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Percolation theory provides a tool for linking microstructure and macroscopic material properties. In this paper,
percolation theory is applied to the analysis of microtomographic images for the purpose of deriving scaling
laws for upscaling of properties. We have tested the acquisition of quantities such as percolation threshold,
crossover length, fractal dimension, and critical exponent of correlation length from microtomography. By
inflating or deflating the target phase and percolation analysis, we can get a critical model and an estimation of
the percolation threshold. The crossover length is determined from the critical model by numerical simulation.
The fractal dimension can be obtained either from the critical model or from the relative size distribution of
clusters. Local probabilities of percolation are used to extract the critical exponent of the correlation length.
For near-isotropic samples such as sandstone and bread, the approach works very well. For strongly anisotropic
samples, such as highly deformed rock (mylonite) and a tree branch, the percolation threshold and fractal
dimension can be assessed with accuracy. However, the uncertainty of the correlation length makes it difficult to
accurately extract its critical exponents. Therefore, this aspect of percolation theory cannot be reliably used for
upscaling properties of strongly anisotropic media. Other methods of upscaling have to be used for such media.
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I. INTRODUCTION

Micro computed tomography (micro-CT) or microtomog-
raphy is becoming an important technique for research of
material properties [1]. We evaluate here the use of percolation
theory as a valuable tool for upscaling from the microtomog-
raphy scale to the macroscale. Upscaling is a widely used
method in computational hydrodynamics and mechanics for
solving the problem of a statistical distribution of transport or
mechanical coefficients (or properties) on a small scale, and
linking these to the statistics of such transport or mechanical
values on a larger scale [2]. Upscaling can be understood as
the equivalent concept of a scaling function, with the aim of
derivation of the renormalization constant normalized to that
at a given reference scale. Renormalization-group-invariant
properties have a much wider applicability in condensed
matter and high-energy physics, while the applied material
sciences and geophysical applications are often more focused
on very restrictive applications. This paper presents examples
of upscaling in applied material sciences. The fundamental
analysis can be expanded to both research fields.

Percolation theory focuses on the connectivity of sites
(or bonds) of different models, critical phenomena, and
relevant quantities [3] (basic concepts of percolation theory
are summarized in Appendix A). From percolation theory,
critical exponents extracted from critical phenomena are
related to scaling laws, and scaling laws enable upscaling
or downscaling of the characteristics recognized at a certain
scale. Mathematically, percolation theory deals with random
networks and it can be applied to most fields of natural
science. As percolation research is mostly based on random
models, the objects being studied are stochastic geometries
that are numerically or experimentally created in a forward

way. The application of percolation theory to finite-size scaling
derived from microtomography analyses of a CT scan has only
been investigated in pilot studies for particular materials [4].
For this reason, percolation theory, albeit being recognized
as a powerful tool to explore general laws of materials in
nature, has not yet gained wide acceptance in the analysis
of direct observational data such as those obtained from
microtomography. In this paper we test and evaluate the use
of percolation theory in a wide range of internally structured
media.

Microtomography provides three-dimensional (3D) mi-
croscale images via nondestructive scanning. 3D images
showing the internal structure of objects lead to the possibility
of the study of the spatial distribution and evolution of
phases or material-components at the micro- and nanoscale.
It is becoming one of the most important frontier technolo-
gies applied in medical, biomedical, and material sciences.
Stock [5] gives an excellent review of the applications of
microtomography to material science. Owing to the finite
size of the image sampling chip (e.g., 2048 × 2048 pixels
normally), the limitation of microtomography lies in the
relationship of the length scale and resolution of the images
or samples: the higher the resolution, the smaller is the
length scale that can be imaged in a single scan. This leads
to the immediate challenge of detecting the microstructure
of the material in finer and finer resolution and then of
connecting it to the macroscale where conventional continuum
mechanics applies. Scaling laws of percolation theory provide
an opportunity to connect the microscale to the macroscale.

Previous applications of percolation theory to micro-CT
analysis are sparse, especially the explicit derivation of
quantities for percolation. Ikeda et al. [6] investigated the
3D interconnection, shape, and correlation function of a
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granite sample. Nakashima and Kamiya [7] developed a
program for the analysis of pore connectivity and anisotropic
tortuosity of porous rocks. In the study of Navarre-Sitchler
et al. [8], micro-CT data were used to construct a numerical
pore network model. Using percolation theory, these authors
determined the upscaled effective diffusivities as a function of
total porosity, and also determined the percolation threshold by
experiments. Liu et al. [9] presented an improved estimation
of percolation and anisotropic permeability from 3D x-ray
microtomography using stochastic analyses. Recently, Pringle
et al. [4] analyzed the percolation threshold of the brine
microstructure of sea ice using the finite-size-scaling scheme
of percolation theory from a series of samples at different tem-
peratures. Although percolation theory has thus proven to be
a useful tool for analysis of microtomography, open questions
remain.

The first question is how to derive the percolation threshold
from static natural data. It is the most important question
because the percolation threshold is of great significance to
material properties. Generally, the percolation threshold is
determined by creating a series of models numerically or
experimentally. These models are random or for some assumed
structure. However, the percolation thresholds calculated
from random or assumed models [3,10], are not suitable
for other models with a given structure as obtained, for
instance, from a CT scan of natural samples. Pringle and
co-authors [4] presented the first successful detection of the
percolation threshold from images of natural samples. The
crucial prerequisite for this achievement was the availability
of a series of samples of sea ice with different porosities at
different temperatures. However, for most natural samples, it
is very difficult to derive the percolation threshold, because
of the unavailability of a series of models with different
volume fractions of the specific structure. We will contribute
to this point as described in the methodology section and
Appendix B.

