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Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as
for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex
degree, making them unsuitable for applications to real-world networks, which typically display broad degree
distributions that can significantly affect the results. Here we demonstrate how the generalization of blockmodels
to incorporate this missing element leads to an improved objective function for community detection in complex
networks. We also propose a heuristic algorithm for community detection using this objective function or
its non-degree-corrected counterpart and show that the degree-corrected version dramatically outperforms the
uncorrected one in both real-world and synthetic networks.

DOI: 10.1103/PhysRevE.83.016107

I. INTRODUCTION

A stochastic blockmodel is a generative model for blocks,
groups, or communities in networks. Stochastic blockmodels
fall in the general class of random graph models and have a
long tradition of study in the social sciences and computer
science [1-5]. In the simplest stochastic blockmodel (many
more complicated variants are possible), each of n vertices is
assigned to one of K blocks, groups, or communities, and
undirected edges are placed independently between vertex
pairs with probabilities that are a function only of the group
memberships of the vertices. If we denote by g; the group to
which vertex i belongs, then we can define a K x K matrix
¥ of probabilities such that the matrix element v/, is the
independent probability of an edge between vertices i and j.

While simple to describe, this model can produce a wide
variety of different network structures. For example, a diagonal
probability matrix would produce networks with disconnected
components, while the addition of small off-diagonal elements
would generate conventional “community structure”—a set
of communities with dense internal connections and sparse
external ones. Other choices of probability matrix can generate
core-periphery, hierarchical, or multipartite structures, among
others. This versatility, combined with analytic tractability,
has made the blockmodel a popular tool in a number of
contexts. For instance, the planted partition model [6], which is
equivalent to the model above with a specific parametrization
of the matrix v, is widely used as a theoretical testbed for
graph partitioning and community detection algorithms [7,8].

Another important application, and the one that is the
primary focus of this paper, is the fitting of blockmodels
to empirical network data as a way of discovering block
structure, an approach referred to in the social networks
literature as a posteriori blockmodeling [4]. A number of
ways of performing the fitting have been suggested, including
some that make use of techniques from physics [9-11]. A
posteriori blockmodeling can be thought of as a method
for community structure detection in networks [8], although
blockmodeling is considerably more general than traditional
community detection methods, since it can detect many forms
of structure in addition to simple communities of dense links.
Moreover, it has the desirable property (not shared by most
other approaches) of asymptotic consistency under certain
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conditions [12], meaning that if applied to networks that were
themselves generated from the same blockmodel, the method
can correctly recover the block structure.

Unfortunately, however, the simple blockmodel described
above does not work well in many applications to real-world
networks. The model is not flexible enough to generate
networks with structure even moderately similar to that found
in most empirical network data, meaning that a posteriori fits
to such data often give poor results [13]. Just as the fitting
of a straight line to intrinsically curved data is likely to miss
important features of the data, so a fit of the simple stochastic
blockmodel to the structure of a complex network is likely
to miss much and, as we will show, can in some cases give
radically incorrect answers.

Attempts to overcome these problems by extending the
blockmodel have focused particularly on the use of (more com-
plicated) p* or exponential random graph models, but while
these are conceptually appealing, they quickly lose the analytic
tractability of the original blockmodel as their complexity
increases. Other recent attempts to extend blockmodels take
the flavor of mixture models that allow vertices to participate
in overlapping groups [14] or to have mixed membership
[15,16].

In this paper we adopt a different approach, considering a
simple and apparently minor extension of the classic stochastic
blockmodel to include heterogeneity in the degrees of vertices.
Despite its innocuous appearance, this extension turns out to
have substantial effects, as we will see. A number of previous
authors have considered similar extensions of blockmodels.
As early as 1987, Wang and Wong [17] proposed a stochastic
blockmodel for directed simple graphs incorporating arbitrary
expected in- and out-degrees, along with a selection of other
features. Unfortunately, this model is not solvable for its
parameter values in closed form, which limits its usefulness
for the types of calculations we consider. Several more recent
works have also explored blockmodels with various forms of
degree heterogeneity [18-23], motivated largely by the recent
focus on degree distributions in the networks literature. We
note particularly the currently unpublished work of Patterson
and Bader [23], who apply a variational Bayes approach
to a model that is close, although not identical, to the one
considered here.
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In this paper we build upon the ideas of these authors but
take a somewhat different course, focusing on the question of
why degree heterogeneity in blockmodels is a good idea. To
study this question, we develop a degree-corrected blockmodel
with closed-form parameter solutions, which allows us more
directly to compare traditional and degree-corrected models.
As we show, the incorporation of degree heterogeneity in
the stochastic blockmodel results in a model that in practice
performs much better, giving significantly improved fits to
network data, while being only slightly more complex than
the simple model described above. Although we here examine
only the simplest version of this idea, the approaches we
explore could in principle be incorporated into other block-
models, such as the overlapping or mixed membership models.

