
PHYSICAL REVIEW E 83, 016202 (2011)

Quantum vacuum of strongly nonlinear lattices

O. V. Zhirov,1 A. S. Pikovsky,2 and D. L. Shepelyansky3

1Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
2Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Strasse 24, D-14476, Potsdam-Golm, Germany
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We study the properties of classical and quantum strongly nonlinear chains by means of extensive numerical
simulations. Due to strong nonlinearity, the classical dynamics of such chains remains chaotic at arbitrarily low
energies. We show that the collective excitations of classical chains are described by sound waves whose decay
rate scales algebraically with the wave number with a generic exponent value. The properties of the quantum
chains are studied by the quantum Monte Carlo method and it is found that the low-energy excitations are well
described by effective phonon modes with the sound velocity dependent on an effective Planck constant. Our
results show that at low energies the quantum effects lead to a suppression of chaos and drive the system to a
quasi-integrable regime of effective phonon modes.
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I. INTRODUCTION

The investigation of classical nonlinear chains, started by
Fermi, Pasta, and Ulam in 1955 [1], still remains an active
and interesting area of research which attracts the significant
interest of the nonlinear community (see, e.g., Refs. [2–5]
and references therein). Usually, in such chains the nonlinear
terms are relatively weak compared to the linear ones and
strong nonlinear effects appear only at sufficiently high-energy
excitations.

However, there are also other types of chains where
the linear modes are absent and the dynamics is strongly
nonlinear at arbitrarily small energies [6,7]. In some situations,
time in such chains can be rescaled with energy and hence
the system always remains in a strongly nonlinear regime.
A prominent example is the Hertz lattice which describes
elastically interacting hard balls. A well-known example of
such a system is the toy “Newton’s cradle,” which, however,
is typically rather short; in specially assigned experiments one
can study long chains of balls where the elasticity parameter
scales as a square-root of the displacement [8–11] corre-
sponding to the nonlinearity index n = 5/2 of the interaction
term in the Hamiltonian. Nesterenko [8,12–14] described a
compact traveling-wave solution in the Hertz lattice now
known as compacton (for another realization of “Newton’s
cradle” in a chain of interacting solitons see Ref. [15]). A
rigorous mathematical description of compactons was given
by Rosenau and Hyman [16,17] for a class of nonlinear partial
differential equations (PDE’s) with nonlinear dispersion. A
detailed analysis of the dynamics on lattices with various
nonlinearity index has been performed recently in Ref. [18].
On a finite lattice one typically observes chaotic dynamics
characterized by a spectrum of positive Lyapunov exponents
[18,19].

In the strongly nonlinear lattices the dynamics is typically
chaotic at arbitrarily small energies. Therefore it is interesting
to understand what happens in such quantum lattices, where
in the classical limit normal phonon modes are absent and one
cannot quantize the system based on phonon representation.
To solve the problem, we use the quantum Monte Carlo
(QMC) method and the approach developed recently for

the quantum Frenkel-Kontorova model as it is described in
Ref. [20]. The aim of this work is to understand the properties
of quantum vacuum and low-energy excitations in lattices
with a strongly nonlinear interaction between particles. It is
interesting to note that the recent progress with cold atoms
allowed to realize a quantum “Newton’s cradle” [21] and to
study energy redistribution between atoms. The experimental
progress stimulated also theoretical studies of the integrability
and nonintegrability in one-dimensional atomic lattices at
high-energy excitations [22]. In contrast to that we study the
properties of quantum vacuum and low-energy excitations
in quantum lattices when the linear terms are absent and
nonlinearity is always strong in the classical case. Thus the
classical dynamics of such chains is always chaotic [18]
(except a special case of one compacton moving in a lattice)
and their quantization is a quite nontrivial task. Due to this it
is not possible to apply the ideas of semiclassical quantization
in the sense of the classical Gutzwiller’s approach [23] as it
has been recently done for breathers [24] and solitons [25].

While the model we study is an ideal one-dimensional
lattice that, at first glance, looks rather abstract, a recent experi-
mental progress allows us to look optimistically on the possible
experimental realizations (e.g., the quasi-one-dimensional
Wigner crystal composed of charged ions confined in a
linear Paul or Penning trap as an experimentally accessible
situation). We refer to recent papers [26,27] where quantum
dynamics of structural defects (kinks) in such configurations
have been discussed; see also a suggestion to effectively
simulate nonlinear lattice models with ion traps [28]. Another
class of experimental situations where such a nonlinear lattice
can be realized deliver nanomechanical systems, having in
the classical description a large variety of nonlinear properties
[29]. The quantum limit of such systems has been reached
experimentally quite recently [30].