The second question is whether or not we can derive critical
exponents and fractal dimension from scans of natural samples.
Critical exponents and fractal dimensions are recognized
as universally invariant and can be used for upscaling or
downscaling of models and properties. Most universally
invariant quantities have been determined theoretically for
different lattices [3]. These quantities are expected to change in
a range around the theoretical values for specific problems. It is
therefore important to compare the predicted theoretical values
with those obtained from natural samples. This comparison is
a prerequisite for robust upscaling of the characteristics of
individual microtomography. To the best of our knowledge,
no critical exponents extracted from microtomographic images
have yet been reported in the publicly available literature. In
this study we will present an analysis of the extraction of
exponents.

A number of methods for upscaling have been devel-
oped, using percolation theory, effective-medium theory, and
stochastic homogenization, among other methods [11]. We
propose that whenever possible percolation theory should be
used for upscaling of microtomography as the first choice since
it is the most direct method based on the observed statistics.
The elaboration of this method is the main subject of the
paper.

II. METHODS

This study is based on our previous research [9] into
stochastic analysis of microstructure and the determination
of a representative volume element (RVE). The probabilities
of porosity, percolation, and anisotropy are calculated by
using the moving window method. Then, by adopting the
idea of finite-size scaling, the size of the RVE is determined
when these probabilities are convergent with the increase of
the sub-volume-size L of the moving window. A RVE is a
statistically representative volume containing a sufficiently
large set of microstructure elements such that their influence
on the average macroscopic property (porosity, elasticity,
permeability, etc.) has converged when a larger volume
element is taken.

A RVE is insufficient for upscaling because the extrap-
olation from microscale to macroscale is also controlled by
some percolation quantities. For a complex multiscale system,
it is necessary to extract universally invariant quantities and
basic percolation quantities to ensure the upscaling for specific
structures. In the following we present the main quantities
of percolation theory that are connected to scaling laws, the
method of extracting these quantities, and the relationships
of these quantities within a multiscale strategy based on
microtomographic data.

A. Percolation and scaling quantities from microtomography

The original data of microtomography are 8–32 bit images
from x-ray CT scans. Preprocessing is necessary to select and
label the phase of interest. This target phase can be pores,
grains, or any kind of material that is separated from the matrix
by its intensity value in the images. The intensity corresponds
to the atomic number of the material, a high atomic number
giving a bright image and a low atomic number giving a darker
image. The bitmap images are converted into binary images
through a segmentation process that relies on attributing an
intensity spectrum to the target phase. This segmentation is
used to construct a 3D binary model from the tomography
slices. The binary microstructural model could be considered
as a simple cubic lattice model, in which every cubic cell (or
site) is equivalent to a voxel in image processing. In the simple
cubic lattice model, the nearest neighbors are voxels with one
common plane. A cluster is a group of nearest neighbors of the
same material which are connected to each other. The labeling
of clusters is a process of giving all cells within the same
cluster the same label. The Hoshen-Kopelman algorithm [12]
is used to reduce the computing time in this procedure.

1. Percolation threshold

The percolation threshold pc is defined as the lowest volume
fraction at which a percolating cluster begins to form. To find
the percolation threshold, it is essential to have models with
similar structures but different volume fractions.

We introduce here a morphological technique to determine
the percolation threshold of a microstructure by deflating
(shrinking) and inflating (expanding) the target phase (see
Appendix B). A deflation operation consists in moving the
boundaries of clusters one voxel inward in all directions
(positive and negative, in the x, y, and z directions). It reduces
the volume fraction and breaks the weakest bond. An inflation
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operation consists in moving boundaries outward. It increases
the volume fraction and might cause the nearest clusters to be
connected. Both operations keep the orientation of clusters.
In this way, a series of derivative models is created from the
original model. These models have different volume fractions
but retain a structure similar to that of the original sample. By
analyzing the percolation of these models, the critical model
is identified as the percolating model that is the closest to
nonpercolating models. The volume fraction of the critical
model is recognized as the percolation threshold. The detailed
algorithm for deflating and inflating and its features are given
in Appendix B.

This method is suitable to any kind of structure. However,
two limitations need to be considered: (1) By shrinking and
expanding the target phase, we can estimate the percolation
threshold, but we cannot give an accurate value, because these
operations cannot create continuous volume fractions. Moving
boundaries in positive and negative directions in separate
operations and creating intermediate (half-step) deflated or
inflated models can improve the accuracy of the algorithm.
(2) Deflation and inflation represent one simple way of
changing the volume fraction of the microstructure. It is
ideal for isotropic clusters. For anisotropic clusters, although
deflation and inflation do not change the orientation of
individual clusters, they gradually change the ratio of the
principal axes of the orientation tensors. In our future work, we
will present methods particularly suited for anisotropic cases
because they preserve the ratio of the principal axes of tensors
in the deflation and inflation operations. The rationale of this
paper is to first benchmark the simpler method.

2. Critical exponents

There are several different critical exponents, such as the
critical exponent of the correlation length, critical exponents
of the mean cluster size, the critical exponent of strength, the
Fisher exponent, the specific heat exponent, etc., but only two
are independent. In most cases the critical exponent of the
correlation length is the easiest to calculate.