In outline, the paper is as follows. We first review the ideas
behind the ordinary stochastic blockmodel to understand why
degree heterogeneity causes problems. Then we introduce a
degree-corrected version of the model and demonstrate its use
in a posteriori blockmodeling to infer group memberships
in empirical network data, showing that the degree-corrected
model outperforms the original model both on actual networks
and on new synthetic benchmarks. The benchmarks intro-
duced, which generalize previous benchmarks for community
detection, may also be of independent interest.

II. STANDARD STOCHASTIC BLOCKMODEL

In this section we review briefly the use of the original,
non-degree-corrected blockmodel, focusing on undirected
networks since they are the most commonly studied. For
consistency with the degree-corrected case, we will allow
our networks to contain both multiedges and self-edges, even
though many real-world networks have no such edges. Like
most random graph models for sparse networks, the incorpora-
tion of multiedges and self-edges makes computations easier
without affecting the fundamental outcome significantly—
typically their inclusion gives rise to corrections to the results
that are of order 1/mn and hence vanishing as the size n
of the network becomes large. For networks with multiedges,
the previously defined probability v,; of an edge between
vertices in groups r and s is replaced by the expected number
of such edges, and the actual number of edges between any
pair of vertices will be drawn from a Poisson distribution
with this mean. In the limit of a large sparse graph, in which
the probability of an edge and the expected number of edges
become equal, there is essentially no difference between the
model described here and the standard blockmodel.

With this in mind, the model we study is now defined as fol-
lows. Let G be an undirected multigraph on n vertices, possibly
including self-edges, and let A;; be an element of the adjacency
matrix of the multigraph. Recall that the adjacency matrix for
amultigraph is conventionally defined such that A;; is equal to
the number of edges between vertices i and j wheni # j, but
the diagonal element A;; is equal to twice the number of self-
edges from i to itself (and hence is always an even number).

We let the number of edges between each pair of vertices
(or between a vertex and itself in the case of self-edges) be
independently Poisson distributed and define w,; to be the
expected value of the adjacency matrix element A;; for vertices
i and j lying in groups r and s, respectively. Note that this
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implies that the expected number of self-edges at a vertex in
group r is %wrr because of the factor of 2 in the definition of
the diagonal elements of the adjacency matrix.

Now we can write the probability P(G|w,g) of graph G
given the parameters and group assignments, also called the
likelihood, as

(wy I)Ai_f
PGlo.g) = [[——

i<j ij*
(3966)™"
* H (Ai/2)!

Given that A;; = Aj; and w,; = w;,, Eq. (1) can, after a small
amount of manipulation, be rewritten in the more convenient
form
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where n, is the number of vertices in group r and
mys = Z Aijsg,-,r(sgj,sv (3)
ij

which is the total number of edges between groups r and
group s, or twice that number if » = s, and §,, is the Kronecker
delta.

Our goal is to maximize this probability with respect to the
unknown model parameters w,; and the group assignments of
the vertices. In most cases, it will in fact be simpler to maximize
the logarithm of the probability (whose maximum is in the
same place). Neglecting constants and terms independent of
the parameters and group assignments (i.e., independent of
s, Ny, and m,), the logarithm is given by

10g P(Glw,g) = Z(mrs 10g Wrs — NpNsWys). @

rs

We will maximize this expression in two stages, first with
respect to the model parameters w,, then with respect to the
group assignments g;. The maximum-likelihood values &,
of the model parameters (where careted variables indicate
maximum-likelihood estimates) are found by simple differ-
entiation to be

Mg

)

(I)rx = s
nyng
and the value of Eq. (4) at this maximum is log P(G|d,g) =
> mpslog(m,s/n.ng) — 2m, where m = %Z” m,s is the
total number of edges in the network. Dropping the final
constant, we define the unnormalized log likelihood for the
group assignment g:

L(G|g) =) mylog

My

Q)
nyhg

The maximum of this quantity (called a “profile likelihood
modularity” by Bickel and Chen [12]) with respect to the group
assignments now tells us the most likely set of assignments
[24]. In effect, Eq. (6) gives us an objective or quality
function that is large for good group assignments and small for
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poor ones. Many such objective functions have been defined
elsewhere in the literature on community detection and graph
partitioning, but Eq. (6) differs from most other choices in
being derived from first principles, rather than heuristically
motivated or simply proposed ad hoc.

