbations
are assumed to be of a magnitude which does not make
the system switch between different attractors; that is, the
assumption is that the system reverts to its initial equilibrium
position (or to its initial periodic limit cycle oscillation)
in time after the perturbation subsides. Fourth, the nonlinear
terms are assumed to be independent of the control parameter.
These restrictions are necessary when one needs to forecast
the bifurcation (instead of detecting it by sweeping up and/or
down a system parameter).

The proposed technique enables the use of larger pertur-
bation levels which broadens its applicability as compared
to existing techniques based on the critical slowing down. In
addition to predicting where bifurcations occur, the proposed
approach can be used to anticipate the type of the bifurcations
(supercritical or subcritical) and predict their branches without
exploring the postbifurcation regime. Due to the dramatic
change in the dynamics at bifurcations, predicting subcritical
and saddle-node bifurcations without placing the system in
the postbifurcation regime provides great advantages in many
applications.
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