The correlation length ξ represents some average distance
between any two sites belonging to the same cluster [3]. It is
defined as

ξ 2 = 2
∑

s R2
s s

2ns∑
s s2ns

, (1)

where s is the number of sites of a cluster, ns is the number of
such s-site clusters per lattice site, and Rs defined as

R2
s =

∑s

i=1
(|xi − x0|2/s) (2)

is the radius of a complex cluster of s sites; here x0 =∑s
i=1 (xi/s) is the position of the center of mass of the cluster,

and xi is the position of the ith site in the cluster. The correlation
length ξ diverges when the volume fraction p approaches the
percolation threshold pc as

ξ ∝ |p − pc|−ν . (3)

Here ν is the critical exponent of the correlation length (or
correlation length exponent). It can be extracted by a finite-
size-scaling scheme from the local percolation probabilities
λ(p,L) of different subvolume sizes L and different volume

fractions p [9,13]. The finite-size-scaling scheme has the
relationship

pav − pc ∝ L−1/ν, (4)

where pav = ∫
p (dλ/dp) dp, and pc is the volume fraction

when a nonzero probability of percolation is first detected for
the corresponding subvolume size L. Thus, with a group of
results of local percolation probabilities, the critical exponent
of the correlation length ν can be obtained by fitting log10 L

to log10(pav − pc).

3. Fractal dimension

The fractal dimension D is the most popular measure for
scale invariance currently used in the literature. It is derived
from a power law describing a characteristic versus a statistical
variable. In percolation theory, the fractal dimension is one
of the variables in scaling laws together with other critical
exponents. The fractal dimension can be found from the
relative size and the number of clusters defined as

D = log10 N
(
l � R

Rmax

)

log10 l
( = R

Rmax

) , (5)

where the relative size of cluster l is the radius in Eq. (2)
normalized by the radius of the largest cluster; the number of
clusters N includes clusters that are equal to or larger than the
normalized relative radius.

B. Multiscale strategy

We evaluate the usefulness of extraction of percolation
quantities as one method of upscaling material properties from
microtomography. From percolation theory, the relationships
of critical exponents, including the fractal dimension D and
lattice dimension d, are scaling laws [3]. They have the form of
D = d − β/ν, νD = β + γ, 2 − α = 2β + γ, etc., where β

is the critical exponent of strength, γ is the critical exponent of
mean cluster size, and α is the specific heat exponent. For the
3D simple cubic lattice model, we have the lattice dimension of
d = 3. Since there are only two independent critical exponents,
the fractal dimension can be one of these; with any two critical
exponents we can derive all other critical exponents. These
critical exponents and scaling laws are used for upscaling of
properties. The percolation threshold and correlation length
are also basic quantities considered in upscaling. The main
idea is illustrated in Fig. 1.

The stochastic analysis (left column of Fig. 1) was described
in our previous research [9]; it provides the probabilities
of porosity, percolation, and anisotropy of different scales
(limited to the 3D microstructure model), and can be used to
determine the size of the RVE. Different numerical simulation
methods, such as finite-element, finite-difference, and lattice-
Boltzmann methods, have been used to compute material
properties of microstructures [14]. Previous computations
were based on arbitrarily selected volume size. We suggest
that simulations should be based on the RVE, since only the
RVE can represent the general characteristics.
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FIG. 1. (Color online) Strategy from microtomography to macroscale properties.
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The right side of Fig. 1 describes the method used in this
paper: (1) cluster analysis for deriving the fractal dimension
D; (2) finite-size-scaling scheme using the probability of
percolation to derive the critical exponent of the correlation
length ν; (3) inflation or deflation of the original structure to
determine the percolation threshold from a series of derivative
models. The critical model with percolation threshold provides
another way to extract the fractal dimension D and the
crossover length ξ . The crossover length is a special correlation
length separating the critical and noncritical behavior. When
we get the critical exponent of the correlation length ν and the
fractal dimension D from individual samples, the final derived
scaling laws are exact for the specific structures.

III. CASE STUDIES

We present five samples to show the capability of our ap-
proach for different structured two-phase media. The samples
are a synthetic sandstone sample, a bread sample, two highly
deformed rock samples, and one tree branch. Only the pore
structures are analyzed in these samples; thus the volume
fraction used above is replaced by the porosity in the following
analyses.

A. Synthetic sandstone sample as a benchmark

The synthetic sandstone sample is made by compacting
glass beads and cementing with a calcite in situ precipitation
system. The porosity of the sample is 24.44%. It is percolating
in all three directions and almost isotropic. More detailed
information about the sample can be found in [9]. The RVE
size of the sandstone sample was defined as 1 mm3. Hence we
analyze a cube of 1 mm3 which corresponds to a 4003-voxel
model.

Porosities and percolation results are listed in Table I
for original and derivative models obtained by deflating and
inflating the pore structure of the samples. From the second
and third columns, we can see that the sixth deflated derivative
model of the sandstone sample with a porosity of 3.94% is
percolating only in the z direction. Models with more deflation
steps are not percolating. Models with fewer deflation steps are
percolating in three directions. We recognize the sixth deflated
model as the critical model because it is the percolating
model which is the closest to the nonpercolating models. The
associated porosity of 3.94% is recognized as the percolation
threshold.

The value of the percolation threshold obtained by our
method for the synthetic sandstone is an order of magnitude
smaller than that expected for the simple cubic lattice model
obtained from random number simulations (31.16%) [3]. The
pores of the synthetic sandstone are unlike the mathematical
random lattice model as they are not randomly distributed
in 3D space, but structured. This structure derives from the
compaction mechanism and the close packing of grains,
which are not considered in the random number models.
This compaction can be simulated mathematically. Bentz [15]
created virtual permeable discrete microstructural models and
obtained a similar percolation threshold of (3.2 ± 0.4)% for
porous media. This result is similar to our value of 3.94%
and strongly supports the result for the percolation threshold
obtained from our synthetic sandstone sample.