Equation (6) has an interesting information-theoretic inter-
pretation. By adding and dividing by constant factors of the
total number of vertices and edges, the equation can be written
in the alternative form

M mys/2m
L(G|g) = Z S log —nrns/nz’

)

rs

where again we have neglected irrelevant constants. Now
imagine, for a given set of group assignments, that we choose
an edge uniformly at random from our network, and let X
be the group assignment at one (randomly selected) end of the
edge and Y be the group assignment at the other end of the
edge. The probability distribution of the variables X and Y is
then px(X =r,Y =) = pg(r,s) = m,s/2m, which appears
twice in Eq. (7). The remaining terms in the denominator of the
logarithm in (7) are equal to the expected value of the same
probability in a network with the same group assignments
but different edges, the edges now being placed completely
at random without regard for the groups. Call this second
distribution p(r,s). Equation (7) can then be written

pK(r9S)
Pl(r,s)

L(Glg) =) px(r.s)log : ®)

which is the well-known Kullback-Leibler divergence between
the probability distributions px and p; [25].

The Kullback-Leibler divergence is not precisely a distance
measure, since it is not symmetric in pgx and p;. However,
if the logarithms are taken in base 2, then it measures the
expected number of extra bits required to encode X and Y
if p; is mistakenly used as the distribution for X and Y
instead of the assumed true distribution pg. So intuitively
it can be considered as measuring how far pg is from p;. The
most likely group assignments under the ordinary stochastic
blockmodel are then those assignments that require the most
information to describe starting from a model that does not
have group structure.

This type of approach, in which one constructs an objective
function that measures the difference between an observed
quantity and the expected value of the same quantity under
an appropriate null model, is common in work on community
detection in networks. One widely used objective function is
the so-called modularity

1
0= ;(Aij — P)8gg;, 9)

where A;; is an element of the adjacency matrix and P;; is the
expected value of the same element under some null model.
The null model assumed in our blockmodel calculation is one
in which P;; is constant. Making the same choice for the
modularity would lead to

K
Q = [px(rr) — pi(r,n)l. (10)

r=1
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The modularity, however, is not normally used this way, and for
good reason. This null model, corresponding to a multigraph
version of the Erd&s-Rényi random graph, produces highly
unrealistic networks, even for networks with no community
structure. Specifically, it produces networks with Poisson
degree distributions, in stark contrast to most real networks,
which tend to have broad distributions of vertex degree. To
avoid this problem, modularity is usually defined using a
different null model that fixes the expected degree sequence to
be the same as that of the observed network. Within this model,
P;j = kik;j/2m, where k; is the degree of vertex i. Then the
probability distribution over the group assignments at the end
of a randomly chosen edge becomes

Ky Kg

— 11
2m 2m (n

pdeg(X =rY=s)= pdeg(r’s) =

where
Krzzmrszzkigg,,r (12)

is the total number of ends of edges, commonly called stubs,
that emerge from vertices in group r, or equivalently the sum
of the degrees of the vertices in group r. [Note that Eq. (12)
correctly counts two stubs for edges that both start and end
in group r.] Then the group assignments are given by the
maximum of

K
Q =Y [pk(rr) = Paeg(rr)]. (13)
r=1

This choice of null model is found to give significantly better
results than the original uniform model because it allows for
the fact that vertices with high degree are, all other things
being equal, more likely to be connected than those with
low degree, simply because they have more edges. From
an information-theoretic viewpoint, an edge between two
high-degree vertices is less surprising than an edge between
two low-degree vertices, and we get better results if we
incorporate this observation in our model.

Returning to the stochastic blockmodel, using p; instead of
Ddeg in the objective function causes problems similar to those
that affect the modularity. Fits to the model may incorrectly
suggest that structure in the network due merely to the degree
sequence is a result, instead, of group memberships. We will
shortly see explicit real-world cases in which such incorrect
conclusions arise. The solution to this problem, as with the
modularity, is to define a stochastic blockmodel that directly
incorporates arbitrary heterogeneous degree distributions.

III. DEGREE-CORRECTED STOCHASTIC BLOCKMODEL

In the degree-corrected blockmodel, the probability dis-
tribution over undirected multigraphs with self-edges (again
denoted by G) depends not only on the parameters introduced
previously but also on a new set of parameters 6; controlling
the expected degrees of vertices i. As before, we assume
there are K groups, w,; is a K x K symmetric matrix of
parameters controlling edges between groups r and s, and g;
is the group assignment of vertex i. As in the uncorrected
blockmodel, let the numbers of edges each be drawn from a
Poisson distribution, but now, following Refs. [22] and [23],
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let the expected value of the adjacency matrix element A;; be
0;0;wg,q,. Then graph G has probability

