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In this study, the fluctuation-dissipation theory is invoked to shed light on input-output interindustrial relations
at a macroscopic level by its application to indices of industrial production (IIP) data for Japan. Statistical
noise arising from finiteness of the time series data is carefully removed by making use of the random matrix
theory in an eigenvalue analysis of the correlation matrix; as a result, two dominant eigenmodes are detected. Our
previous study successfully used these two modes to demonstrate the existence of intrinsic business cycles. Here a
correlation matrix constructed from the two modes describes genuine interindustrial correlations in a statistically
meaningful way. Furthermore, it enables us to quantitatively discuss the relationship between shipments of
final demand goods and production of intermediate goods in a linear response framework. We also investigate
distinctive external stimuli for the Japanese economy exerted by the current global economic crisis. These stimuli
are derived from residuals of moving-average fluctuations of the IIP remaining after subtracting the long-period
components arising from inherent business cycles. The observation reveals that the fluctuation-dissipation theory
is applicable to an economic system that is supposed to be far from physical equilibrium.
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I. INTRODUCTION

Both the business cycle and the interindustrial relationship
are long-standing basic issues in the field of macroeconomics,
and they have been addressed by a number of economists.
Recently, we analyzed [1] business cycles in Japan using
indices of industrial production (IIP), an economic indicator
that measures current conditions of production activities
throughout the nation on a monthly basis. Careful noise
elimination enabled us to extract business cycles with periods
of 40 and 60 months that were hidden behind complicated
stochastic behaviors of the indices.

In this accompanying paper, we focus our attention on
the interindustrial relationship by analyzing IIP data in a
framework of the linear response theory; the fluctuation-
dissipation (FD) theory plays a vital role in the analysis of IIP
data. We also discuss the difference between moving-average
fluctuations in the original data and long-period components
arising from inherent business cycles. The residuals may be
interpretable as a sign of external stimuli to the economic
system. The recent worldwide recession offers us a good
opportunity to conduct this study because it delivered an
unprecedented shock to the economic system of Japan.

*hiyetomi@sc.niigata-u.ac.jp

The interindustrial relations of an economy are conven-
tionally represented by a matrix in which each column lists
the monetary value of an industry’s inputs and each row lists
the value of the industry’s outputs, including final demand
for consumption. Such a matrix, called the input-output table,
was developed by Leontief [2,3]. This table thus measures
how many goods of one industrial sector are used as inputs for
production of goods by other industrial sectors and also the
extent to which internal production activities are influenced
by change in final demand. Leontief’s input-output analysis
can be regarded as a simplified model of Walras’s general
equilibrium theory [4] to implement real economic data for car-
rying out an empirical analysis of such economic interactions.
Currently the basic input-output table is constructed every
5 years, according to the System of National Accounts, by the
Ministry of Internal Affairs and Communications in Japan.

It should be noted that the input-output table describes
yearly averaged interindustrial relations. Although such a poor
time resolution of the table may be tolerable for budgeting of
the government on an annual basis, various day-to-day issues
faced by practitioners require them to react promptly. We thus
need a more elaborate methodology that enables investigation
of the input-output interindustrial relationship with a much
higher time resolution.

Econophysics [5–8] is a newly emerging discipline in
which physical ideas and methodologies are applied for
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understanding a wide variety of complex phenomena in
economics. We adopt this approach to address the previously
mentioned issues in macroeconomics; that is, we pay maxi-
mum attention to real data while drawing any conclusions. Of
course, it is important to remember that real data are possibly
contaminated with various kinds of noise. The random matrix
theory (RMT), combined with principal component analysis,
has been used successfully to extract genuine correlations
between different stocks hidden behind complicated noisy
market behavior [9–16]. Recently, dynamical correlations
in time series data of stock prices have been analyzed by
combining Fourier analysis with the RMT [17].

In this study, we further develop the noise elimination
method initiated in previous studies. The null hypothesis
that has been adopted thus far for extracting true mutual
correlations corresponds to shuffling time series data in a
completely random manner. Although we should distinguish
between mutual correlations and autocorrelations, both these
correlations are destroyed at the same time by the completely
random shuffling. To solve this problem, rotational random
shuffling of data in the time direction is introduced as an
alternative null hypothesis; such randomization preserves
autocorrelations involved in the original data. The new null
hypothesis thus elucidates the concept of noise elimination for
mutual correlations.

