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Controlling escape from a potential well by reshaping periodic secondary excitations
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The role of the wave form of periodic secondary excitations at controlling (suppressing and enhancing) escape
from a potential well is investigated. We demonstrate analytically (by Melnikov analysis) and numerically that
a judicious choice of the excitation’s wave form greatly improves the effectiveness of the escape-controlling
excitations while keeping their amplitude and period fixed. These predictions are confirmed by an energy-based
analysis that provides the same optimal values of the escape-controlling parameters. The example of a dissipative
Helmholtz oscillator is used to illustrate the accuracy of these results.
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I. INTRODUCTION

Deterministic escape from a potential well is a fundamental
problem with wide-ranging implications, in which the inter-
play of dissipation, nonlinearity, and deterministic driving
has been found to give rise to diverse escape phenomena.
Examples are known in chemistry [1], quantum optics [2],
astrophysics [3], and hydrodynamics [4], among many other
fields, in which escape phenomena can often be well described
by a low-dimensional system of differential equations. Indeed,
the case that has been most extensively studied in both
dissipative and Hamiltonian systems is that in which escape is
induced by an escape-inducing (EI) periodic excitation added
to the low-dimensional model system, so that, before escape,
chaotic transients of unpredictable duration (owing to the
fractal character of the basin boundary) are usually observed
for orbits starting from chaotic generic phase space regions
(such as those surrounding separatrices). In this scenario, the
effectiveness of secondary escape-controlling (EC) periodic
excitations in suppressing escape has also been demonstrated
for the case of the main resonance (between the two excitations
involved) in the context of dissipative systems capable of
being studied by Melnikov analysis (MA) techniques [5]. This
approach was further applied to the case of incommensurate
EC excitations [6]. To the best of our knowledge, the
overwhelming majority of studies have up to now been of the
case in which both periodic excitations involved are sinusoidal.
However, real-world excitations present a great diversity of
wave forms as well as many complex transitions from one
to another as the system’s parameters change. This suggests
studying the effectiveness of EC excitations with different
wave forms at suppressing or enhancing escape while keeping
their amplitudes and periods constant.

In the present work, we undertake analytical and numerical
studies of this extended EC scenario by focusing on the case of
the main resonance between the two excitations involved. The
rest of the paper is organized as follows. Section II provides
the MA-based analytical predictions for the simple model of
a dissipative Helmholtz oscillator subjected to a sinusoidal
EI excitation while the EC excitation is given by a periodic
function with variable wave form. We also include an energy-
based analysis having analytical predictions that confirm all

those from MA. Section III compares the analytical predictions
of Sec. II with numerical results based on a high-resolution grid
of initial conditions. Finally, Sec. IV gives a brief summary of
the findings.

II. ESCAPE SUPPRESSION SCENARIO

To be specific, we shall concentrate in this paper on the
simplest model for a universal escape situation: the Helmholtz
oscillator [7] described by the equation

ẍ − x + [1 + η sn(�t + �; m)]x2 = −δẋ + γ sin(ωt), (1)

where all variables and parameters are dimensionless. Here,
γ sin(ωt) and ηx2sn(�t + �; m) are to be regarded as the EI
and EC excitations, respectively, where sn(· · · ; m) is the Jaco-
bian elliptic function of parameter m ∈ [0,1], � = �(m,T ) ≡
4K(m)/T , � = �(m,ζ ) ≡ 2K(m)ζ/π , ζ ∈ [0,2π ], and T ≡
2π/ω, where K(m) and T are the complete elliptic integral of
the first kind and the common excitation period, respectively.
When m = 0, one has sn(�t + �; m = 0) = sin(ωt + ζ ) (i.e.,
one recovers the canonical case of sinusoidal excitation [5]).
In the other limit,

sn(�t + �; m = 1) = 4

π

∞∑
n=1

sin[(2n − 1)(2πt/T + ζ )]

2n − 1

(2)

(i.e., one recovers the square-wave function of period T ).
The effect of renormalization of the elliptic sine argument
is clear: With T constant, solely the excitation shape is varied
by increasing the shape parameter m from 0 to 1, and there is
thus a smooth transition from a sine function to a square wave.
This allows one to study the genuine effect on the control
scenario of reshaping the EC excitation.