FIG. 2. (Color online) Mass density ρ(L) versus cubic size L of
the derivative critical model of the sandstone sample. The slope for
small cubic size L corresponds to D − d; thus the fractal dimension
D is obtained. The plateau corresponds to the porosity for large
cubic size L. The transition between the sloping line and the plateau
corresponds to the crossover length ξ .

We can extract more information from the critical model
following the statistics of the 2D simulation proposed by
Kapitulnik et al. [16]. The analyzed variable is the mass
density ρ(L), which is the number of voxels belonging to
the largest cluster per lattice in the measured cube with side
length L. When the porosity φ > pc, ρ(L) = const; while
at the percolation threshold, the relationship has the form of
ρ(L) ∝ LD−d . As shown in Fig. 2, ρ(L) is linearly decreasing
with log10 (L) when Lis small. The fitting slope is D − d and
equal to −0.609; thus the fractal dimension D = 2.391 is
obtained, which is close to the theoretical result 2.5 [3]. For
increasing side length the mass density converges to a constant
value. The transition from sloping line to plateau should
correspond to the crossover length ξ separating the critical
from the noncritical behavior. In Fig. 2 the transition occurs at
log10(L) = 1.3; thus ξ is around 20 voxels, corresponding to
50 μm.

Figure 2 gives a typical illustration of a scale tran-
sition showing that extrapolation from the microscale to
the macroscale is controlled by percolation quantities. An
upscaling of permeabilities obtained in a laboratory test
to a large field scale cannot be done without considering
percolation quantities. Assume, for instance, that a laboratory
measurement of porosity in a 1 mm3 sandstone sample from
a reservoir is used in conjunction with classical permeability-
porosity relationships to derive the productivity of a large-scale
oil field. The sample is assumed to have reached the percolation
threshold but it is smaller than the correlation length. Since
ρ(L) ∝ LD−d it follows that for a theoretical fractal dimension
of D = 2.5 and a corresponding d = 3, the ratio of ρ(L = 106)
to ρ(L = 1) for the two scales of L = 1 km and L = 1 mm
is 1/1000. This implies that the amount of extractable oil
from the reservoir of a scale of 1 km is only 1/1000 of that
predicted by 1 mm3 sample with ρ(L) = const. Stauffer and
Aharony [3] gave this example to emphasize the necessity for
deriving additional scaling parameters for the prediction of oil
recovery in a petroleum reservoir.

We proceed now to a comparison with a measured percola-
tion parameter from the synthetic sandstone. Before upscaling
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material properties we need to identify the other critical
exponents. From the stochastic analysis [9], a series of local
probabilities of percolation in three directions of the sandstone
sample is obtained for subvolume size from 17 to 73 voxels;
see Fig. 3(a). With these probabilities and fitting log10 L and
log10(pav − pc), the critical exponent of the correlation length
ν = 0.885 is obtained [Fig. 3(b)] for our synthetic sandstone
sample. It is very close to the theoretical analysis result of
0.88 [3]. In addition, the percolation thresholds of finite sizes
in Fig. 3(a) converge from 7% to 3%, asymptotically.

The analysis showed that the correlation length exponent
and the fractal dimension extracted from the sandstone sample
are close to the theoretical values. The percolation threshold
of this structured medium is 3.94%, while the sample has
a porosity of 24.4%, which is far above the percolation
threshold. In addition, the crossover length of the critical
model is relatively small, i.e., 50 μm. From Eq. (3) we derive
that the higher the porosity the smaller is the correlation
length; therefore the crossover length of the original synthetic
sandstone sample should be smaller than 50 μm. Based upon
these observations, we can directly use the transport properties
obtained from the microscale for upscale modeling to the
macroscale. This deduction is verified up to laboratory scale;
see Appendix C. The adjustment performed in the example
given by Stauffer and Aharony [3] does not apply in this
sample. This statement is only true when the sample is proven
to be above the crossover length and the percolation threshold.

B. Bread sample representing high-porosity media

Fermented bakery products such as bread and cake are
characterized by a high porosity. Previous x-ray CT scan
analyses on the microstructure of bread aimed at deriving
mechanical properties [17]. Here, we present an analysis of the
percolation threshold and critical exponents. The resolution
of the bread sample in our case study is 18.33 μm and the
porosity is 82%. The pore structure of the bread sample is
comparable to the grain structure of the sandstone sample. The
percolation threshold is 24.5% as obtained from the deflation of

the cells; see Table I. This percolation threshold is the highest
of all investigated samples, and it is close to the result of
3D random models of 33.6%. The probabilities of percolation
and the finite-size-scaling scheme resolve a critical exponent
of the correlation length of 0.906, which is slightly larger
than the theoretical value of 0.88 [3]. This result is limited by
the relatively large size of the pores compared to the size of
the subvolume. For L � 20 voxels, no complete curves can
be created for local probabilities of percolation because of
the high porosity of the breads. The range of L is therefore
extremely limited in finite-size scaling. Thus, the result of the
analysis, although meaningful, suffers from lower reliability.
The fractal dimension from the mass density versus L is 2.3 and
the crossover length is around 24 voxels. This case study gives
reasonable results and confirms that the approach is suitable
for high-porosity samples with some stipulations on reliability.