Furthermore, we borrow the concept of the FD theory [18]
from physics to elucidate the interindustrial relationship and
the response of an economic system to external stimuli.
The theory establishes a direct relationship between the
fluctuation properties of a system in equilibrium and its linear
response properties. We assume that the validity of the FD
theory in physical systems is also true for such an exotic
system, as described by the IIP. Very recently, dynamics of
the macroeconomy has been studied in the linear response
theory by taking an explicit account of heterogeneity of
microeconomic agents [19].

This paper is organized as follows. In Sec. II, we first
provide a brief review of the noise elimination from the IIP
using the RMT. A new null hypothesis based on rotational
random shuffling is introduced in Sec. III. Section IV presents
construction of a genuine correlation matrix for the IIP by
consideration of only those dominant modes that are approved
to be statistically meaningful by the RMT. We present
development of a FD theory for input-output interindustrial
relations in Sec. V. Then, in Sec. VI, we quantitatively
discuss the relationship between shipments of final demand
goods and production of intermediate goods. In Sec. VII, we
elucidate the response of the industrial activities to external
stimuli by subtracting long-period components arising from
inherent business cycles from moving-average fluctuations in
the original data. Section VIII concludes.

II. APPLICATION OF RANDOM MATRIX THEORY TO IIP

In Japan, the IIP are announced monthly by the Ministry
of Economy, Trade, and Industry [20]. For this study, we
will choose seasonally adjusted data instead of original data.
Two classification schemes of the IIP are available: indices
classified by industry and indices classified by use of goods.
We adopt the latter classification scheme because we are

FIG. 1. Input-output relationship in industrial activities of eco-
nomic system as measured by IIP in Japan. The numbers in the
parentheses denote the classification index g in Table I.

interested in input-output interindustrial relations here, which
are measured by correlations between shipments of final
demand goods and production of intermediate goods in the IIP
data. The concept is illustrated in Fig. 1. We emphasize that the
inner loop of production existing in the economic system may
give rise to a nonlinear feedback mechanism to complicate the
dynamics of the system; outputs are reused by the system as
inputs for its production activities. Table I lists the categories1

of goods along with weights assigned to each of them for
computing the average IIP. These weights are proportional
to value added produced in the corresponding categories, and
their total sum amounts to 10 000. Unfortunately, the resolution
of the IIP data for the producer goods is quite poor, which are
just categorized as mining and manufacturing and as others.

Figure 2 shows the temporal change of the averaged IIP data
for production, shipments, and inventory during the period of
January 1988 to June 2009. The ongoing global recession is
traced back to the subprime mortgage crisis in the United
States, which became apparent in 2007. The economic shock
has affected Japan without exception, leading to a dramatic
drop in the production activities of the country, as shown in
the figure.

Since some of the entries, such as g = 16 and 17, are
missing before January 1988, we use the data [20] for the
240 months from January 1988 to December 2007. Further-
more, this chosen period for the study excludes the abnormal
behavior of the IIP data due to the Great Recession. We
denote the IIP data for goods as Sα,g(tj ), where α = 1,2,

and 3 for production (value added), shipments, and inventory,
respectively. Similarly, g = 1,2, . . . ,21 denotes the 21 cate-
gories of goods, and tj = j�t with �t = 1 month and j =
1,2, . . . ,N (= 240); j = 1 and j = N correspond to 1/1988
and 12/2007, respectively. The logarithmic growth rate rα,g(tj )
is defined as

rα,g(tj ) := log10

[
Sα,g(tj+1)

Sα,g(tj )

]
, (1)

where j runs from 1 to N ′ := N − 1(=239). Then it is
normalized as

wα,g(tj ) := rα,g(tj ) − 〈rα,g〉t
σα,g

, (2)

1See Ref. [1] for details on the classification.
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TABLE I. Classification of goods according to IIP. First, the goods are classified into two categories, “final femand”
and “producer,” and then those two categories are divided into 19 and 2 subcategories, respectively. The central column
specifies the index g for the subcategories, which has, in total, 21 values. The number in the parentheses associated
with each species of goods shows its weight used to compute the averaged IIP; the weights are normalized so that
their total sum is 10 000.