Ajj
PGl.0.9) =[] exp(—6;0;wg,g,)
i<j
lezwgig,»)A”/z

(' i
XU A

The 6 parameters are arbitrary to within a multiplicative
constant that is absorbed into the @ parameters. Their nor-
malization can be fixed by imposing the constraint

Zeiag,,, =1 (15)

P(_%‘gizwgfgf)- (14)

for all groups r, which makes 6; equal to the probability that
an edge connected to the community to which i belongs lands
on i itself. With this constraint, the probability P(G|0,w,g)
can be simplified to the more convenient form

1
Mrey Ay TL252(A0/2)!

X ng'ki 1_[0):’/;”/2 exp(_%a)rs)’ (16)
i rs

with k; being the degree of vertex i, as previously, and m,
defined as in Eq. (3). As before, rather than maximizing this
probability, it is more convenient to maximize its logarithm,
which, ignoring constants, is

log P(G0.0.8) =2 kilogh; + Y _(mylogwys — wy).

1 rs

P(G|0,w,8) =

a7

Allowing for the constraint (15), the maximum-likelihood
values of the parameters 6; and w, are then given by

O = My, (18)

where «, is the sum of the degrees in group r, as before [see
Eq. (12)]. This maximum-likelihood parameter estimate has
the appealing property of preserving the expected numbers of
edges between groups and the expected degree sequence of
the network [26]. To see this, let (x) be the average of x in the
ensemble of graphs with parameters (18). Then the expected
number of edges between groups r and s is

kik~m 08
Z(Aij>8gi,r5gj,s = Z Asg,,ragj,s = Mg, (19)

Ko Kg.
ij ij 8i™8j

where we have made use of Eq. (12). Similarly, the average
degree of vertex i in the ensemble is

PO ki k;j
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Traditional blockmodels, by contrast, preserve only the
expected value of the matrix m,; and not the expected
degree—every vertex in group r in the traditional blockmodel
has the same expected degree > jMrg; /(Neng) = K /0y

Substituting Eq. (18) into Eq. (17), the maximum of
log P(G0,w,g) for the degree-corrected blockmodel is

ki
log P(G10.0.8) =2 kilog—+ > m,,logm,, — 2m,
N K.

i 8i rs

21

where, as before, m is the total number of edges in the network.
The first term in this expression can be rewritten as

2> ki loglf—i =2 kiloghi=2 " " kidy ,logk,
i & i i or
= ZZki logk,-—ZK, loglc,—X:/(Y log
= ZZki logki—Zm” log kK5, (22)

where we have again made use of Eq. (12). Substituting back
into Eq. (21) and dropping overall constants then gives us an
unnormalized log-likelihood function of

L(Glg) =) mylog

My

- (23)
KrKs
Notice that the only difference between this degree-corrected
log likelihood and the uncorrected log likelihood of Eq. (6) is
the replacement of the number 7, of vertices in each group by
the number «, of stubs. Minor though this replacement may
seem, however, it has a big effect, as we will shortly see.

As before, we can interpret the optimization of the objective
function (23) through the lens of information theory. Adding
and multiplying by constant factors allows us to write the log
likelihood in the form

_ Mg Mmys/2m
LGl =) 5 los o oy

(24)

rs
which is the Kullback-Leibler divergence between pgx and
Ddeg- Alternatively, noting that pge, is the product of the
marginal distributions ), px(r,s) and )  pg(r,s), this par-
ticular form of divergence can also be thought of as the
mutual information of the random variables representing
the group labels at either end of a randomly chosen edge.
Loosely speaking, the best fit to the degree-corrected stochastic
blockmodel gives the group assignment that is most surprising
compared to the null model with given expected degree
sequence, whereas the ordinary stochastic blockmodel gives
the group assignment that is most surprising compared to the
Erdés-Rényi random graph.

Information-theoretic quantities have been proposed previ-
ously as possible objective functions for community detection
or clustering. Dhillon et al. [27], for instance, used mutual
information as an objective function for clustering bipartite
graphs, as part of an approach they call “information-theoretic
co-clustering.” Equation (23) is also somewhat reminiscent
of an objective function of Reichardt er al. [19], which, if
translated into our terminology and adapted to undirected
networks, is equivalent to the total variation distance between
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Pk and pgeg, variation distance being an alternative measure of
the distance between two probability distributions. While the
variation distance and the Kullback-Leibler divergence are re-
lated, both falling into the class of so-called f-divergences, the
optimization of variation distance does not, to our knowledge,
correspond to maximizing the likelihood of any generative
model, and there are significant benefits to the connection
with generative models. In particular, one can easily create
networks from the ensemble of our model and, in addition, the
connection to generative processes means that a posteriori
blockmodeling fits into standard frameworks for statistical
inference, which are well studied and understood in other
contexts.