A. Melnikov analysis

We assume that the complete system (1) satisfies the MA
requirements (i.e., the dissipation and excitation terms are
small-amplitude perturbations of the underlying conservative
Helmholtz oscillator ẍ − x + x2 = 0; see Refs. [8,9] for
general background information). It is worth mentioning
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that the criterion for a homoclinic tangency—accurately
predicted by MA—in diverse systems [4,10] is coincident
with the change from a smooth to an irregular, fractal-looking
basin boundary [11]. These findings connect MA predictions
with those concerning the erosion of the basin boundary.
A straightforward application of MA to Eq. (1) yields the
Melnikov function (MF)

M(t0) = −D − A cos(ωt0)

+ η

∞∑
n=1

BnCn cos

[
(2n − 1)

(
2πt0

T
+ ζ

)]
,

D ≡ 6δ

5
,

A ≡ 6πγω2 csch(πω), (3)

Bn ≡ 3

5

π2

√
mK(m)

csch

[
(2n − 1)

πK(1 − m)

2K(m)

]
,

Cn ≡
[

(2n − 1)
2π

T

]2 {
1 +

[
(2n − 1)

2π

T

]2 }

×
{

4 +
[

(2n − 1)
2π

T

]2 }
csch

[
(2n − 1)

2π2

T

]
.

Let us assume that, in the absence of any EC excitation
(η = 0), the system (1) undergoes an escape for which the
respective MF

M0(t0) = −D − A cos(ωt0) (4)

has simple zeros (i.e., D � A), where the equals sign corre-
sponds to the case of tangency between the stable and unstable
manifolds [9]. If we now let the EC excitation act on the system
such that B∗ � A − D, with

B∗ ≡ max
t0

{
η

∞∑
n=1

BnCn cos

[
(2n − 1)

(
2πt0

T
+ ζ

)]}
, (5)

this relationship represents a sufficient condition for M(t0) to
change sign at some t0. Thus, a necessary condition for M(t0)
always to have the same sign is

B∗ > A − D ≡ Bmin. (6)

Since Bn > 0,Cn > 0,n= 1,2, . . . , one has B∗ � η
∑∞

n=1
BnCn (see the Appendix) and hence

η > ηmin ≡
(

1 − D

A

)
R,

(7)

Rs = R (γ,T ,m) ≡ A∑∞
n=1 BnCn

.

Equation (7) provides a lower threshold for the amplitude of
the EC excitation. Similarly, an upper threshold is obtained by
imposing the condition that the EC excitation may not enhance
the initial escape; that is,

B∗ � η

∞∑
n=1

BnCn < A + D ≡ Bmax, (8)

and hence

η < ηmax ≡
(

1 + D

A

)
R, (9)
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FIG. 1. (Color online) Top: Surface plot of the function R [cf.
Eqs. (7) and (3)] vs shape parameter m and period T . Bottom:
Threshold amplitudes ηmin and ηmax [Eqs. (7) and (9), respectively]
vs shape parameter m for T = 2π/0.85. System parameters: γ =
0.1 and δ = 0.05. The quantities plotted are dimensionless.

which is a necessary condition for M(t0) always to have the
same sign. Thus, the suitable (suppressory) amplitudes of the
EC excitation must satisfy

ηmin < η < ηmax. (10)

Figure 1 shows how both the threshold amplitudes ηmin , max

and the width of the range of suitable amplitudes 
η ≡
ηmax − ηmin = 2(D/A)R decrease as the shape parameter m is
increased from 0 to 1 due to the dependence of the function R

on the shape parameter. In other words, ever lower amplitudes
ηmin can suppress escape as the EC excitation wave form ap-
proaches a square wave, while the corresponding suppressory
ranges 
η also decrease, owing to the enhancement of the
escape-inducing effectiveness of the EC excitation.