The paper is organized as follows. The model description
is given in Sec. II. The properties of sound-like waves
in the classical strongly chains are analyzed in Sec. III.
Simple analytical estimates for the strongly nonlinear chain
are presented in Sec. IV. Numerical results of the QMC are
presented in Sec. V and the results are summarized in Sec. VI.
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II. MODEL DESCRIPTION

The quantum strongly nonlinear chain is described by the
Hamiltonian

Ĥ =
N∑

l=1

1

2
p̂2

l + α

n
(x̂l − x̂l−1)n, (1)

where index l marks the particles in the chain and n is
the nonlinearity index. Here xl gives the particle coordinate
counted from the equilibrium distance between particles,
which is taken to be a. For the chain of balls like Newton’s
cradle a is given by the ball diameter (we stress here that
we consider the potential acting both for compression and
stretching, while in the real chain of balls the force appears
only due to compression). We use the dimensionless units in
which the particle mass is equal to unity and the momentum
pl gives the particle velocity. For the quantum problem
the operators of momentum and coordinate have the usual
commutator [p̂l,x̂l′ ] = −ih̄δl,l′ with a dimensionless Planck
constant h̄. Here and in the following we use the fixed boundary
conditions with xl=0 = xl=N = 0. We note that the particles are
distinguishable since they are located at well-defined positions.

Let us recall a few known results for the harmonic
chain at n = 2. It is convenient to introduce sine modes via
relations Ŝk =

√
2
N

∑
l sin(qkl)x̂l , x̂l =

√
2
N

∑
k sin(qkl)Ŝk and

the corresponding relation for momenta. Then the Hamiltonian
(1) takes the form

Ĥ = 1

2

∑
k

(
P̂ 2

k + ωk
2Q̂2

k

)
, (2)

with the normal mode frequencies ωk = 2ω̄ sin(qk/2),
ω̄ = √

α and wave numbers qk = πk/N , k = 1, . . . ,N − 1.
The quantum vacuum state of the chain is a product of

quantum vacuum states of all modes. For any mode in the
quantum vacuum state one has an average of mode energy Ûk

being 〈Ûk〉 = ω2
k〈Ŝ2

k 〉/2 = h̄ωk/4 and hence

〈ŜkŜk′ 〉 = h̄

2ωk

δkk′ . (3)

Different modes are independent and as a result the squared
deviation from equilibrium for a particle l is 〈x̂2

l 〉 =
2
N

∑N−1
k=1 sin2(qkl)〈Ŝ2

k 〉 = h̄
N

∑N−1
k=1 sin2(qkl)/ωk . For the cen-

tral particle l = N/2, the displacement diverges logarithmi-
cally with the chain length 〈x̂2

l 〉 = h̄
4n

∑N−1
k=1 1/ sin(qk/2) ≈

h̄
π

ln(2/qmin), where qmin ≡ qk=1 = π/N . For h̄ = 1 the dis-
placement is of the order of unity for N ∼ 30. We will assume
that such displacements are small compared to the distance a

between particles.
The spacial correlator of the chain can be also ex-

plicitly calculated as 〈x̂l x̂l+�〉 = 2
N

∑N−1
k=1 sin(qkl) sin(qk(l +

�))〈Ŝ2
k 〉, where the brackets note the quantum average. Using

Eq. (3) we obtain after summation over all l

〈x̂l x̂l+�〉l ≈ h̄

N

N−1∑
k=1

cos(qk�)

4 sin(qk/2)
. (4)

At finite temperature T the relation (3) is modified for the
usual expression for bosons

〈
Ŝ2

k

〉 = h̄

ωk

(
1

2
+ 1

exp(h̄ωk/T ) − 1

)
. (5)

With this form of 〈Ŝ2
k 〉 one can obtain the expression for the

correlator 〈x̂l x̂l+�〉 at finite temperature.
The properties of the chain can be also characterized by the

static form factor defined as

F (q) =
〈∣∣∣∣

∑
l

exp[i(a · l + x̂l)q/h̄]

∣∣∣∣
2〉

, (6)

where q can be viewed as a momentum transfer during a
process of photon scattering, and a is the spacing of the chain
lattice.