Equation (23) could also be used as a measure of assortative
mixing among discrete vertex characteristics in networks
[28,29]. In a network such as a social network, in which
connections between individuals can depend on characteristics
such as nationality, race, or gender, our objective function
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could be used, for instance, to quantify which of several such
characteristics is more predictive of network structure.

A useful property of the objective function in Eq. (23),
when used for a posteriori blockmodeling, is that it is possible
to quickly compute the change in the log likelihood when a
single vertex switches groups. When a vertex changes groups
from r to s, only «,, kg, m,,, and my, (for any ¢) can change
(with m,; symmetric). This means that many terms cancel out
of the difference of log likelihoods and can be ignored in the
computations.

Consider moving vertex i from community r to
community s. Let k;;, be the number of edges from vertex i
to vertices in group ¢ excluding self-edges, and let u; be the
number of self-edges for vertex i. These quantities are the same
for all possible moves of vertex i. Define a(x) = 2x log x and
b(x) = x log x, where a(0) = 0 and b(0) = 0. Then the change
in the log likelihood can be written

AL = Z[a(mrt — ki) —a(m,) + a(mg + ki) — a(mg)] + a(m,s + kir — ki) — a(mg) + blm,, — 2(k;r +u;)] — b(m,,)

t#r,s

+ b[mm + 2(kis + ul)] - b(mss) - a(Kr - kl) + a(Kr) - a(KS + kl) + a(K‘Y)- (25)

This quantity can be evaluated in time O(K + (k)) on average,
and finding the community s that gives the maximum AL
for the given i and r can thus be done in time O[K(K +
(k))]. Because these computations can be done quickly for
a reasonable number of communities, local vertex switching
algorithms, such as single-vertex Monte Carlo algorithms, can
be implemented easily. Such Monte Carlo methods, however,
can be slow, and we have found competitive results using a
local heuristic algorithm similar in principle to the Kernighan-
Lin algorithm used in minimum-cut graph partitioning [30].

Briefly, in this algorithm we divide the network into some
initial set of K communities at random. Then we repeatedly
move a vertex from one group to another, selecting at each
step the move that will most increase the objective function—
or least decrease it if no increase is possible—subject to the
restriction that each vertex may be moved only once. When
all vertices have been moved, we inspect the states through
which the system passed from start to end of the procedure,
select the one with the highest objective score, and use this state
as the starting point for a new iteration of the same procedure.
When a complete such iteration passes without any increase
in the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run the
calculation with several different random initial conditions and
take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-corrected
and uncorrected blockmodels in applications both to real-
world networks with known community assignments and
to a range of synthetic (i.e., computer-generated) networks.
We evaluate performance by quantitative comparison of the

community assignments found by the algorithms and the
known assignments. As a metric for comparison we use
the normalized mutual information, which is defined as
follows [7]. Let n,s be the number of vertices in community
r in the inferred group assignment and in community s in
the true assignment. Then define p(X =r,Y =s) =n,;/n to
be the joint probability that a randomly selected vertex is in r
in the inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and Y, the
normalized mutual information is

21(X,Y)

Inorm(Xv Y) = m7

(26)

where 1(X,Y) is the mutual information and H(Z) is the
entropy of random variable Z. The normalized mutual
information measures the similarity of the two community
assignments and takes a value of 1 if the assignments are
identical and O if they are uncorrelated. A discussion of this
and other measures can be found in Ref. [31].

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of vertices.
In networks with highly homogeneous degree distributions
we find little difference in performance between the degree-
corrected and uncorrected blockmodels, which is expected
since for networks with uniform degrees the two models have
the same likelihood up to an additive constant. Our primary
concern, therefore, is with networks that have heterogeneous
degree distributions, and we here give two examples that show
the effects of heterogeneity clearly.
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The first example, widely studied in the field, is the “karate
club” network of Zachary [32]. This is a social network
representing friendship patterns between the 34 members of a
karate club at a US university. The club in question is known to
have split into two different factions as a result of an internal
dispute, and the members of each faction are known. It has
been demonstrated that the factions can be extracted from
a knowledge of the complete network by many community
detection methods.

Applying our inference algorithms to this network, using
corrected and uncorrected blockmodels with K = 2, we find
the results shown in Fig. 1. As pointed out also by other
authors [12,33], the non-degree-corrected blockmodel fails to
split the network into the known factions (indicated by the
dashed line in the figure), instead splitting it into a group
composed of high-degree vertices and another of low-degree
vertices [34]. The degree-corrected model, on the other hand,
splits the vertices according to the known communities, except
for the misidentification of one vertex on the boundary of the
two groups. (The same vertex is also misplaced by a number
of other commonly used community detection algorithms.)