Regarding suitable values of the initial phase difference
ζ , note that ζ determines the relative phase between M0(t0)
and η

∑∞
n=1 BnCn cos[(2n − 1)( 2πt0

T
+ ζ )] irrespective of the

shape parameter value. We therefore conclude from previous
theory [12] that a sufficient condition for ηmin < η < ηmax

also to be a sufficient condition for suppressing escape is that
M0(t0) and ηmin,max

∑∞
n=1 BnCn cos[(2n − 1)( 2πt0

T
+ ζ )] are

in opposition. This yields the optimal suppressory value

ζ
sup
opt = 0 (11)

for all m ∈ [0,1], in the sense that they allow the widest ampli-
tude ranges for the EC excitation. Similarly, we see that impos-
ing M0(t0) to be in phase with ηmin,max

∑∞
n=1 BnCn cos[(2n −

1)( 2πt0
T

+ ζ )] is a sufficient condition for M(t0) to change
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sign at some t0. This condition provides the optimal enhancer
values of the initial phase difference

ζ enh
opt = π, (12)

in the sense that M(t0) presents its highest maximum at ζ enh
opt

(i.e., one obtains the maximum gap from the homoclinic
tangency condition).

B. Energy-based analysis

An alternative physical explanation of the foregoing
MA-based predictions results from analyzing the variation of
the system’s energy. Indeed, Eq. (1) has the associated energy
equation

dE

dt
= −δẋ2 + γ ẋ sin(ωt) − ηẋx2 sn(�t + �; m), (13)

where E(t) ≡ (1/2)ẋ2(t) + U [x(t)] [U (x) ≡ −x2/2 + x3/3]
is the energy function. Integration of Eq. (13) over any interval
[nT ,nT + T/2], n = 0,1,2, . . . , yields

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

ẋ2(t) dt

− η

∫ nT +T/2

nT

ẋ(t)x2(t) sn(�t + �; m) dt

+ γ

∫ nT +T/2

nT

ẋ(t) sin(ωt) dt. (14)

Now, if we consider fixing the parameters (δ,γ,T ) for
the system to undergo an escape at η = 0, there always
exists an n = n∗ such that the energy increment 
E ≡
E(n∗T + T/2) − E(n∗T ) is positive just before escape. Thus,
after applying the first Mean Value Theorem [13], together with
well-known properties of the Jacobian elliptic functions [14],
to the last two integrals on the right-hand side of Eq. (14),

E(n∗T + T/2) = E(n∗T ) − δ

∫ n∗T +T/2

n∗T
ẋ2(t) dt + γ T

π
ẋ(t∗)

− ηẋ(t∗∗)x2(t∗∗)

4
F (ζ,m), (15)

where t∗,t∗∗ ∈ [n∗T ,n∗T + T/2] and

F (ζ,m) ≡ 1√
mK(m)

ln

(
1 + √

m cd[2K(m)ζ/π ]

1 − √
m cd[2K(m)ζ/π ]

)
, (16)

where cd(· · · ; m) ≡ cn(· · · ; m)/ dn(· · · ; m), one has γ T ẋ(t∗)/
π > δ

∫ n∗T +T/2
n∗T ẋ2(t)dt at η = 0 just before escape. It is

straightforward to see that F (ζ,m) is a 2π -periodic function
in ζ and presents the noteworthy properties (see Fig. 2)

F (π,m) = −F (0,m) = ln[(1 − √
m)/(1 + √

m)]√
mK(m)

,

F (π/2,m) = F (3π/2,m) = 0,

lim
m→1

F (0,m) = − lim
m→1

F (π,m) = 2,

lim
m→0

F (0,m) = − lim
m→0

F (π,m) = 4

π
. (17)

In this situation, one lets the EC excitation act on the
system while holding the remaining parameters constant.
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FIG. 2. (Color online) Plots of the function F (ζ,m) [see Eq. (16)].
Top panel: F vs m for ζ = 0 (thick line) and π (thin line). Bottom
panel: F vs ζ for m = 0 (thick line), 0.95 (medium line), and 1–10−14

(thin line). The quantities plotted are dimensionless.

