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Spanning trees in a fractal scale-free lattice
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Spanning trees provide crucial insight into the origin of fractality in fractal scale-free networks. In this paper, we
present the number of spanning trees in a particular fractal scale-free lattice (network). We first study analytically
the topological characteristics of the lattice and show that it is simultaneously scale-free, highly clustered,
“large-world,” fractal, and disassortative. Any previous model does not have all the properties as the studied
one. Then, by using the renormalization group technique we derive analytically the number of spanning trees
in the network under consideration, based on which we also determine the entropy for the spanning trees of the
network. These results shed light on understanding the structural characteristics of and dynamical processes on
scale-free networks with fractality. Moreover, our method and process for employing the decimation technique to
enumerate spanning trees are general and can be easily extended to other deterministic media with self-similarity.
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I. INTRODUCTION

Subgraphs,especially those of recurring elementary interac-
tion patterns in real-life networks, are central to characterizing
network structures and understanding dynamical processes oc-
curring in them, since they carry important information about
overall organization of networks and their function. Therefore,
detecting relevant subgraphs has received considerable interest
from the scientific community, because it is the first step
for further understanding the inherent relation between the
structure and function of complex networks. In recent years,
a lot of effort has been devoted to the study of subgraphs, in-
cluding motifs [1,2], communities [3,4], loops [5], cliques [6],
and so on.

Among a variety of subgraphs, spanning trees are one
of the most important and fundamental categories. They are
relevant to diverse aspects of networks, including reliability
[7,8], transport [9], self-organized criticality [10], loop-erased
random walks [11], resistor networks, and standard random
walks [11], to name just a few. For example, the number of
spanning trees in a network is closely related to the effective
resistance between two nodes in the network [12], which
in turn determines the mean first-passage time between the
two nodes, a fundamental quantity for random walks that
have found a wide range of distinct applications in various
theoretical and applied fields, such as physics, chemistry,
biology, and computer science, among others [13–15]. Par-
ticularly, it was shown that the number of spanning trees
corresponds to the partition function of the q-state Potts
model in a peculiar case of q approaching zero [16]. Recently,
spanning trees in networks have been a focus of much research
[17–20]. Among many contexts, counting the number of
spanning trees in specific networks has been studied, e.g.,
regular lattices [21,22], the Sierpinski gaskets [23], the Erdsö-
Rényi random graphs [24], and the pseudofractal scale-free
web [25]. These investigations have unveiled the different
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influences of other network structures on spanning trees in
networks.

As known to us all, most real networks in nature and society
are scale-free [26]. In addition, it is generally accepted that
many real systems are synchronously fractal [27]. Frequently
cited examples [28] include the World Wide Web, metabolic
networks, and yeast protein interaction networks. In view of the
abundance of the fractal property in scale-free networks, it is
of exceptional importance to understand its origins and mecha-
nisms [29]. It was reported [30] that the origin of fractality of a
scale-free network can be understood from a perspective of the
skeleton of the network, which is a special type of spanning tree
formed by edges with the highest betweenness or loads, i.e., the
communication backbone of the underlying network [19]. De-
spite the significance of spanning trees in scale-free networks,
work about spanning trees in fractal scale-free networks is
still lacking.

In this paper, we present a first study of spanning trees in
fractal scale-free networks. For this purpose, we first study the
properties of a deterministic lattice (network) [31–33] from
the viewpoint of complex networks [34,35]. We determine
exactly the topological characteristics of the lattice and show
that it is simultaneously scale-free and fractal. We also show
that the network is highly clustered and disassortative, but
lacks the small-world property. We then derive the number
of spanning trees in the fractal scale-free lattice by using
a decimation procedure analogous to but distinct from that
in [11], based on which we determine the entropy of its
spanning trees. The research provides useful insight into
the structure of fractal scale-free networks and will be
helpful for better understanding dynamical processes defined
in them.

II. NETWORK CONSTRUCTION AND ITS
STRUCTURAL TOPOLOGIES

This section is devoted to the construction and the relevant
structural properties of the studied network, such as degree
distribution, clustering coefficient, average path length (APL),
fractality, and correlations.
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FIG. 1. (Color online) Iterative construction method of the net-
work. Each iterative link is replaced by a connected cluster on the
right-hand side of the arrow. The dashed blue link is a noniterated
link.