Before starting the studies of the quantum problem at n > 2,
we consider in the next section the features of the classical
chain at n = 4 and finite energy density.

III. SOUND-LIKE WAVES IN CLASSICAL LATTICE

In quantum mechanics the ground state (quantum vacuum)
has finite energy, while in the classical case the vacuum is the
state with zero energy. As the lattice we consider is strongly
nonlinear, there are no linear modes (sound waves) in the
classical system at low energy (therefore it is often called
“sonic vacuum”). However, it is possible to have sound-like
waves in the classical state with finite energy density. These
modes can be interpreted as oscillations of the averaged density
of a turbulent (chaotic) lattice state. These waves should not
be confused with linear waves that appear in the lattice if it
is prestrained (i.e., if the static positions xk are nonzero). To
find these modes, we simulated numerically the dynamics of
classical system (1) at n = 4, α = 1 with the periodic boundary
conditions (another method for the characterization of these
modes based on the power spectrum of chaotic dynamics was
used in Refs. [6,7]). The simulations are done with a Runge-
Kutta-Nystrom method with time step 0.02. Initially a random
distribution of momenta pl is seeded, so that the total energy
density per particle is one (because of the scaling properties of
the Hamiltonian (1), changing the energy density is equivalent
to time rescaling). After a transient of time Ttrans = 10 a chaotic
regime establishes in the lattice. At this time instant we add
a perturbation of the form xl → xl + ε cos ql to this chaotic
state, with ε = 0.1. The wave number q is changed in the
range 0 < q < π . The spatial spectrum of the field xl contains
now, together with a continuous part, a discrete peak at q. We
calculated the time evolution of the amplitude fq of this mode
and found, by averaging over the large ensemble, that it varies
in time approximately as fq ∝ e−γq t cos ωqt . We use up to 107

particles in an ensemble to obtain good averaging of statistical
fluctuations.

The numerical results are shown in Fig. 1 for the spectrum
of sound-like waves ω(q) and their decay rates γ (q). The
frequency spectrum is close to the spectrum of sound in
a harmonic lattice ω(q) = 2ω̄ sin q/2, with ω̄ ≈ 1.4 (to be
compared with value 1.34 obtained in Ref. [7]). At small q

we have the spectrum of sound-like waves. Upscaling these
results to the arbitrary average energy per particle, we find
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FIG. 1. (Color online) Bottom panels: Spectrum of waves ω(q) in
the classical strongly nonlinear lattice (1) at n = 4, α = 1 and energy
per particle 〈El〉 equal to unity, at small wave numbers q the spectrum
is close to a linear law of sound waves ω ∝ q. Top panels: Decay rate
of sound waves γ (q), at small q we have γ ∝ qβ with β ≈ 1.69. Left
panels are in normal scale, right panels are in log-log scale, fits are
shown by straight lines with indicated slopes.

that the effective velocity of “sound” for these phonon-like
excitations is given by ω̄ ≈ 1.4〈αEl〉1/4. Here the dependence
on a given average energy per particle 〈El〉 appears since a
typical frequency of particle oscillations is proportional to
〈El〉1/4. The speed of sound in the physical lattice with distance
a between particles is c = ω̄a. The decay rate of these waves
drops algebraically with the decrease of the wave vector q

as γ ∝ qβ . We obtain the value β ≈ 1.69 that is close to
the generic exponent β = 5/3 for the decay rate in nonlinear
lattices (see, e.g., Ref. [3]) and corresponds nicely to the value
1.677 obtained in Ref. [7]. Thus even if the dynamics inside the
strongly nonlinear lattice is strongly chaotic (see Ref. [18]), the
long wave oscillation properties of the average perturbations in
the whole lattice are well described by effective sound waves.
In a certain sense the situation is similar to sound in a gas
media: each particle moves chaotically, but the collective long
wave excitations are well described by weakly damping regular
sound waves.