The failure of the uncorrected model in this context is
precisely because it does not take the degree sequence into
account. The a priori probability of an edge between two
vertices varies as the product of their degrees, a variation that
can be fit by the uncorrected blockmodel if we divide the

(b) With degree-correction

FIG. 1. (Color online) Divisions of the karate club network found
using the (a) uncorrected and (b) corrected blockmodels. The size of
each vertex is proportional to its degree and the shading reflects
inferred group membership. The dashed line indicates the split
observed in real life.
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network into high- and low-degree groups. Given that we have
only one set of groups to assign, however, we are obliged to
choose between this fit and the true community structure. In
the present case it turns out that the division into high and low
degrees gives the higher likelihood and so it is this division
that the algorithm returns. In the degree-corrected blockmodel,
by contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood, which
frees up the block structure for fitting to the true communities.

Moreover, it is apparent that this behavior is not limited
to the case K =2. For K =3, the ordinary stochastic
blockmodel will, for sufficiently heterogeneous degrees, be
biased toward splitting into three groups by degree—high,
medium, and low—and similarly for higher values of K. It is
of course possible that the true community structure itself
corresponds entirely or mainly to groups of high and low
degree, but we only want our model to find this structure if it
is still statistically surprising once we know about the degree
sequence, and this is precisely what the corrected model does.

As a second real-world example, we show in Fig. 2 an
application to a network of political blogs assembled by
Adamic and Glance [35]. This network is composed of blogs
(i.e., personal or group web diaries) about U.S. politics and the
web links between them, as captured on a single day in 2005.
The blogs have known political leanings and were labeled by
Adamic and Glance as either liberal or conservative in the
data set. We consider the network in undirected form and
examine only the largest connected component, which has
1222 vertices. Figure 2 shows that, as with the karate club, the
uncorrected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model finds
a split more aligned with the political division of the network.
While not matching the known labeling exactly, the split
generated by the degree-corrected model has a normalized
mutual information of 0.72 with the labeling of Adamic and
Glance, compared with 0.0001 for the uncorrected model.

To make sure that these results were not due to a failure
of the heuristic optimization scheme, we also checked that
the group assignments found by the heuristic have a higher
objective score than the known group assignments, and that
using the known assignments as the initial condition for the
optimization recovers the same group assignments as found
with random initial conditions.

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we use
are themselves generated from the degree-corrected stochastic
blockmodel, which is ideally designed to play exactly this role.
(Indeed, although it is not the primary focus of this article, we
believe that the blockmodel may in general be of use as a
source of flexible and challenging benchmark networks for
testing the performance of community detection strategies.)

In order to generate networks, we must first choose the
values of g, w, and 6. The group assignments g can be chosen
in any way we please, and we can also choose freely the
values for the expected degrees of all vertices, which fixes
the @ variables according to Eq. (18). Choosing the values of
w,s involves somewhat more work. In principle, any set of
non-negative values is acceptable, provided it is symmetric
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(b) With degree-correction

FIG. 2. (Color online) Divisions of the political blog network
found using the (a) uncorrected and (b) corrected blockmodels. The
size of each vertex is proportional to its degree and the shading
reflects inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs given
in Ref. [35].

in r and s and satisfies ZS wrs = Ky, with «, as in Eq. (12).
However, because we wish to be able to vary the level of
community structure in our networks, we choose w,; in the
present case to have the particular form

Wy = )\wﬂanmd 4 (1 _ )\)a)random (27)

rs *

This form allows us to interpolate linearly between the

lanted .
values wby and a)f;“dom using the parameter A. The a)ﬁf‘vnd"m

represents a fully random network with no group structure;

it is defined to be the expected value of w,; in a random

graph with fixed expected degrees [36], which is simply
random

W = KrKkg/2m.
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lanted .
The value of wfi" ", by contrast, is chosen to create group

structure. A simple example with four groups is

kk 0 0 O
0 x« 0 O
planted — . 28
© 0 0 x5 O (5)
0 0 0 x4

With this choice, all edges will be placed within communities
when A = 1 and none between communities. When A = 0, on
the other hand, all edges will be placed randomly, conditioned
on the degree sequence, and for intermediate values of A we
interpolate between these two extremes in a controlled fashion.
(This model is similar to the benchmark network ensemble
previously proposed by Lancichinetti [37]—roughly speaking,
it is the “canonical ensemble” version of the “microcanonical”
model in Ref. [37].)

More complicated choices of WP are also possible.
Examples include the core-periphery structure

wplanted — <K1 k2 K2> , (29)

K2 0

where x| > k3. When k| >~ k3, this choice also generates
approximately bipartite networks, where most edges run
between the two groups and few lie inside. Another possibility
is a hierarchical structure of the form

K1 — A A 0
@Paned — A ky—A 0 , (30)
0 0 K3

where A < min(kq,k2).