A. Construction algorithm

The addressed network is constructed in an iterative way
[31–33] as shown in Fig. 1. Let Ft (t � 0) denote the network
after t iterations. Then the network is generated as follows: For
t = 0, F0 is an iterative edge connecting two nodes. For t � 1,
Ft is obtained from Ft−1. We replace each existing iterative
edge in Ft−1 by a connected cluster of edges on the right-hand
side of the arrow in Fig. 1. The growing process is repeated t

times, with the fractal scale-free network obtained in the limit
t → ∞. Figure 2 shows the growing process of the network.

Next we compute the numbers of total nodes (vertices) and
links (edges) in Ft . Notice that there are two types of links (i.e.,
iterative links and noniterated links) in the network. Let Lv(t),
Li(t), and Ln(t) be the numbers of new vertices, iterative links,
and noniterated links created at step t , respectively. Since all
old iterative links are not preserved in the growing process,
Li(t) is in fact the total number of iterative links at time t .
Note that each of the existing iterative links yields two nodes
connected by one noniterated link, and the addition of each
new node leads to two iterative links. By construction, for
t � 1, we have Li(t) = 4 Li(t − 1), Lv(t) = 2 Li(t − 1), and
Ln(t) = Li(t − 1). Considering the initial condition Lv(0) =
2, Li(0) = 1, and Ln(0) = 0, it follows that Lv(t) = 2 × 4t−1,
Li(t) = 4t , and Ln(t) = 4t−1.

FIG. 2. (Color online) Scheme of the growth for the network.
Only the first three iterative processes are shown.

Thus the numbers of total nodes Nt and edges Et present
at step t are

Nt =
t∑

ti=0

Lv(ti) = 2 × 4t + 4

3
(1)

and

Et = Li(t) +
t∑

ti=1

Ln(ti) = 4t+1 − 1

3
, (2)

respectively. And the average degree after t iterations is 〈k〉t =
2 Et

Nt
, which approaches 4 in the infinite t limit.

B. Degree distribution

When a new node u is added to the network at step tu
(tu � 1), it has three links, among which two are iterative
links and one is a noniterated link. Let Li(u,t) be the number
of iterative links at step t that will create new nodes connected
to the node u at step t + 1. Then at step tu, Li(u,tu) = 2. From
the iterative generation process of the network, one can see that
at any subsequent step each iterative link of u is broken and
generates two new iterative links connected to u. We define
ku(t) as the degree of node u at time t , then the relation between
ku(t) and Li(u,t) satisfies

ku(t) = Li(u,t) + 1, (3)

where the last term 1 represents the only noniterated link of
node u.

Now we compute Li(u,t). By construction, Li(u,t) =
2 Li(u,t − 1). Considering the initial condition Li(u,tu) = 2,
we can derive Li(u,t) = 2t−tu+1. Then at time t , the degree of
vertex u becomes

ku(t) = 2t−tu+1 + 1. (4)

It should be mentioned that the initial two nodes created at
step 0 have a little different evolution process from that of
other nodes. Since the initial two nodes have no noniterated
link, we can easily obtain that at step t , for either of the initial
two nodes, its degree just equals the number of iterative links
connecting it, both of which are 2t .

Equation (4) shows that the degree spectrum of the network
is discrete. It follows that the cumulative degree distribution
[35] is given by

Pcum(k) =
∑
τ�tu

Lv(τ )

Nt

= 2 × 4tu + 4

2 × 4t + 4
. (5)

Substituting for tu in this expression using tu = t + 1 − ln(k−1)
ln 2

gives

Pcum(k) = 2 × 4t × 4(k − 1)−(ln 4/ ln 2) + 4

2 × 4t + 4
. (6)

When t is large enough, one can obtain

Pcum(k) = 4 (k − 1)−2. (7)
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So the degree distribution follows a power-law form with the
exponent γ = 3.