We stress that the sound-like waves described in this section
are small perturbations of a state with finite energy. We studied
their properties in the limit when the amplitude of these waves
is very small, and found that the properties do not depend on
this amplitude, in this sense these waves can be considered as
linear ones. However, they are, of course, not linear waves of
the lattice (these do not exist because the lattice is strongly
nonlinear), but linear perturbations of a turbulent state having
finite energy. Thus their properties depend on this energy, the
latter not to be confused with the amplitude of the waves.

It is interesting to note that recently a localization of
sound waves in a random three-dimensional elastic network of
metallic balls has been observed experimentally in Ref. [31].
Such a system can be viewed as a random three-dimensional
“Newton’s cradle.’. However, our studies here are restricted to
the one-dimensional case.

IV. SIMPLE ESTIMATES FOR QUANTUM STRONGLY
NONLINEAR CHAINS

The results of the previous section indicate that the lattice
with finite energy density possesses sound-like waves. We
can estimate the properties of these waves based on the
following relations. The sound velocity c in a gas is given
by the derivative of pressure p over the gas mass density
ρ at fixed entropy S (adiabatic process): c2 = ( ∂p

∂ρ
)S . Since

the pressure is proportional to the force p ∝ ∂U/∂xl , hence
c2 ∝ ∂2U/∂2xl . This leads to a simple estimate for the sound
velocity based on the virial theorem according to which
2〈K〉 = n〈U 〉, where K and U are the particle kinetic and
potential energies and the brackets mark their average values.
Since the temperature is proportional to the kinetic energy we
have T ∼ 〈K〉 = n〈U 〉 = α〈(xi − xj )n〉 ∼ α(�x)n where �x

is an average displacement of a particle. This gives

c2 = ω2a2 ∼ a2U
′′
(�x) ∼ a2α2/nT 1−2/n. (7)

For the classical case this expression agrees with the previous
analytical results for ω̄ for n = 2,4. We stress again that
velocity (7) refers to the velocity of small perturbations on
the base of a turbulent state having finite energy. Thus this
velocity does depend on this energy, but does not depend on
the amplitude of small perturbations.

Next we are going to perform similar estimations for
the vacuum state in the quantum lattice. For the quantum
strongly chain we can use the Heisenberg uncertainty relation
p ∼ h̄/�x for the minimization of the ground-state energy
E = h̄2/2(�x)2 + α(�x)n/n that gives �x ∼ (h̄2/α)1/(n+2).
Now we estimate frequency ω as the frequency of oscillations
in the potential U (x) ∼ xn that have the amplitude �x:
ω2 ∼ α(�x)n−2 = α4/(n+2)h̄2(n−2)/(n+2). As a result, using the
relation c2 = ω2a2, the sound velocity of the quantum chain
can be estimated as

c2 ∼ a2α4/(n+2)h̄2(n−2)/(n+2). (8)

For n = 2 this velocity is independent of h̄ and coincides with
the velocity of sound waves, but for n > 2 it decreases with h̄

that corresponds to the decrease of the ground-state energy of
a nonlinear oscillator.

V. NUMERICAL RESULTS OF QUANTUM MONTE CARLO

A. Method description

For our numerical simulations of quantum chain (1) we use
the Metropolis algorithm (MA) [32] in the Euclidean time τ

related to the system temperature T = h̄/τ . The simulations
are done in the same way as for the studies of the quantum
Frenkel-Kontorova model described in Ref. [20]. A general
description of this QMC method can be found in [33].

The paths in the discretized Euclidean time are generated
by the statistical sum

∑
{xl,j }

exp

[
−

∑
l,j

[(xl,j − xl,j−1)2/2�τ

+�τ (xl,j − xl−1,j )n/2n]

]
, (9)
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which links the problem to a statistical mechanics for the
configuration distribution of some lattice of size N × Nτ ,
where N is the number of particles and Nτ = τ/�τ is the
number of discrete steps of size �τ in the Euclidean time
interval τ . As usual the periodic boundary conditions are used
in this time with xl(τj + τ ) = xl(τj ) and τj = j�τ . In our
numerical studies we use up to Nτ = 1000, τ = 200 and up
to 2 · 106 Metropolis updates. We fix α = 1 for numerical
simulations.