C. Complex structure of a highly deformed rock

Fusseis et al. [18] analyzed highly deformed rocks (my-
lonites) from the Redbank Shear Zone in central Australia.
The investigated sample shows a complex, highly anisotropic
arrangement of micropores which are related to the shear
deformation. Liu et al. [19] applied the stochastic method
to two subsamples from the perimeter and the center of the
shear zone, respectively. In the following discussion, we focus
on the applicability of the analysis presented above and refer
to the cited literature for a micromechanical and fluid flow
interpretation of the results. We discuss results for a cube of
9013 voxels from the 20483 image volume for both subsamples
with the resolution of 1.6 μm.

The porosity and percolation of the original and deflated
and inflated models are listed in Table I. For the subsample
from the perimeter of the shear zone, the second inflation
step with porosity 6.71% delivers the first percolation in three
orthogonal directions. The original and deflated models and
the first inflation step are not percolating in any direction.
For the subsample from the center of the shear zone, all
deflated models are not percolating; the original model with

TABLE I. Porosity and percolation of sampling models. In the operation column, 0 denotes the original model, negative values represent
deflating, and positive values represent inflating. Critical models and percolation threshold are set in bold.

Operation Sandstone Bread Mylonite–perimeter Mylonite–center Tree branch

φ (%) Perc φ (%) Perc φ (%) Perc φ (%) Perc φ (%) Perc

−11 21.46 0
−10 24.48 y
−9 27.90 3
−8 1.33 0 31.76 3
−7 2.38 0 36.12 3
−6 3.94 z 41.00 3
−5 6.09 3 46.44 3
−4 8.82 3 52.47 3 0.06 0
−3 12.10 3 59.11 3 0.0009 0 0.31 z
−2 15.84 3 66.35 3 0.0023 0 0.016 0 1.20 z
−1 19.96 3 74.13 3 0.102 0 0.206 0 3.88 z
0 24.42 3 82.16 3 1.090 0 2.704 3 11.99 z

+1 3.27 0 8.45 3
+2 6.71 3 17.25 3
+3 11.11 3 27.61 3
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FIG. 3. (Color online) Sandstone sample: (a) local probabilities of percolation λ(p,L), the starting points of λ(p,L) �= 0 representing the
percolation threshold of finite sizes range from 0.03 to 0.07; and (b) the fitting of the correlation length exponent based on the results of (a) and
the finite-size-scaling scheme of Eq. (4).

a porosity of 2.704% is percolating, and all inflated models
are percolating as well. Thus the percolation threshold for the
perimeter subsample is 6.71%, and for the shear zone center
sub-sample is 2.704%. The pore structure in the perimeter
subsample is irregular; and the center subsample has two
perpendicular fractures [19]. For such a fractured model a
low percolation threshold seems reasonable.

Figure 4 gives the relationships of cluster size and cluster
number for the perimeter subsample. In the double-logarithm
coordinates [Fig. 4(a)], the cluster number decreases almost
linearly with increase in the cluster size for small cluster sizes.
There is a transition segment of “medium-size clusters” which
generally have 2–10 clusters of the same size. Large-size
clusters are often unique. The linear relationship between the
logarithms of the cluster size and cluster number does not
define a fractal dimension. The fractal dimension can be found
instead from the relative cluster size with respect to radius
and the number of clusters defined in Eq. (5). The fractal
dimension is 2.457 for the perimeter subsample, as shown in
Fig. 4(b). For the shear zone center subsample (not pictured),
it is 2.825.

The stochastic analysis showed that the perimeter subsam-
ple is not percolating at a scale larger than 400 μm [19]. From
the local probabilities of percolation of different subvolume
sizes, we obtained a critical exponent of the correlation length
of 0.726. This value is much less than that of the sandstone
sample and the theoretical result. For the center subsample, the
pore structure is extremely anisotropic. It has a low probability
of percolation for small subvolume sizes, but it is percolating
when L � 400 μm [19]. The local probabilities of percolation
for different L are not regular as shown in Fig. 3(a), and it is
difficult to fit a critical exponent.

D. Strongly anisotropic tree branch sample

Our tree branch sample is an Acacia ayersiana with
diameter of 6.8 mm. The branch is scanned with a resolution
of 3.4 μm for each voxel. Stochastic analysis shows that
the probabilities of porosity, percolation, and anisotropy are
convergent when the subvolume size is 300 voxels for the
central part of the sample. We analyze the slightly larger
volume of a 400-voxel cube using the same methodology.

FIG. 4. (Color online) Mylonite subsample from the perimeter of the shear zone: (a) cluster size in voxels and cluster number counts exhibit
two linear segments for cluster sizes larger than 10; a sharp transition to a horizontal slope is observed for cluster sizes larger than 1000; and
(b) relative cluster size l and cluster number Ngiving fractal dimension according to Eq. (5).
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FIG. 5. (Color online) Tree branch sample: (a) cluster size in voxels and cluster number counts also show two linear segments for clusters
larger than 2, and the break to a horizontal slope occurs at cluster size 1000; and (b) relative cluster size l and cluster number N giving fractal
dimension according to Eq. (5); there is a vertical drop for large l in this strongly anisotropic sample.