For sufficiently small values of η > 0, one expects that
both the dissipation work [integral in Eq.(15)] and ẋ(t∗)
will approximately maintain their initial values (at η = 0)
while the function F (ζ,m) will increase (decrease) from 0
(at ζ = π/2 and 3π/2), so that, in some cases depending
upon the remaining parameters (see Fig. 2), the energy
increment just before escape 
E could be sufficiently large
and negative (positive) to suppress (enhance) the initial
escape. Clearly, the probability of suppressing (enhancing)
the initial escape is maximal at m = 1 and ζ = 0 (ζ = π ),
which is in complete agreement with the foregoing MA-based
predictions.

III. INHIBITION OF THE EROSION OF
NON ESCAPING BASINS

For the universal escape model (1), the initial conditions
will determine, for a fixed set of its parameters, whether the
system escapes to an attractor at infinity (with x → −∞ as
t → ∞), or settles into a bounded oscillation. In a series of
papers, Thompson and co-workers [4,15,16] have shown for
the system

ẍ + x − x2 = −δẋ + γ sin(ωt) (18)

that there can exist a dramatic and rapid erosion of the safe
basin (union of the basins of the bounded attractors) due to
encroachment by the basin of the attractor at infinity (escaping
basin). Since the same escape scenario occurs for the closely
related system (1) in the absence of an escape-suppressing
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FIG. 3. (Color online) Basin erosion of the system (1) with
η = 0 (a) in the window 0 � x � 1.8,−0.8 � ẋ � 0.8, and (b)
detail corresponding to the window 0.8 � x � 1.1,−0.5 � ẋ �
−0.3 [rectangle in version (a)]. The color cyan (pale gray) represents
the nonescaping basin and blue (black) represents the escaping
basin. System parameters: γ = 0.08, δ = 0.1, and T = 2π/0.85.
The quantities plotted are dimensionless.

(ES) excitation (η = 0), we shall show in the following how
the safe basin is restored when η > 0, according to the MA
and energy-based analysis predictions. The basins of attraction
were computed by using a fourth-order Runge-Kutta algorithm
with time steps in the range 
t = 0.005–0.01. To generate
numerically the basins of attraction, we selected a grid of
400 × 400 uniformly distributed starting points in the region of
phase space {x(t = 0) ∈ [0,1.8],ẋ(t = 0) ∈ [−0.8,1]}. From
this grid of initial conditions, each integration is continued until
either x exceeds 20, at which point the system is deemed to
have escaped (i.e., to the attractor at infinity), or the maximum
allowable number of cycles, here 20, is reached. The color
cyan (pale gray) represents the nonescaping basin and blue
(black) represents the escaping basin. In the absence of an
EC excitation (η = 0), we assume that the system presents
a dramatic erosion and stratification of the basin (as in the
example shown in Fig. 3).

Figure 4 shows the lowest value of the EC amplitude
η′

min, for which the erosion of the safe basin has completely
disappeared, as a function of the shape parameter m (dots).
One sees that η′

min decreases as the EC excitation wave form
approaches a square wave, and that the experimental points fit
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FIG. 4. (Color online) Lowest value of the EC amplitude η

preserving the safe basin without erosion (dots, see the text) and
lower threshold for suppression of chaotic escape ηmin [solid line,
Eq. (7)] vs shape parameter m. System parameters: γ = 0.08,

δ = 0.1, and T = 2π/0.85. The quantities plotted are dimensionless.

the analytical estimate ηmin [solid line, Eq. (7)]. This decrease
is especially fast for values of m very close to 1, which is a
consequence of the dependence of K(m) on m [17].

As mentioned in the preceding section, the initial phase
difference ζ plays a fundamental role in the suppression or
enhancement of escape, irrespective of the shape parameter
value. To test the predictions concerning the dependence of
the escape scenario on ζ , we calculated the escape probability
normalized to that of the corresponding case with no EC
excitation, P (η > 0)/P (η = 0), vs ζ for several values of m.
Figure 5 shows an illustrative example comparing the cases
corresponding to m = 0 (sinusoidal wave form), m = 1–10−14

(square wave form), and m = 0.95 (an intermediate wave
form), in which the numerical results confirm the theoretical
predictions of Sec. II. Specifically, one finds in general that
a square wave has a greater effectiveness at controlling
escape than a sinusoidal wave form, as predicted. However,