No. Final demand goods (4935.4)

Investment goods (2352.5)
Capital goods (1662.1) 1 manufacturing equipment (530.7)

2 electricity (148.1)
3 communication and broadcasting (48.8)
4 agriculture (31.0)
5 construction (129.6)
6 transport (381.3)
7 offices (175.4)
8 other capital goods (217.2)

Construction goods (690.4) 9 construction (568.1)
10 engineering (122.3)

Consumer goods (2582.9)
Durable consumer goods (1267.9) 11 housework (62.3)

12 heating and cooling equipment (62.5)
13 furniture and furnishings (43.4)
14 education and amusement (246.5)
15 motor vehicles (853.2)

Nondurable 16 housework (649.7)
Consumer goods (1315.0) 17 education and amusement (105.2)

18 clothing and footwear (92.2)
19 food and beverage (467.9)

Producer goods (5064.6)

20 mining and manufacturing (4601.7)
21 others (462.9)

where 〈·〉t denotes average over time t1, . . . ,tN ′ and σα,g is
the standard deviation of rα,g over time. Definition (2) ensures
that the set w

α,g
:= {wα,g(t1),wα,g(t2), . . . ,wα,g(tN ′)} has an

average of zero and a standard deviation of 1.
Figure 3 shows an overview of how the volatility w2

α,g(tj )
of the standardized IIP data behaves on a time-goods plane.

FIG. 2. Averaged IIP data Sα for production (thick solid line),
shipment (thin solid line), and inventory (dotted line) as a function
of time t . The correlation matrix is calculated using the data in the
shaded area from January 1988 to December 2007.

Unfortunately, the visualization does not allow for detecting
any correlations involved in the IIP data. One may even doubt
whether useful information on interindustrial relations truly
exists in the data.

To answer the obvious question that would arise here, we
begin with calculating the equal-time correlation matrix C of
{w

α,g
} according to

Cα,g;β,h = 〈wα,g(t)wβ,h(t)〉t , (3)

FIG. 3. Bird’s-eye view of volatility of standardized IIP data in a
panel form, where the index � is defined as � := 21(α − 1) + g.
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whose diagonal elements are unity by definition of the
normalized growth rate wα,g(tj ). Since α(β) runs from 1 to
3 and g(h) runs from 1 to 21, the matrix C has M × M

(M = 63) components. We denote the eigenvalues and the
corresponding eigenvectors of the correlation matrix as λ(n)

and V (n), respectively:

CV (n) = λ(n)V (n), (4)

where the eigenvalues are sorted in descending order of their
values and the norm of eigenvectors is set to unity.

On the basis of the eigenvectors V (n) thus obtained, the
normalized growth rate wα,g(tj ) can be decomposed into

wα,g(tj ) =
M∑

n=1

an(tj ) V (n)
α,g. (5)

The correlation matrix C is also decomposable in terms of the
eigenvalues and eigenvectors as

C =
M∑

n=1

λ(n)V (n)V (n)T. (6)

The eigenvalues satisfy the following trace constraint:

M∑
n=1

λ(n) = M. (7)

By substituting Eq. (5) into Eq. (3) and comparing it with
Eq. (6), we find that

〈an(t)an′(t)〉t = δnn′λ(n). (8)

The eigenvalue of each eigenmode thus represents the strength
of fluctuations associated with the mode. Figure 4 shows the
temporal variation of a2

n(t), which is in sharp contrast to the
results shown in Fig. 3. The transformation of the base for
describing the IIP data reveals that very few degrees of freedom
actually are responsible for the complicated behavior of
the IIP.

Thanks to the RMT, we are able to quantify how many
eigenmodes should be considered. Probability distribution

FIG. 4. Temporal variation of strength of fluctuations associated
with each eigenmode, where n is an index assigned to eigenmodes in
descending order of their eigenvalues.

RMT

FIG. 5. Probability distribution function ρ(λ) for eigenvalues (λ)
of correlation matrix derived from IIP data, in comparison with
corresponding result of RMT represented by the solid curve.

function ρ(λ) for the eigenvalues (λ) of the correlation matrix
C is shown in Fig. 5. It is compared with the corresponding
result [21] of the RMT in the limit of infinite dimensions:

ρ(λ) =
{

Q

2π

√
(λ+−λ)(λ−λ−)

λ
for λ− � λ � λ+,

0 otherwise,
(9)

where Q := N ′/M � 3.79 (> 1) and the upper and lower
bounds λ± for λ are given as

λ± = (1 ± √
Q)2

Q
�

{
2.29,

0.237.
(10)

We see that the largest and the second largest eigenvalues,
designated as λ(1)(�9.95) and λ(2)(�3.83), are well separated
from the eigenvalue distribution predicted by the RMT,
whereas the third largest eigenvalue, λ(3)(�2.77), is adjacent
to the continuum. Therefore only 2 eigenmodes out of a total
of 63 are of statistical significance according to the RMT.