The percolation threshold of the sample is merely 0.31%, the
lowest in Table I. For this porosity, there are three percolating
clusters in the derivative model. According to traditional
percolation theory, percolation is achieved when the first and
largest cluster is percolating and all other smaller clusters are
nonpercolating. For the strongly oriented tree branch sample,
this basic assumption is not valid. There are 39 clusters which
are all percolating in the z direction (the growing direction)
in the 400-cube volume but not in the other two directions.
Owing to this important difference, the results for this strongly
structured medium are quite different from those for the more
isotropic examples above.

Although the distribution of the logarithm of the cluster
size versus number is similar to that for the mylonite sample
[see Fig. 5(a) and compare with Fig. 4(a)], the relative size
of the cluster, l, versus the number N in Eq. (5) shown in
Fig. 5(b) is different from that in Fig. 4(b). The most significant
characteristic in Fig. 5(b) is that there is a near-vertical drop
for large clusters. The reason is the strong anisotropy with
multiple percolating clusters of the sample. In the tree branch,
percolating clusters could be within a single conduit or several

nearby conduits joined by sideways-connected cells (pit cells).
According to the definition in Eq. (2), clusters with more or
fewer conduits could have similar radii if conduits are not
located far away from each other. The fitted line of the main
part of the log10(N ) vs log10(l) curve gives a fractal dimension
of 1.427 for small clusters in Fig. 5(b). When all clusters are
considered, the slope of the trend line indicates the fractal
dimension of 1.486. These values are rather different from the
theoretical value of 2.5 for general 3D models. Our results are
consistent with previous results for wood anatomy structure,
where the fractal dimension obtained by different methods
was mostly in a range of D = 1.2–1.6 [20]. Our result is in
the middle of the range and is reasonable for illustrating the
characteristics of wood anatomy structure.

Stochastic analysis shows that when the subvolume size is
larger than the maximum conduit diameter (∼23.8 μm), the
probabilities of percolation in three directions are extremely
low, while the probabilities of percolation in the z direction
are always much higher and have similar distributions to those
shown in Fig. 3(a); see Fig. 6(a). We tried to extract the critical
exponent of the correlation length from the probabilities of

FIG. 6. (Color online) Tree branch sample. (a) Local probabilities of percolation λ(p,L); all the starting points of λ(p,L) �= 0 representing
the percolation thresholds of finite sizes are �0.01. (b) The fitting of the correlation length exponent based on the results of (a) and
finite-size-scaling scheme of Eq. (4); the fit of the critical exponent fails beyond a cubic size of log10(L) = 1.6 or L = 40.
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percolation in the z direction of different subvolume sizes;
however, the resulting curve is inconclusive [see Fig. 6(b)].
Although small subvolume sizes give an exponent of 0.4575,
obviously it cannot be extrapolated to the large scale. We
conclude that the finite-size-scaling scheme encounters diffi-
culties for strongly anisotropic and heterogeneous structured
media and new methods and measures need to be devised for
materials of this type.

IV. SUMMARY AND RESULTS

In this paper, we have applied percolation theory to
the analysis of microtomographic images and have tested
the acquisition of quantities such as percolation threshold,
crossover length, fractal dimension, and critical exponent of
the correlation length. The ultimate goal of the analysis is
to directly derive the scaling laws for upscaling of material
properties from x-ray CT scan data. The approach works
well on the benchmark sample, a synthetic sandstone sample.
By shrinking or expanding the target phase and applying
percolation analysis, we obtain a critical model and a reliable
estimation of the percolation threshold. The crossover length is
determined from the critical model by numerical simulations.
The fractal dimension can be obtained either from the critical
model or from the relative size distribution of clusters.
Stochastic analysis results can be directly used to extract the
critical exponent of the correlation length. The bread sample
also gives similar outcomes and confirms the validity of the
approach to randomly structured media.

The extrapolation of the theory to anisotropic samples
gives some useful results but it fails in some aspect of the
scaling relationships, particularly the derivation of the critical
exponents. For the tree branch sample, multiple percolating
clusters with similar sizes are encountered in one model.
However, the fractal dimension is still in the range that is
determined by other methods. We conclude that the finite-
size-scaling scheme does not work for strongly heterogeneous
and anisotropic samples, because of the failure to extract the
critical exponent of the correlation length. A probable reason
is that the strongly heterogeneous structure leads to additional
uncertainties in the correlation length and its relevant critical
exponents. For heterogeneous samples, it is possible to obtain
the fractal dimension from the percolation theory analysis, but
it is difficult to extract the critical exponent of the correlation
length. New methods and measures need to be devised.

V. DISCUSSION

We have shown in this paper that percolation theory can be
directly applied to CT scan data. The success of the application
of percolation analysis to CT scan data shows that percolation
theory not only is available for mathematical and experimental
models but now provides a comprehensive assessment tool for
any kind of tomography data set.

Percolation theory is the most direct tool for upscaling [21].
It allows the interpreter to derive scale-dependent material
properties (see, e.g., Appendix C) and can be used as a
robust method for identifying possible scale transitions. We
propose that the same method can be used in conjunction
with observations from larger-scale tomography data sets,

thus providing the possibility for investigation of multifractal
scale transitions. In order to make this analysis meaningful for
strongly anisotropic samples, further work is still required.

The percolation threshold can be reliably obtained from
deflation and inflation of the target phase for all samples
when only a single CT scan is available. The estimation of
the percolation threshold is an essential analysis because it
significantly influences material properties [22]. The method-
ology developed in this paper provides the possibility to detect
the relationship of material properties with the percolation
threshold for any natural, structured medium. This method
is necessary for most micro-CT analyses since only on the
rarest occasion will more than one static image be available.
A limitation of the analysis is that it only considers natural
processes with isotropic changes of the structure. The degree
of anisotropy of the structural changes will control the error of
the method. In order to test this we have investigated micro-CT
images of a melting experiment; the results will be presented
elsewhere. Comparison of this melting experiment with our
expansion and deflation experiment showed that the error is
within the range of the natural experiment on sea ice [4]. We
therefore conclude that our method is acceptable for slightly
anisotropic natural processes.