The numerical simulations generate configurations {xk,j }
with a probability proportional to their weights in the par-
tition function. The Metropolis method looks very efficient,
providing an update step gives rather large modifications for
a given site. However, the corresponding modifications are
local and are dominated by the nearest-neighbor sites that
result in a significant slowdown for long wave configurations.
Thus it is useful to combine the Metropolis method with the
microcanonic dynamics (MCD) method. The MCD method is
a noiseless algorithm and it works as follows: All variables
xl,m are considered as some coordinates, and the sum

∑
l,j

[
1

2�τ
(xl,j − xl,j−1)2 + �τ

2n
(xl,j − xl−1,j )n

]
≡ U(x),

(10)

as a potential energy of a certain system. Then, a set of auxiliary
momentum variables {Pl,j } is added and the equations of
motion are solved numerically in an auxiliary update “time”
variable u

∂Pl,j /∂u = − ∂U
∂xl,j

= ∇l,jU(x),

(11)
∂xl,j /∂u = Pl,j .

With this dynamical description the system evolves over some
iso-energy hypersurface in the phase space, and we get an
ensemble of configurations.

However, an obvious disadvantage of such a method is that
one needs to solve the differential equations numerically with
a step which becomes smaller for decreasing �τ due to the
terms U(x) with �τ in the denominator. But even worse, these
terms act as some noise that reduces the relaxation rate along l

(space dimension). Thus, to accelerate the relaxation processes
we introduce into U(x) a parameter CK

U(x; CK ) =
∑
l,j

[
CK

2�τ
(xl,j − xl,j − 1)2

+ �τ

2n
(xl,j − xl − 1,j )n

]
. (12)

Then the update step is organized as follows:
(a) the fast mixing stage, with CK = �τ , at which the

smallness of denominator is canceled, here the MCD method
is applied during the auxiliary “time” interval u ∼ 100;

(b) return to CK = 1 and application of the Metropolis
updates at maximum 400 updates.

Such a combined approach allows us to reduce significantly
the required number of Metropolis updates needed to get a next
configuration. This allows us to have more rapid numerical
simulations. We checked that both methods (only the MA steps

FIG. 2. (Color online) Typical data for the Fourier harmonics
|Aqj ,νm

|2 and its fit by the dependence (14); the black curve shows
numerical data, dashed red/gray curve shows the fit (curves are
overlapped). Data correspond to the linear chain at n = 2, h̄ = 1,
qj = 10π/N , N = 64, τmax = 100, Nτ = 1000.

and MA steps combined with the MCD method) converge to
the same results.

B. Quantum excitations above the quantum vacuum

The ensemble of quantum paths, obtained by the numerical
methods described previously, can be used to determine
the properties of the quantum vacuum ground state of the
system and of the excitations above it. The averages of
various quantities over this ensemble give the corresponding
expectation values at the ground state. However, the study of
fluctuations of quantum paths allows us to extract a more
interesting information about the spectrum of low-energy
elementary excitations above the quantum vacuum.

To extract this information we use the approach of the
authors of Ref. [20] and consider the Fourier harmonics of
quantum paths

Aqj ,νm
=

∑
l,k

xl,k sin(qj l) exp(iνmτk), (13)

where qj = πj/N , j = 1, . . . ,N − 1, τk = k�τ , νm =
2πm/τmax, m = 0, . . . ,Nτ /2. One expects a Lorentzian dis-
tribution in frequency ω for the exponential decay of quasipar-
ticle excitations in the imaginary time

〈|Aqj ,νm
|2〉 = h̄

2

1

ω2 + ν̄2
m

. (14)

Here we use the renormalized frequency ν̄m =
2

�τ
sin(νm�τ/2) with the sine term appearing due to

the discreetness of time steps. The fit of data for Aqj ,νm

allows us to find the spectral dependence ω = ω(qj ) and
thus to determine the dispersion law of elementary quantum
excitations. A typical example of such a fit is shown in Fig. 2.

The spectrum of low-energy excitations extracted via such a
procedure is shown in Fig. 3 for n = 2,4,8. For n = 2 the data
reproduce the theoretical result for a harmonic chain with ω̄ =
ω(q)/[2 sin(q/2)] = 1. For n = 4,8 this form of the spectrum
is preserved with a moderate renormalization of ω̄ ≈ 1.2,1.5,
respectively. This shows that even if the classical strongly
nonlinear chain is fully chaotic the quantum vacuum is rather
regular and is characterized by the phonon-type excitations
rather similar to the case of a harmonic chain. Although this
was pre-assumed in estimations leading to Eq. (8), without the
numerical evidence of Fig. 3 this equation would be useless.
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FIG. 3. (Color online) Spectra of quantum phonon modes shown
by the black bottom curve and obtained from QMC simulations for
(top panel) n = 2, (middle panel) n = 4, and (bottom panel) n = 8;
top red/gray curve shows the ratio ω/sin(q/2) for each panel. The
data are obtained at h̄ = 1, N = 128, Nτ = 1000, τmax = 200, the
simulations are done with the MA using 2 · 106 updates.