C. Clustering coefficient

The clustering coefficient [36] of a node u with degree ku

is given by Cu = 2eu/[ku(ku − 1)], where eu is the number of
existing links among the ku neighbors. Using the construction
rule, it is straightforward to calculate analytically the clustering
coefficient C(k) for a single node with degree k. For the initial
two nodes born at step 0, their degree is k = 2t , and the existing
links among these neighbors is k

2 , all of which are noniterated
links. For those nodes created at step φ (0 < φ < t), there are
only k−1

2 links that actually exist among the neighbor nodes.
Finally, for the smallest nodes created at step t , each has a
degree of k = 3, and the existing number of links between
the neighbors of each node is 2. Thus, there is a one-to-one
correspondence between the clustering coefficient C(k) of the
node and its degree k:

C(k) =

⎧⎪⎨
⎪⎩

1/(k − 1) for k = 2t ,

1/k for k = 2m + 1 (2 � m � t),

2/k for k = 21 + 1,

(8)

which is inversely proportional to k in the limit of large k. The
scaling of C(k) ∼ k−1 has been observed in many real-world
scale-free networks [37].

Using Eq. (8), we can obtain the clustering Ct of the whole
network at step t , which is defined as the average clustering
coefficient of all individual nodes. Then we have

Ct = 1

Nt

[
Lv(0)

K0 − 1
+

t−1∑
r=1

Lv(r)

Kr

+ 2 Lv(t)

Kt

]
, (9)

where Kr is the degree of a node at time t , which was created
at step r [see Eq. (4)]. In the infinite network order limit
(Nt → ∞), Eq. (9) converges to a nonzero value C̄ = 0.5435.
Therefore, the average clustering coefficient of the network is
very high.

D. Fractal dimension

As a matter of fact, the fractal lattice grows as an inverse
renormalization procedure; see Fig. 2 in reverse order. To find
the fractal dimension, we follow the mathematical framework
presented in [29]. By construction, in the infinite t limit, the
different quantities of the network grow as⎧⎪⎨

⎪⎩
Nt � 4 Nt−1,

ku(t) � 2 ku(t − 1),

Lt = 2 Lt−1,

(10)

where the third equation describes the change of the diameter
Lt of the graph Ft , where Lt is defined as the longest shortest
path between all pairs of nodes in Ft .

From the relations provided by Eq. (10), it is clear that
the quantities Nt , ku(t), and Lt increase by a factor of fN = 4,
fk = 2, and fL = 2, respectively. Then between any two times
t1 and t2 (t1 < t2), we can easily obtain the following relation:⎧⎪⎨

⎪⎩
Lt2 = 2t2−t1 Lt1 ,

Nt2 = 4t2−t1 Nt1 ,

ku(t2) = 2t2−t1 ku(t1).

(11)

From Eq. (11), we can derive the scaling exponents in terms of
the microscopic parameters [29]: the fractal dimension is dB =
ln fN

ln fL
= 2, and the degree exponent of boxes is dk = ln fk

ln fL
= 1.

The exponent of the degree distribution satisfies γ = 1 + dB

dk
=

3, giving the same γ as that obtained in the direct calculation
of the degree distribution [see Eq. (7)].

E. Degree correlation

Degree correlation in a network can be measured by
means of the quantity, called average nearest-neighbor degree
(ANND) and denoted as knn(k), which is a function of node
degree, and is more convenient and practical in characterizing
degree correlation [38]. For the fractal graph considered here,
one can exactly calculate knn(k). By construction, all neighbors
of the initial two nodes have the same degree 3, while for each
other node with degree greater than 3, only one of its neighbor
has the same degree as itself, all the other neighbors have
degree 3. Then we have⎧⎨

⎩
knn(k) = 3 for k = 2t ,

knn(k) = 4 − 3

k
for k = 2m + 1 (m = 2,3 . . . t).

(12)

For those nodes with degree 3, it is easily to obtain

knn(3) = 2 × (2t )2 + ∑τ=t−1
τ=1 [Lv(τ )k(τ,t) k(τ,t) − 1)]

3Lv(t)
+ 1

= 4

3
t + 5

3
− 4

3
× 1

2t
, (13)

where k(τ,t) is the degree of a node at time t that was
born at step τ . Thus knn(3) grows linearly with time for
large t . Equations (12) and (13) show the network is
disassortative.