FIG. 5. (Color online) Normalized escape probability (see the
text) vs initial phase difference for three values of the shape parameter:
m = 0 (circles), m = 0.95 (triangles), and m = 1–10−14 (squares).
System parameters: η = 0.05, γ = 0.08, δ = 0.1, and T = 2π/0.85.
Straight lines are plotted solely to guide the eye. The quantities plotted
are dimensionless.
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FIG. 6. (Color online) Restoration of the safe basin of the system (1) in the window 0 � x � 1.8,−0.8 � ẋ � 1 for η = 0.05,

γ = 0.08, δ = 0.1, T = 2π/0.85, and ζ = 2π/5, and four values of the shape parameter: (a) m = 0, (b) m = 0.9, (c) m = 0.999, and
(d) m = 1−10−14. The color cyan (pale gray) represents the nonescaping basin and blue (black) represents the escaping basin.

such a greater effectiveness is hardly noticeable at the
optimal suppressory and enhancer values of the initial phase
difference, ζ

sup
opt = 0 and ζ enh

opt = π (see Fig. 5). Remarkably,
the escape scenario is very sensitive to reshaping of the EC
excitation over certain ranges of the initial phase difference
around the values ζ = π/2 and 3π/2, respectively (i.e.,
those values of the initial phase difference having neither a
significant suppressor effect nor a significant enhancer effect;
cf. Sec. III). An illustrative example is shown in Fig. 6 for
the value ζ = 2π/5 (see Fig. 5) and four values of the shape
parameter m = 0,0.9,0.999, and 1–10−14. One sees a gradual
(but incomplete) basin restoration sequence as a sinusoidal EC
excitation [m = 0, Fig. 6(a)] transforms into a square-wave
EC excitation [m = 1–10−14, Fig. 6(d)]. It is worth mentioning
that the present reshaping-induced modification of a fractal
basin boundary from having fractal-like fingers protruding into
the nonescaping basin [as in Figs. 6(a), 6(b), and 6(c)] to their
almost complete disappearance [as in Fig. 6(d)] has previously
been observed in a driven dissipative oscillator with a cubic
potential that typically models a metastable system close
to a fold [18].

IV. CONCLUDING REMARKS

To conclude, we have demonstrated that judiciously tailor-
ing the wave form of periodic secondary excitations greatly
improves their effectiveness in controlling (suppressing and

enhancing) the escape from a potential well that is induced
by primary periodic excitations. Numerical results, based
on a high-resolution grid of initial conditions, showed good
agreement with theoretical predictions obtained from two
independent approaches: Melnikov analysis and energy-based
analysis. The present findings can be readily tested experimen-
tally (for instance, in electronic and laser systems [19–21]), and
can find application for improving the control of elementary
dynamic processes characterized by escape from a potential
well, such as transport phenomena in dissipative lattices as
well as diverse atomic and molecular processes.
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APPENDIX: DERIVATION OF THE FORMULA
B∗ � η

∑∞
n=1 BnCn

Using the formula [15]

cos(px) = cos(x)
(p−1)/2∏

k=1

{
1 − sin2 x

sin2
[ (2k−1)π

2p

]
}

, p odd,

(A1)
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one has∣∣∣∣∣
∞∑

n=1

BnCn cos

[
(2n − 1)

(
2πt0

T
+ ζ

)]∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=1

BnCn

n−1∏
k=1

{
1 − sin2

( 2πt0
T

+ ζ
)

sin2
[ (2k−1)π

4n−2

]
}

cos

(
2πt0

T
+ ζ

)∣∣∣∣∣
�

∣∣∣∣∣
∞∑

n=1

BnCn cos

(
2πt0

T
+ ζ

)∣∣∣∣∣ , (A2)

and hence

B∗ ≡ max
t0

{
η

∞∑
n=1

BnCn cos

[
(2n − 1)

(
2πt0

T
+ ζ

)]}

� max
t0

{
η

∞∑
n=1

BnCn cos

(
2πt0

T
+ ζ

)}

� η

∞∑
n=1

BnCn. (A3)
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