Our data show that ω̄ varies with h̄ and n. This leads to
the dependence of the sound velocity c = dω/dq on these
two parameters. The numerically obtained dependence of c

on h̄ is shown in Fig. 4. The fit by an algebraic dependence
c ∝ h̄η gives η = 0.33; 0.56 for n = 4,8, respectively. These
numerical values are close to the theoretical power from Eq. (8)
with η = (n − 2)/(n + 2) corresponding to η = 1/3,3/5 for
these n values. The global variation of the whole spectrum
ω(q) with h̄ is shown in Fig. 5 for n = 4.

Trying to find deviations from a harmonic chain behavior
we compute numerically the amplitudes of phonon modes S2

q

[see Eq. (3) with q = k/(N − 1)] and the correlation function
〈xlxl+�〉l [see Eq. (4)]. The results are shown in Fig. 6. For
n = 2 the numerical data are in good agreement with the
theory for a harmonic chain. For n = 4,8 our numerical data
show the dependencies rather similar to the case of a harmonic

FIG. 4. The dependence of sound velocity c on h̄. Squares,
triangles, and circles correspond to n = 2, 4, and 8, respectively.
The straight lines show the fit dependence (see text). Parameters of
simulations are N = 64, τmax = 100, and Nτ = 1000. Logarithms are
natural.

chain with slight vertical shift, which can be attributed to the
modified values of ω̄ discussed previously. We note that for
the case of T > 0 the theoretical formulas (3) and (4) are
computed with the expression (5) for bosonic excitations at
finite temperature. Since the value of τ in Fig. 6 is rather
large there is no significant difference between the theoretical
expressions for T = 0 and T = h̄/τ .

An additional attempt to see deviations from a harmonic
chain behavior is performed by computing the form factor
F (q) of the chain given by Eq. (6). However, the results
presented in the left panel of Fig. 7 show that all three
chains with n = 2,4,8 give very similar curves for F (q) which
practically overlap.

The confirmation of similarity between these three types of
chains in the ground state is given by the direct computation of
the correlator K(q1,q2) ≡ 〈SqSq ′ 〉/(〈SqSq〉〈Sq ′Sq ′ 〉)1/2 which
should be proportional to δq1,q2 according to Eq. (3). Indeed, the
numerical data show a strong peak at q1 = q2 with a residual
noisy level of K at other q1 �= q2 without any structural
dependence on q1,q2. This residual level can be characterized

FIG. 5. Spectra of quantum phonon modes for the quartic chain
at n = 4. Data correspond to N = 64, τ = 100, Nτ = 1000, and to
the interval h̄ = 0.063 − 10, extrapolated smoothly from h̄ = 0.063
to h̄ = 0.
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FIG. 6. (Color online) Left column: Amplitudes of phonon
modes, see Eq. (3), for (top) n = 2, (middle) 4, and (bottom) 8. Right
column: Normalized correlation function, see Eq. (4), for l = 64
(central particle) for the same order of panels. Other parameters h̄ = 1,
N = 128, Nτ = 1000, and τ = 200. Simulations include 2 · 106

updates. Red/gray and blue/black dotted curves give the theoretical
expectations for harmonic chain with temperature T = h̄/τ and
T = 0, respectively (curves overlap).

by the total weighted admixture of other modes to a given
mode q via

w(q) =
∑
q ′ �=q

|〈SqSq ′ 〉|2/|〈SqSq〉|2. (15)

This characteristic is shown in the right panel of Fig. 7 for n =
2,4,8. The admixture w(q) increases with n, but still it remains
rather small for strongly nonlinear lattices with n = 4,8. This
gives one more confirmation that the quantum vacuum is rather
close to a harmonic one.