F. Average path length

We represent all the shortest path lengths of Ft as a matrix
in which the entry dij is the shortest path from node i to
j . A measure of the typical separation between two nodes
in Ft is given by the APL 〈d〉t , also known as characteristic
path length, defined as the mean of geodesic lengths over all
couples of nodes. One can compute analytically the APL for Ft

by using a recursive technique [39,40]. The analytic expression
for 〈d〉t reads

〈d〉t = (16 × 2t + 21)16t + (21t − 27)8t + 75 × 4t + 119 × 2t − 15

21(2 + 5 × 4t + 2 × 16t )
. (14)
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For large t , 〈d〉t → 8
21 × 2t . Note that in the infinite t limit,

Nt ∼ 4t , so the APL scales as 〈d〉t ∼ (Nt )1/2, which indicates
that the network is not a small world. Note that the recently
observed global network of avian influenza outbreaks [41,42]
is also large-world like the model addressed here.

Thus, we have shown that 〈d〉t has the power-law scaling
behavior of the number of nodes Nt , which is similar to that
of the two-dimensional regular lattice [43]. This phenomenon
is not hard to understand. Let us look at the scheme of the
network growth. Each next step in the growth of Ft doubles the
APL between a fixed pair of nodes (except the small number
of pairs directly connected by a noniterated link), while the
total number of nodes increases fourfold (asymptotically, in
the infinite limit of t); see Eq. (1). Thus the APL 〈d〉t of Ft

grows as a square power of the node number in the network.

III. SPANNING TREES ON THE NETWORK

In the previous section, we have shown that the network
exhibits many interesting properties, i.e., it is simultaneously
scale-free, highly clustered, large-world, fractal and disassor-
tative, which are not observed in other networks. Thus, the
network is unique within the class of networks. Next, we
proceed to investigate spanning trees in the fractal scale-free
network. Our aim is to derive the exact formula for the number
of spanning trees and determine its entropy.

To facilitate the description of the computation, we give the
following definitions. Let Wt and Xt express the two nodes in
Ft that are generated at step 0 and thus called initial nodes.
Similarly, we use Yt and Zt to denote the two nodes in Ft ,
created at iteration 1. Since Yt and Zt have the highest degree
in Ft , they are named hub nodes. Then, the network can be
also built in the following way. Given the iteration t , Ft+1 may
be obtained by joining at the initial nodes four replicas of Ft

(see Fig. 3). Obviously, the network is self-similar.

A. Recursion relations for related quantities

By using the self-similar property of the network, we can
count the number of spanning trees by using a decimation

FIG. 3. (Color online) Alternative construction method of the
network. Ft+1 can be obtained by joining four copies of Ft denoted
as F

(η)
t (η = 1,2,3,4), the initial nodes of which are represented by

W
(η)
t and X

(η)
t , respectively. In the merging process, X(2)

t (respectively,
W

(1)
t ) and W

(3)
t (respectively, X

(4)
t ) are identified as an initial node,

Wt+1 (respectively, Xt+1), in Ft+1. Analogously, X
(1)
t (respectively,

X
(3)
t ) and W

(2)
t (respectively, W

(4)
t ) are identified as a hub node,

Yt+1 (respectively, Zt+1), in Ft+1. The dashed edge expresses the
noniterated one connecting two hub nodes, Yt+1 and Zt+1, in network
Ft+1.

FIG. 4. (Color online) Illustrative definitions for the spanning
subgraphs of Ft . The initial nodes and hub nodes in one ellipse (two
ellipses) belong to one tree (two trees).

procedure similar to but different from that in [11], both of
which are based on the idea of renormalization. Let st denote
the number of spanning trees in network Ft . To find st , we also
define some quantities to be used. Let wt denote the number
of spanning subgraphs of Ft consisting of two trees such that
one initial node, Wt , belongs to one tree, while the other initial
node, Xt , and the two hub nodes (i.e., Yt and Zt ) are in the
other tree. In addition, let yt denote the number of spanning
subgraphs of Ft consisting of two trees such that nodes Wt

and Yt belong to one tree, while Xt and Zt are in the other
tree. Similarly, we can define quantities xt and zt (see Fig. 4).
By symmetry, we have wt = xt and yt = zt . Then, the total
number of spanning subgraphs in Ft composed of two trees
with the two initial nodes Wt and Xt belonging to the two
different trees is

gt = wt + xt + yt + zt = 2(wt + yt ). (15)

We continue to provide the recursion relations for the above-
defined quantities. We first focus on wt+1. We distinguish two
cases. The first case is that the two hub nodes Yt+1 and Zt+1

are not directly connected in the spanning subgraph. The other
case is that nodes Yt+1 and Zt+1 are linked to each other by a
bond. Then wt+1 can be written as

wt+1 = w
(1)
t+1 + w

(2)
t+1, (16)

where w
(1)
t+1 and w

(2)
t+1 denote the respective numbers of

spanning subgraphs of the two cases. Below we calculate the
two quantities w

(1)
t+1 and w

(2)
t+1.