The percolation thresholds listed in Table I correspond to
the indicated calculated model sizes. These sizes are RVE
sizes or relatively quite large sizes. We have found that
these percolation thresholds are consistent with the percolation
thresholds of finite sizes. Two of them, the sandstone sample
and the tree branch sample, are reported in Figs. 3(a) and
6(a); the other two, the subsamples of mylonite, have been
reported in Fig. 5 of Ref. [19]. We therefore conclude that the
percolation thresholds detected by the deflating and inflating
algorithm are valid for larger models provided that a similar
structure and porosity is preserved.

The fractal dimension can be obtained reliably for all sam-
ples. This implies that the geometry can be derived accurately,
thus giving a representative volume element for the geometry.
This is confirmed by the convergence of the probability
of porosity and percolation for all samples. Note, however,
that convergence was not achieved for the probability of
anisotropy of the investigated mylonite sample. We identified
a shortcoming in the finite-size-scaling scheme for strongly
anisotropic samples, which needs to be investigated in future
studies.

The fractal dimension is a very useful quantity that can
be used to assess the energetics of deformation processes for
instance. In observations of highly deformed rock, geologists
always find that at the center of the shear zone, the minerals
are much more finely grained than at the perimeter (Fig. 1 of
Ref. [18]). Our investigated mylonite sample also has a higher
fractal dimension in the center than at the margin of the shear
zone. According to the energy scaling law [23], the dissipated
energy W after the fragmentation of a solid is proportional
to the volume V to the power of D/3. That implies that a
higher fractal dimension indicates more dissipated energy.
This preliminary result demonstrates the link between the
fractal dimension, energy dissipation, and deformation.

Future work will include multiphase materials. Although
this paper only presented two-phase case studies (targeted
pores) the approach is suitably generic to any kind of material
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phase. Percolation analysis can also be applied to derive elastic
percolation, electrical percolation, thermal conductivity, and
many other properties. For strongly anisotropic samples we
will combine the use of the probabilities of porosity, percola-
tion, and anisotropy of microtomography with the statistical
moment method. This method will allow the generation of
derivative models which retain the material anisotropy. We will
thus create digital samples, which represent the characteristics
of the microstructure, and use these for the upscaling of
properties [24].
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APPENDIX A: PERCOLATION THEORY

Percolation theory was introduced for the analysis of
mathematically random models. Consider a lattice model,
every site of which has the probability p to be occupied and the
probability (1 − p) to be unoccupied. This is the mathematical
definition of a random model. In random models, every site
is independent of the others. The probability p is called the
concentration in percolation theory; p also stands for the
volume fraction of occupied sites in the model. A typical 2D
square site model is illustrated in Fig. 7, in which 60% of
sites are occupied. The nearest neighbors are sites with one
common line in square lattice models. A cluster is defined as
a group of connected nearest neighbors which are occupied. A
percolating cluster is generally the largest cluster that reaches
two opposite end boundaries of the model, and in this case,
the model is defined as percolating.

As the concentration p increases from 0, the average cluster
size becomes larger. Only when the concentration is high
enough is it possible to have a large percolating cluster. A
typical probability of percolation λ versus concentration p

for random models is illustrated in Fig. 8. The particular
concentration at which percolation of the model first occurs
is the critical percolation threshold, which is denoted as pc.
The (critical) percolation threshold is a crucial parameter, as
at this point, the behavior of the model changes drastically.

FIG. 7. (Color online) A 20×20 square lattice model with p =
0.6. The largest cluster (light gray, or green online) connects top and
bottom boundaries; thus this mode is percolating.

For example, a porous medium turns from an impermeable
into a permeable medium, a thermodynamic system has a
phase transition, and a magnetic or electrical system becomes
conductive. Percolation thresholds for different lattice models
have been determined mathematically, e.g., for a 2D square
lattice model pc = 0.5975, and for a 3D simple cubic lattice
model pc = 0.336.

When the concentration of the model is very close to
the percolation threshold pc, the model is at the critical
point and critical point phenomena occur. Percolation theory
studies the percolation or connectivity of the model and the
characteristics of clusters versus concentration, and focuses on
the critical point phenomena and their description, including
power-law divergences of some quantities described by critical
exponents, the fractal dimension, universality, and scaling laws
among different quantities. Many quantities and concepts are
defined in percolation theory in order to describe critical point
phenomena.

The most important concepts, especially used in this paper,
are the correlation length, fractal dimension, and critical
exponents. The correlation length is a measurement of the

FIG. 8. (Color online) General feature of probability of percola-
tion λ changing with concentration p. When p < pc, λ = 0; when
p � pc, λ � 0; and λ → 1 when p → 1.
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FIG. 9. (Color online) A cube becomes smaller by deflating.

largest “hole” in the largest cluster (holes are here understood
as the areas occupied by the dark gray and white sites in
Fig. 7). The fractal dimension is a statistical quantity that gives
an indication of how a fragmented geometric shape occupies
space at different scales. In percolation theory, there are some
quantities which are divergent when the concentration p is
close to the percolation threshold pc. There exist relationships
like A ∝ (p − pc)−B , and B is called the critical exponent
of A. The definitions of correlation length, fractal dimension,
and critical exponent of the correlation length can be found in
Ref. [3] for more in-depth reading.