Readers may be curious about the present construction
of a correlation matrix by mixing up data for production,
shipments, and inventory because these are very different
species of data at first glance. Thus far, physicists have applied
the RMT mainly to analyses of stock data having similar
characteristics. In this sense, our approach is quite radical.
However, production, shipments, and inventory form a trinity
in the economic theory for business cycles so that those
variables should be treated on an equal footing. Using the two
dominant eigenmodes, in fact, we were successful in proving
the existence of intrinsic business cycles [1].

In passing, we note that one may favor the growth rate itself
defined by

rα,g(tj ) := Sα,g(tj+1) − Sα,g(tj )

Sα,g(tj )
(11)

for the present analysis over the logarithmic growth rate
(1). If the relative change in Sα,g(tj ) is small, we need not
distinguish between Eqs. (1) and (11) numerically. To confirm
that the results obtained here are insensitive to the choice of
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stochastic variables, we repeated the same calculation by using
Eq. (11) and found no appreciable difference between the two
calculations for the dominant eigenvalues and their associated
eigenvectors. For instance, the first three largest eigenvalues
9.95, 3.83, and 2.77, as shown in Fig. 5, are replaced with 9.96,
3.73, and 2.78, respectively.

III. ROTATIONAL RANDOM SHUFFLING

There are two major sources of noise in the IIP data. One
of them, corresponding to thermal noise in physical systems,
arises from elimination of a large number of degrees of
freedom from our scope as hidden variables. This highlights
the stochastic nature of the IIP and has a strong influence
on autocorrelation of all goods. The other source of noise
originates from the finite length of time series data. Such
statistical noise hinders the detection of correlations among
different goods in the IIP data. If one could have data of
infinite length, statistical noise would disappear in the mutual
correlations, and only thermal noise would remain. These two
types of noise should be distinguished conceptually. The RMT
is an effective tool for eliminating statistical noise from raw
data to extract genuine mutual correlations.

However, the noise reduction method based on the RMT
heavily depends on the following assumption: Stochastic
variables would be totally independent if correlations between
different variables were switched off. Such a null hypothesis
simultaneously excludes both autocorrelations and mutual
correlations. In the case of daily changes in Japanese stock
prices that were available [17] to us, we found no detectable
autocorrelations in the corresponding variables; therefore the
RMT functions ideally. In contrast, the IIP data have significant
autocorrelations, as shown in Fig. 6, where the autocorrelation
function Rα,g(t) of the normalized growth rate wα,g is
defined as

Rα,g(tm) := 1

N ′ − m

N ′−m∑
j=1

wα,g(tj )wα,g(tj+m). (12)

By definition, Rα,g(0) = 1, and if there are no autocorrelations,
Rα,g(tm) = 0 for m � 1. We observe that both production
(α = 1) and shipments (α = 2) have nontrivial values of
autocorrelations at t = 1 month, whereas there is no clear
evidence for autocorrelations for inventory (α = 3) in the
same time interval; the values averaged over 21 goods are
R1(1) � −0.31, R2(1) � −0.39, and R3(1) � 0.007. Beyond
the 1-month time lag, however, we find no appreciable
autocorrelations for any of these three categories.

To formulate the null hypothesis of the RMT using actual
data, one may shuffle the IIP data completely in the time
direction. In fact, the eigenvalue distribution of the resulting
correlation matrix reduces to that of the RMT, as demonstrated
in Fig. 7(a), where a total of 105 samples were generated.
Departure from the RMT owing to finiteness of the data size is
almost negligible even for such small-scale data as the IIP. This
randomization process inevitably destroys both autocorrela-
tions and mutual correlations. From a methodological point of
view, it is favorable to deal with these two types of correlations
separately.

(a)

(b)

(c)

FIG. 6. Autocorrelation functions Rα,g(t) of production (α = 1),
shipments (α = 2), and inventory (α = 3) for each of the goods (g =
1,2, . . . ,21) at (a) t = 1, (b) t = 2, and (c) t = 3, where the index �

on the horizontal axis is defined in the same way as in Fig. 3. The
95% confidence level for no autocorrelations is represented by the
shaded band in each panel.