Figure 3 shows that network Ft+1 consists of four copies of
Ft , viz., F

(η)
t (η = 1,2,3,4), with four couples of nodes iden-

tified. According to this self-similarity, w
(1)
t+1 can be obtained

with appropriate configurations of the four components F
(η)
t

as shown in Fig. 5. In this case, to assure that nodes Xt+1, Yt+1,
and Zt+1 are in one tree and that node Wt+1 is in another tree,
all nodes in F

(2)
t must be in a subgraph including two trees

with the initial two nodes W
(2)
t and X

(2)
t in separate trees, and

the number of these possible subgraphs is gt . It is the same
with nodes in F

(3)
t . In contrast, all nodes in F

(1)
t are in one
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FIG. 5. (Color online) Illustration of the expression for the
number of spanning subgraphs w

(1)
t+1 corresponding to network Ft+1.

Two nodes connected by solid lines (dotted lines) are in one tree (two
trees).

single tree. The number of such configurations is st . This also
holds for nodes in F

(4)
t . Thus,

w
(1)
t+1 = (st )

2 (gt )
2. (17)

After deriving w
(1)
t+1, we proceed to express w

(2)
t+1 as a

function of st and gt (see Fig. 6). Since in this case, Yt+1

and Zt+1 are directly linked to by an edge, it is a little different
from the first case: nodes in F

(4)
t (or F

(1)
t ) are in two trees that

contain all nodes in F
(4)
t (or F

(1)
t ) and are subgraphs of F

(4)
t

(or F
(1)
t ), with W

(4)
t (or W

(1)
t ) and X

(4)
t (or X

(1)
t ) falling into

separated trees, while nodes in F
(1)
t (or F

(4)
t ), F

(2)
t , and F

(3)
t

are the same as those corresponding to the first case. Then, we
have

w
(2)
t+1 = 2st (gt )

3. (18)

Plugging Eqs. (17) and (18) into Eq. (16) leads to

wt+1 = (st )
2 (gt )

2 + 2st (gt )
3. (19)

Analogously, we can write yt+1 in terms of st and gt as

yt+1 = (st )
2 (gt )

2, (20)

which can be understood based on Fig. 7. Then, we have the
following relation:

gt+1 = 2(wt+1 + yt+1) = 4(st )
2(gt )

2 + 4st (gt )
3. (21)

Now we begin to give the derivative process of the recursion
relation for st+1. Analogously, according to whether or not
Yt+1 and Zt+1 are connected directly by a link, we distinguish
two cases. For the first case (Yt+1 and Zt+1 are not directly

FIG. 6. (Color online) Illustration of the expression for the
number of spanning subgraphs w

(2)
t+1 in network Ft+1.

FIG. 7. (Color online) Illustration of the recursive expression for
the number of spanning subgraphs yt+1 corresponding to network
Ft+1. In the figure, two nodes connected by solid lines (dotted lines)
belong to one tree (two trees).

connected), we denote the number of spanning trees by s
(1)
t+1,

while for the second case, the number of spanning trees is
represented by s

(2)
t+1. Then, st+1 = s

(1)
t+1 + s

(2)
t+1. From Figs. 8

and 9, using an analysis similar to that of wt+1, we can obtain
the following recursive relations:

s
(1)
t+1 = 4gt (st )

3 (22)

and

s
(2)
t+1 = 4(st )

2 (gt )
2, (23)

for s
(1)
t+1 and s

(2)
t+1, respectively. Therefore,

st+1 = 4gt (st )
3 + 4(st )

2 (gt )
2. (24)

All these obtained relations are useful for deriving the explicit
formula for the number of spanning trees in Ft .