APPENDIX B: THE DEFLATION AND INFLATION
ALGORITHM FOR PERCOLATION THRESHOLD

DETECTION

The algorithm for deflation and inflation (interchangeable
with shrinking and expanding) is simple and straightforward.
As mentioned in Sec. II, our analyses are built on 3D binary
models. In 3D binary models, the target phase is labeled as 0
and the matrix is labeled as 1. A deflation or inflation operation
is simply a modification of labels of the voxels in the model,
i.e., deflation changes a label 0 to 1 for any target phase
voxel that has one or more nearest neighbors belonging to
the matrix, inflation changes a label 1 to 0 for any matrix
voxel when it has one or more nearest neighbors belonging
to the target phase. Only nearest neighbors are considered
when modifying labels. This is consistent with the definition of
clusters in the percolation analysis. The operations of inflation
and deflation are manipulated step by step from the original
model to inflation and deflation models, respectively.

The typical characteristics of deflation and inflation are
briefly shown in Figs. 9–11 by three simplest structures. In
Fig. 9, a cube becomes a smaller cube by deflation. In Fig. 10,
a voxel becomes an octahedron by inflation. This is because the
algorithm defines that only the nearest neighbors are influenced
by deflation or inflation. Reversibly, an octahedron becomes a

FIG. 10. (Color online) A voxel becomes an octahedron by
inflating. An octahedron also turns into a voxel by deflating.

FIG. 11. (Color online) The anisotropy is changing during infla-
tion or deflation for an anisotropic cluster.

FIG. 12. (Color online) Evolution of the isosurface of the sand-
stone sample in a 1 mm3 volume while shrinking the pore structure.
(a) The original model; (b)–(e) after 2,4,6,8 steps of deflation,
respectively; (f) combination showing original and derivative models;
(g) magnified image of central part of (f); numbers 1 to 4 label the
gradually sealed pores.
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voxel by deflation. In Fig. 11, the anisotropy is changing while
deflation or inflation occurs for an anisotropic cluster. The
isotropy index (as defined and calculated in [9]) is increasing
from left to right from 0 to 0.35, 0.57, and 0.70 in this figure.
These figures show us that the nearest-neighbor deflation or
inflation operation is not always reversible and can change the
shape or the anisotropy after excessive deflation or inflation
operations.

However, for a complex cluster, the algorithm works well
as shown in Fig. 12 for the synthetic sandstone sample. In
this case the limitations mentioned above only affect the small
and isolated clusters, which are immaterial for a percolation
analysis. In this first stage, the deflation or inflation operation is
the most feasible and economic approach to generate derivative
models.

Figure 12 shows that the isosurfaces (boundaries between
grains and pores) move toward the inside of the pores while
shrinking, and the decrease in volume fraction is obvious.
The original model and derivative models after two and four
steps of deflation [Figs. 12(a)–12(c)] have good connectivity
for most pores. The model after the sixth deflation shown in
Fig. 12(d) is the critical model, which is percolating only in
the z direction. We can see that the connectivity is weaker
in Fig. 12(d) than in Figs. 12(a)–12(c). The model after the
eighth deflation [Fig. 12(e)] is not percolating and most pores
are separated from each other. The overlap of the original
model and derivative models together, Fig. 12(f), highlights
the sealing process of pores. The magnified image of the
central part of Fig. 12(f) shows clearly the progression in
Fig. 12(g). The numbers in the magnified image correspond to
the following: (1) a position where the pore is sealed on the
second deflation; (2) and (3) positions where the pore is sealed
on the fourth and sixth deflations, respectively; (4) a position
where the pore is still open after eight deflation operations.
This figure verifies that in natural samples a series of derivative
models with similar structures but different volume fractions
can be generated. It also shows that the deflation process

gives acceptable deformation of complicated clusters, as we
expected.

APPENDIX C: AN EXAMPLE OF UPSCALING
PERMEABILITY

The permeability of the synthetic sandstone sample was
computed and compared with experimental data. We used two
methods to compute permeability at the microscale. The first
one is the estimation of permeability according to Pittman’s
empirical equation [25]. It gives the relationship among the
pore aperture radius r (in μm), permeability K (in mD), and
porosity φ (in %) as

log10 r = −0.117 + 0.475 log10 K − 0.099 log10 φ, (C1)

where r represents the pore aperture when it is interconnected
to form an effective pore system that controls the fluid
flow. The pore aperture has an equivalent definition as the
pipe diameter r = 4φ/sp, where sp is the specific surface
area. The second method for permeability computation is
the PERMSOLVER [26], which uses a finite-difference method
to solve Stokes flow under a given pressure difference and
microstructure.

With the RVE size 1 mm3, we estimate the permeability
using Eq. (C1) to be 4228 mD, and the computational result
from PERMSOLVER is 1763 mD. Two experimental tests were
carried out on the scale of centimeters (around 3.8-cm-
diameter cylinder). The Klinkenberg (or air) permeability is
4500 mD, and the water permeability is 2567. The empirical
estimated result is very close to the air permeability and the
PERMSOLVER result is relatively close to the water permeability.
Since an accurate determination of permeability is difficult for
both numerical computation and experimental tests [14(b)],
the differences between these results are acceptable. These
comparisons show that the method for detecting the scale
dependence of permeability is accurate from the crossover
length of 50 μm to the centimeter laboratory scale.
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