In mixed models such as these, each edge in effect has a
probability A of being chosen from the planted structure and
1 — A of being chosen from the null model. Among the edges
attached to a given vertex, the expected fraction drawn from the
planted structure is A and the remainder are drawn randomly.

Once we have chosen our values for g, 8, and w, the network
generation itself is a straightforward implementation of the
blockmodel: we first draw a Poisson-distributed number of
edges for each pair of groups r,s with mean w, (or %a)”. when
r = s); then we assign each end of an edge to a vertex in the
appropriate group with probability 6;.

C. Performance on synthetic networks

There are two primary considerations in comparing the
degree-corrected and uncorrected blockmodels on our syn-
thetic benchmark networks. The first is how close the group
assignments found in our calculations are to the planted group
assignments. The second is the performance of the heuristic
optimization algorithm. It is possible that the maximum-
likelihood group assignment may be close to the true group
assignment but that our heuristic is unable to find it. In
addition, if the heuristic performs better in general for
either the corrected or uncorrected blockmodel, it may make
comparisons between the models unreliable: we want to claim
that the degree-corrected model gives better results than the
uncorrected version because it has a better objective function
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for heterogeneous networks, and not because we used a biased
optimization algorithm.

To shed light on these questions, we take the following
approach. For both the degree-corrected model and uncor-
rected model, we perform tests with random initial conditions
and with initial conditions equal to the known planted group
structure. The latter (planted) initializations tell us whether
the planted group assignment, or something close to it, is a
local optimum of the respective objective function—if it is,
our heuristic should find that optimum most of the time and
return a final assignment similar to the planted one. This should
be true for essentially any reasonable heuristic, even a biased
one, since the heuristic will be making only minimal changes
to the group assignments (or none at all).

For small values of A we expect that the planted assignment
is not near a local maximum, but for large A we would hope
that it is. Thus, if we discover in the process of running our
heuristic that it is not, it strongly suggests that we have made a
poor choice of objective function (and this conclusion should
hold even if the heuristic is biased).

The results of such tests on our synthetic networks are
shown in Fig. 3. We plot the normalized mutual information
as a function of A for various choices of planted structure.
Each data point represents an average over 30 networks of
size n = 1000 for both the degree-corrected and uncorrected
objective functions. In the case of random initializations, ten
initializations were performed for each network, and we take
the best result among the ten.

The left panel in the figure shows results for networks
with two communities and just two possible values of the
expected degree, 10 and 30. Each of the 1000 vertices was
assigned to one of the four possible combinations of degree and
community with equal probability, and the planted structure
was chosen to be diagonal, as in Eq. (28).

The green points in the figure indicate the performance of
the degree-corrected blockmodel, while the black points are for
the uncorrected model. Solid squares and open circles show
performance starting from the planted community structure
and random assignments, respectively. Bearing in mind that

C 1.0 gamum c 1.04
RS - k)
© ©
£ 08/ £ 08
= =
£ g
= 0.6 = 0.6
g g
S 04 S 0.4/
= } =
ie) e;
8 02 %% 2024
© ©
g 0.0/ Sdsadesansnsacoce g 0.04
pd pd

lI-n--!geee )
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A = 0 corresponds to zero planted structure (in which case
neither algorithm should find any significant result) and that
a normalized mutual information approaching 1 indicates
successful detection of the planted structure, we can see from
the figure that the degree-corrected blockmodel significantly
outperforms the uncorrected one in this simple test. As A
increases from zero, the mutual information for all algorithms
rises, but the corrected model starts to detect some signatures
of the planted structure almost immediately and for A = %
returns a normalized mutual information above 0.7 for both
initial conditions. The uncorrected model, by contrast, finds no
planted structure at A = % for either initialization—including
when the algorithm is initialized to the known correct answer.
The reason for this poor performance is precisely the variation
in degrees: For values of A up to around 0.6 the uncorrected
model fits these networks better if vertices are assigned to
groups according to their degree than if they are assigned
according to the planted structure, and hence the best-fit group
structure has no correlation with the planted structure.

We have also tested our blockmodels against synthetic
networks with two other types of structure, one the core-
periphery or approximately bipartite structure of Eq. (29)
and the other the hierarchical structure of Eq. (30). In these
examples we use a more realistic degree distribution that
approximately follows a power law with a minimum expected
degree of 10 and an exponent of —2.5. For the core-periphery
networks we randomly assign vertices to one of the two groups,
while for the hierarchical networks we fix 500 vertices to be
in the first of the three groups, assign the rest randomly, and
set A = }Tmin(Kl,Kz). (It has been suggested that choosing
nonequal sizes for groups in this way presents a more difficult
challenge for structure detection algorithms [33,38].)