B. Exact solutions to the number and entropy
of spanning trees

Based on the above-obtained recursive relations, we
can compute the number of spanning trees for the fractal

FIG. 8. (Color online) Illustration for the recursion expression for
the number of spanning trees s

(1)
t+1 in Ft+1.
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FIG. 9. (Color online) Illustration for the recursion expression for
the number of spanning trees s

(2)
t+1 in Ft+1.

scale-free lattice Ft . To gain this aim, we define a new quantity
qt = st − gt . Equation (24) minus Eq. (21) yields

qt+1 = 4stgt (st + gt ) (st − gt ) = 4stgt (st + gt )qt . (25)

Considering s1 = 8 and g1 = 2(w1 + y1) = 2(3 + 1) = 8, we
have q1 = 0. Thus,

qt ≡ 0, (26)

implying

st = gt . (27)

Replacing gt by st , Eq. (24) becomes

st+1 = 8(st )
4. (28)

Applying s1 = 8, Eq. (28) is solved inductively to obtain the
closed-form expression for st :

st = 24t−1. (29)

Equation (29), together with Eq. (1), shows that st approx-
imately increases exponentially in network order Nt , which
permits one to determine the entropy of spanning trees—an
important quantity characterizing network structure—for Ft

as the limiting value [44,45]

EFt
= lim

Nt→∞
ln st

Nt

= lim
t→∞

ln st

Nt

= 3

2
ln 2 (30)

that approaches to a constant value 1.0397, a finite number
larger than 1.

The obtained entropy of spanning trees in Ft can be
compared to those found for other networks with the same
average degree of nodes. In the pseudofractal fractal web [25],
the entropy is 0.8959, a value less than 1; while for the square
lattice and the two-dimensional Sierpinski gasket, their entropy
of spanning trees is 1.16624 [21] and 1.0486 [23], respectively,
both of which are greater than 1.0397.

We note that the fractal network considered here, in fact,
can be obtained from the q = 1 case of the fractal network
family H (q,t) previously studied [46] by adding to it the

noniterated links [33], while the latter is exactly the (2,2)-
flower that belongs to a more general class of hierarchical
networks (including both fractal and nonfractal networks)
initially introduced in [47]. Then, it is natural to expect that the
above analytical approach for determining spanning trees can
be applicable to other self-similar media. In the Appendix, we
show how to use the above technique to compute the number
of spanning trees in the family of fractal scale-free networks
H (q,t) and show how the entropy varies with the parameter q.

C. Numerical solution

In order to confirm the analytical solution given by Eq. (28),
we have compared it with numerical results. According to the
well-known result [48], we can get numerically but exactly the
number of spanning trees, represented by NST(t), in network
Ft , by computing the product of all nonzero eigenvalues of the
Laplacian matrix corresponding to Ft as

NST(t) = 1

Nt

i=Nt−1∏
i=1

λi(t), (31)

where λi(t) (i = 1,2, . . . ,Nt − 1) are the Nt − 1 nonzero
eigenvalues of the Laplacian matrix, denoted by Mt , for
Ft . The nondiagonal element mij (i 	= j ) of Mt is −1 (or
0) if nodes i and j are (or not) directly connected by a
link, while the diagonal entry mii is exactly the degree of
node i. Making use of Eq. (31), we compute the numerical
values of NST(t) up to t = 8. For all cases of 1 � t � 8,
the obtained numerical results are completely consistent with
those provided by Eq. (28), indicating that the analytical
formula given by Eq. (28) is valid.

IV. CONCLUSIONS AND DISCUSSION

To conclude, we have investigated a lattice model from
the viewpoint of complex networks. Its deterministic self-
similar construction allows us to derive analytical exact
expressions for the relevant features. We have shown that
the graph simultaneously exhibits many interesting structural
characteristics: power-law degree distribution, large clustering
coefficient, large-world phenomenon, fractal similar structure,
and negative degree correlations. The simultaneous existence
of scale-free, high clustering, and large-world behaviors is
compared with previous network models.

In addition, we have presented how to enumerate spanning
trees in the fractal scale-free lattice under consideration.
Based on a decimation procedure, we have given some useful
recursive relations for some spanning subgraphs, from which
we determined exactly the number and entropy of spanning
trees in the network. In general, the number of spanning
trees in a network can be obtained by directly calculating a
related determinant corresponding to the network. However,
this universal method is not acceptable for large graphs. For
this reason, it is interesting to develop techniques to derive
closed-form and simple formulas for special classes of graphs.
In this context, our work provides a detailed analysis for
determining spanning trees in fractal scale-free networks and
presents a new perspective from which to study spanning trees
in other media with self-similar structure [46,47], which is also
a promising avenue in the research of enumeration problems
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on networks, e.g., spanning forests [49], dimer statistics [50],
and so on.
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APPENDIX: SPANNING TREES IN THE FRACTAL
SCALE-FREE NETWORKS H(q,t)