We instead propose to shuffle the data rotationally in the
time direction, imposing the following periodic boundary
condition on each of the time series:

wα,g(tj ) → wα,g[tMod(j−τ,N ′)], (13)

where τ ∈ [0,N ′ − 1] is a (pseudo-) random integer and is
different for each α and g. This randomization destroys
only the mutual correlations involved in the data, with the
autocorrelations left as they are; therefore it provides us with
a null hypothesis more appropriate than that of the RMT.
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(a)

(b)

FIG. 7. Same as Fig. 5, but for eigenvalues (λ) of the correlation
matrix obtained by shuffling IIP data (a) completely or (b) rotationally
in the time direction. It should be noted that the autocorrelations
involved in the IIP data are preserved in rotational shuffling.

Figure 7(b) shows the result in rotational shuffling with the
same number of samples as that in the complete shuffling.
We find that the existence of autocorrelations alone leads to
departure from the RMT. The third largest eigenvalue λ(3) �
2.77 becomes even closer to the upper limit, λ′

+ = 2.47 ±
0.20, of the eigenvalues obtained on the basis of the alternative
null hypothesis, where the error is estimated at 95% confidence
level. This result reinforces neglect of the third eigenmode by
the RMT.

Thus this new method for data shuffling conceptually
clarifies noise elimination for the correlation matrix, although
the difference in the eigenvalue distribution from that of the
RMT is practically not very dramatic. In addition, we note
that the rotational shuffling of the stock price data in Japan
reproduces the RMT result quite well, as is expected from the
fact that no appreciable autocorrelations are observed there.

IV. GENUINE CORRELATION MATRIX

In the current system of IIP data, the preceding careful
arguments permit us to adopt

C (G) :=
2∑

n=1

λ(n)V (n)V (n)T + [diagonal terms] (14)

as a genuine correlation matrix, which consists of just the
first and second eigenvector components in the spectral

(a)

(b)

FIG. 8. Eigenvector components corresponding to (a) largest and
(b) second largest eigenvalues for correlation matrix of IIP time series
data.

representation (6) of C plus the diagonal terms, thereby
ensuring that all the diagonal components are 1. We note that
self-correlations of stochastic variables always exist even if
they are merely noise. The components of C are explicitly
written as

C
(G)
�m =

{
1 for � = m,∑2

n=1 λ(n)V
(n)
� V (n)

m otherwise.
(15)

The eigenvectors V (1) and V (2), associated with λ(1) and
λ(2), are shown in Figs. 8(a) and 8(b), respectively. These two
eigenvectors have characteristic features that distinguish them
from each other. The eigenvector V (1) represents an economic
mode in which production and shipments of all goods expand
(shrink) synchronously with decreasing (increasing) inventory
of producer goods. This corresponds to the market mode
obtained for the largest eigenvalue in the stock market analyses
[9,10] and may be referred to as the “aggregate demand”
mode, according to Keynes’s principle of effective demand:
Both shipments and production in all the sectors are moved
jointly by aggregate demand [22]. On the other hand, the
eigenvector V (2) is a mode that apparently represents dynamics
of inventory, that is, accumulation or clearance of inventory,
for most goods, including producer goods. We further find
positive correlation between production enhancement and
inventory accumulation for most goods. This finding indicates
that production has a kind of inertia in its response to change
of demands.
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Accordingly, we project raw fluctuations of w�(tj ) onto the
first and second eigenmodes; that is, only the first two terms
are retained, and the remaining terms are regarded as just noise
in expansion (5):

w�(tj ) =
2∑

n=1

an(tj ) V
(n)
� + [noise]. (16)

This process extracts statistically meaningful information
on mutual correlations among w�(tj ), as has been already
discussed in Secs. II and III. Collaboration of these two modes
results in inherent business cycles with periods of 40 and
60 months throughout the economy. The cycles are accounted
for by time lags in information flow between demand of goods
by consumers and decision making of firms on production [1];
inventory fills this information gap. If we were to single out the
most dominant mode alone in Eq. (5), all w�(tj ) would oscillate
without phase difference. As will be shown later, each good
possesses its own characteristics in the phase relations among
production, shipments, and inventory.