The performance of our blockmodels on these two classes
of networks is shown in the middle (core-periphery) and
right (hierarchical) panels of Fig. 3. Again we see that the
normalized mutual information increases with increasing X
for all algorithms but that the degree-corrected blockmodel
performs significantly better than the uncorrected model. The
degree-corrected model with planted assignments consistently

1.04
0.8 h

0.6 : %%
0.4 .

0.2 e, &

0
0.04 s88e2lsae

Normalized mutual information

00 02 04 06 08 1.0
A

00 02 04 06 08 10

00 02 04 06 08 10
A A

FIG. 3. (Color online) The average normalized mutual information as a function of A for the three synthetic tests described in the text. Solid
squares and open circles indicate tests initialized with planted and random assignments, respectively. Green (light gray) points denote results
for the degree-corrected blockmodel and black (dark) for the ordinary uncorrected model. The left, middle, and right panels show the results
for the two-group two-degree networks, core-periphery networks, and hierarchical networks, respectively. The error bars indicate the standard
error on the mean computed from simulations of 30 networks per data point.
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does the best among the four options, as we would expect,
and the degree-corrected model with random initializations
performs respectably in all cases, although it is entirely
possible that better performance could be obtained with a better
optimization strategy. The performance of the uncorrected
model with random initializations, on the other hand, is
quite poor [39]. But perhaps the most telling comparison is
the one between the degree-corrected model with random
initial assignments and the uncorrected model with the planted
assignment. This comparison tilts the playing field heavily in
favor of the uncorrected model and yet, as Fig. 3 shows, the
degree-corrected model still performs about as well as, and in
some cases better than, the uncorrected model.

V. CONCLUSIONS

In this paper, we have studied how one can incorporate
heterogeneous vertex degrees into stochastic blockmodels in
a simple way, improving the performance of the models for
statistical inference of group structure. The resulting degree-
corrected blockmodels can also be used as generative models
for creating benchmark networks, retaining the generality
and tractability of other blockmodels while producing degree
sequences closer to those of real networks.

We have found the performance of the degree-corrected
model for inference of group structure to be quantitatively
better on both synthetic and real-world test networks than
the uncorrected model. In networks with substantial degree
heterogeneity, the uncorrected model prefers to split networks
into groups of high and low degree, and this preference
can prevent it from finding the true group memberships.
The degree-corrected model correctly ignores divisions based
solely on degree and hence is more sensitive to underlying
structure.

It seems likely that other more sophisticated blockmod-
els, such as the recently proposed overlapping and mixed
membership models, would benefit from incorporating degree
sequences also. In applications to online social network data,
for example, where overlapping groups are common, there is
frequently substantial degree heterogeneity and hence poten-
tially significant benefits to using a degree-corrected model.

The degree-corrected blockmodel is not without its faults.
For instance, the model as described can produce an unrealistic
number of degree zero vertices, and is also unable to model
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some degree sequences, such as those in which certain values
of the degree are entirely forbidden. As a model of real-world
networks, it may also fail to accurately represent higher-order
network structures such as overrepresented network motifs or
degree correlations. From a statistical point of view, it is also
somewhat unsatisfactory that the number of parameters in the
model scales with the size of the network, which for example
prevents fits to a network of one size being used to generate
synthetic networks of another size.

Perhaps the chief current drawback of the model, though,
is that the number K of blocks or groups in the network is
assumed to be given. In most structure detection problems, the
number of groups is not known and a complete calculation
will therefore require not only the algorithms described
in this paper but also a method for estimating K. Some
previously suggested approaches to this problem include cross-
validation [15], minimum description length methods using
two-part or universal codes [33], maximization of a marginal
likelihood [10], and nonparametric Bayesian methods. The
marginal likelihood for our degree-corrected blockmodel can
be computed explicitly if one assumes conjugate priors on
the parameters—Dirichlet for 6 and gamma for w—but then
one must also choose the parameters of those priors, called
hyperparameters in the statistical literature. In principle, one
wants to choose values of the hyperparameters that provide
asymptotic consistency—the blockmodel should return the
correct number of groups when applied to a network generated
from the same blockmodel, at least in certain limits. At
present, however, it is not known how to make this choice.
An alternative possibility is to note that the blockmodel used
here is equivalent to a model that generates an ensemble of
matrices with integer entries, implying potential connections
to the large statistical literature on contingency table analysis
that could be helpful in determining the number of groups in a
principled fashion. We leave these questions for future work.
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