FIG. 7. (Color online) Left panel: Form factor F (q), see Eq .(6),
for n = 2 (black curve), 4 (red/gray points), 8 (blue/black points) (data
practically coincide). Other parameters are as in Fig. 6 including a =
1. Right panel: Admixture to normal modes from other harmonics.
Red/gray and blue/black curves show data for quartic and octic chains,
the dotted black curve corresponds to the linear chain and gives an
estimate for a noise level. Data correspond to h̄ = 1, N = 64, τ = 50,
and Nτ = 500 and the number of independent quantum paths is 104.

FIG. 8. (Color online) Left column: Spectra of quantum phonon
modes at T = 0.1 for n = 2 (top) and 4 (bottom) with the curves as
in Fig. 3. Right column: Amplitudes of phonon modes, see Eq. (3) in
the same order; red/gray and blue/black dotted lines give theoretical
expectations for harmonic chain with temperature T = h̄/τ and T =
0, respectively. Other parameters are h̄ = 1, Nτ = 200, τmax = 10.
Simulations are done with the combined MA and MCD method with
104 Metropolis updates.

At finite temperatures the spectrum of excitations ω(q) and
the amplitudes of phonon modes S2

s are still well approximated
by the theoretical dependence for a harmonic chain as it
is shown in Fig. 8 at T = 0.1 which is about two times
larger than the excitation energy for a mode with minimal
frequency h̄ωmin = h̄π/N ≈ 0.049. The situation is found to
be qualitatively the same when the temperature is increased
up to T = 1 keeping fixed other parameters of Fig. 8 even if
at n = 8 the splitting between the theoretical curve and the
numerical data becomes more visible (due to the similarity of
these data with Fig. 8 we do not show them here).

VI. SUMMARY

In this work we investigated the properties of collective
modes in strongly nonlinear chains. For the classical chains we
find that the chain has sound-like modes which decay rather
slowly due to nonlinear wave interactions with the rate γ ∝ qβ

with β ≈ 5/3. This decay rate is in agreement with the generic
result of the decay of sound waves in one-dimensional weakly
nonlinear chains [3].

On local scales the classical dynamics in such strongly
nonlinear chains is strongly chaotic. One could expect that
this chaos may lead to nontrivial properties of quantized
chains. However, our extensive numerical studies of a quantum
vacuum show that it is characterized by low-energy phonon
excitations which are rather similar to those of a harmonic
chain. The main difference is that the sound velocity of these
phonon modes depends on a dimensionless Planck constant as
it is described by Eq. (8).

In a certain sense quantum effects suppress the signatures
of classical chaos in the ground state. Such a phenomenon is
known for quantum systems with a few degrees of freedom.
For example, a ground state of a Sinai billiard can be rather
well approximated by a Hartree-Fock trial function with one
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maximum so that the signatures of quantum chaos appear only
in the semiclassical regime for highly excited states [34]. This
is more or less natural for systems with few degrees of freedom.
Our case has an infinite number of degrees of freedom, but in
spite of that the quantum vacuum remains rather similar to a
quantum vacuum of a harmonic chain in which the oscillator
frequency is dependent of an dimensionless Planck constant.
It is possible that certain signatures of such quasi-integrability
at low energies find their manifestations in a slow chaotization
of excitations in a quantum Newton’s cradle observed in
the experiments [21]. However, we should note that such
a statement can be considered only on a qualitative level
of rigor since the model (1) at n = 4 or 8 gives only an
approximate description of ball interactions (see discussion in
Ref. [18]).

It is possible that a degeneracy of chaos in the vicinity
of a quantum vacuum is linked to the space homogeneity
of the model (1). Indeed, the ground state of the quantum
Frenkel-Kontorova model has many more rich properties [20]
appearing due to the presence of a periodic potential.

In this paper we have applied methods that are well
adapted for the analysis of low-energy oscillatory quantum
waves. It is possible that other approaches should be used
to detect quantum-shockwave-type excitations with large
displacements between two parts of the chain (in principle,
the energy of such a type compacton-like excitations is not
very high and is independent of the lattice size). One approach
allowing us to study the quantum coherence of discrete kink
solitons in quasi-one-dimensional ion traps has been very
recently pursued in Refs. [26,27]. We expect that the quantum
vacuum described in our paper is an essential ingredient of the
dynamics in such experimental setups.
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