The family of scale-free fractal lattices (networks) H (q,t)
(q � 2) investigated in [46] is constructed in an iterative way as
shown in Fig. 10. Initially (t = 0), H (q,0) is a link connecting
two nodes. For t � 1, H (q,t) is obtained from H (q,t − 1) by
replacing each edge in H (q,t − 1) by the connected clusters
on the right-hand side of the arrow in Fig. 10. When q = 2,
H (q,t) is reduced to the (2,2)-flower, a particular case of the
(x,y)-flowers (x � 1, y � 2) presented in [47], which may be
either fractal or nonfractal.

Most of the topological properties of H (q,t) can be
determined exactly [46]. The numbers of nodes and edges
in H (q,t) are

Nq,t = q(2q)t + 3q − 2

2q − 1
(A1)

and

Eq,t = (2q)t , (A2)

respectively. For large networks, the average node degree is
4 − 2/q. The network family is scale-free with the exponent
γ of degree distribution equal to 2 + ln 2/ ln q. In addition,
the networks are fractal with the fractal dimension being 1 +
ln q/ ln 2.

After introducing the construction and features of the
networks H (q,t), we next derive explicitly the number of
spanning trees in H (q,t) by using a method similar to that
applied in the text.

We define Pt as the number of spanning trees in H (q,t),
and let Qt denote the number of spanning subgraphs consisting

(a)

(b)

(c)

FIG. 10. Iterative construction method of the hierarchical lattices
for q = 2, q = 3, and q = 4, respectively.

of two trees such that the two initial nodes in H (q,0) belong
to separated trees. Since the networks H (q,t) have a similar
structure, using a derivation process similar to that described
in the text, we can obtain the following exact expressions
governing the recurrence relations between Pt and Qt :

Pt+1 = q(Pt )
2(2PtQt )

q−1, (A3)

Qt+1 = (2PtQt )
q . (A4)

Then we have

Pt+1

Qt+1
= q

2

Pt

Qt

, (A5)

which together with the initial condition P0
Q0

= 1 leads to

Pt

Qt

=
(

q

2

)t

, (A6)

namely,

Pt =
(

q

2

)t

Qt . (A7)

Inserting Eq. (A7) into Eq. (A4), we obtain

Qt+1 = 2q

(
q

2

)qt

(Qt )
2q . (A8)

Considering Q0 = 1, Eq. (A8) is solved to yield

Qt = 2
2q−tq−2q2+2tq2−2t+1qt+1+2t+1qt+2

(2q−1)2 q
−q+tq−2tq2+2t qt+1

(2q−1)2 . (A9)

Thus, according to Eq. (A6) we have the following expression
for the number of spanning trees in H (q,t):

Pt = 2
2q−tq−2q2+2tq2−2t+1qt+1+2t+1qt+2

(2q−1)2
−t

q
−q+tq−2tq2+2t qt+1

(2q−1)2
+t

. (A10)

Then, the entropy of spanning trees for H (q,t) is

EH (q,t) = lim
t→∞

ln Pt

Nq,t

= 2q − 2

2q − 1
ln 2 + 1

2q − 1
ln q

= ln 2 + 1

2q − 1
(ln q − ln 2). (A11)

In the specific case of q = 1, the average degree, the
exponent of degree distribution, and the entropy of spanning
trees in this particular network are 3, 3, and ln 2, repressively.
The entropy is larger than that corresponding to the nonfractal
scale-free Koch network [51] with the same average degree
and exponent of degree distribution, the entropy of which is
1
2 ln 3 [52]. This again shows that the fractality in scale-free
networks significantly increases the number of spanning trees
in the networks.

Finally, it deserves to be mentioned that the decimation
method for enumerating spanning trees in self-similar net-
works is universal. In addition to the fractal scale-free network
family H (q,t) considered above, it also applies to nonfractal
networks. For example, we have made use of this technique to
compute the number of spanning trees in the (1,y)-flowers [47]
and recovered the result previously obtained in [25], which is
actually the (1,2)-flower. Considering that the main topic of
this paper is focused on fractal scale-free networks, here we
omit the detailed derivation process.
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