Temporal change of the two principal factors a1(t) and a2(t)
is plotted in Fig. 9(a). Since the functional behavior of these
variables is very noisy, we take their simple moving average,
defined as

an(tj ) := 1

2ξ + 1

ξ∑
k=−ξ

an(tj+k), (17)

where ξ is a characteristic time scale for smoothing. This
process eliminates thermal noise present in the original data.
Actually, the moving average was taken with ξ = 6; the results
for a1(t) and a2(t) are shown in Fig. 9(b). We see that the
moving-average operation significantly reduces the level of
noise present in an(t). It is noteworthy that Fig. 9 indicates
the existence of some mechanical relationship between a1(t)
and a2(t). This finding is ascertained more quantitatively from
Fig. 10, in which the correlation coefficient between a1(t) and
a2(t − τ ),

Ca1 a2 (τ ) = 〈a1(t) a2(t − τ )〉t√
〈a1(t)

2〉t 〈a2(t)
2〉t

, (18)

is plotted as a function of time lag τ . A correlation as large
as 0.7 is detected between the two dominant modes around
τ = 10 months. Detailed study of the underlying dynamics
in the economic system is in progress and will be reported
elsewhere.

V. FD THEORY

The FD theory plays a central role in nonequilibrium
statistical mechanics because this theory establishes a general
relation between fluctuation properties of a physical system in
equilibrium and response properties of the system to small
external perturbations. We assume that the theory still is
applicable to the economic system under study here. This
assumption provides us with a framework to derive input-
output interindustrial relations in the system. Its validity in
view of how the system responded to the recent economic
crisis will be discussed later.

FIG. 9. Two principal factors a1 and a2 as a function of time t .
(a) Originally obtained results; (b) results smoothed by the moving-
average operation (17) with ξ = 6. The eigenmodes for busi-
ness fluctuations were determined using the data in the shaded
areas.

Let us denote our variable wα,g as w�, whose index � :=
21(α − 1) + g runs from 1 to 63. We assume that w� obeys
dynamics governed by a Hamiltonian H ({w},{x}), where {x}
is a set of hidden variables in the system, which encompass all
variables in the current economics. These numerous variables
interact with each other in a nonlinear chaotic way, and hence
the temporal change of w� appears stochastic in the same way
as that of a Brownian particle. The existence of underlying
dynamics in the IIP [1], as demonstrated in Figs. 9 and
10, strongly supports this idea borrowed from mechanics of
motion.

Actually, however, the economy of a nation is quite
open now; therefore it could potentially be subjected to
perturbations such as disasters, political issues, and trade
issues. We thus add external forces ε�(t) to the system; then
the total Hamiltonian H becomes

H = H ({w},{x}) −
M∑

�=1

ε�(t)w�. (19)
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FIG. 10. Correlation coefficient Ca1 a2 (τ ) between a1(t) and
a2(t − τ ) as a function of time lag τ , calculated during the normal
period (from January 1988 to December 2007) with ξ = 6 for the
moving-average operation. A comparison of this result with that
obtained using unsmoothed data with ξ = 0 is also shown in the
figure.

This extra term represents external perturbations to the
equation of motion for w�:

dp�

dt
= − ∂H

∂w�

+ ε�(t), (20)

dw�

dt
= ∂H

∂p�

, (21)

where p� is the momentum conjugate to w�. Therefore ε�(t)
directly affects w� at time t , the effect of which then extends
to other ws through direct and indirect interactions among
them.

For simplicity, let us assume that {ε} is constant in
time. Thus the perturbation set {ε} induces a static shift
of the equilibrium positions of the variables {w}, which
otherwise move stochastically around the origin w� = 0. If
the perturbation is weak, the shift 〈w�〉 thus induced can be
expressed by the following linear response relation:

〈w�〉 =
M∑

m=1

χ�mεm, (22)

where the ensemble average denoted by 〈·〉 has replaced
the time average. The coefficients {χ} are the result of the
interactions, and they are called magnetic susceptibility while
describing the physics of magnetic materials.

Once such a set of susceptibilities is available, we can
quantify the response of the economic system to external
perturbations. For instance, suppose that the government
adopts an economic policy to increase the shipment of one
of the final demand goods by 〈wm〉 with a stimulus εm. The
resulting changes in production, shipments, and inventory of
goods are given as

〈w1〉 = χ1mεm,

... (23)

〈wM〉 = χMmεm.

Since εm is not an observable quantity, it should be appropriate
to eliminate εm appearing in Eq. (23) and express ripple effects
on the economy in terms of 〈wm〉 as

〈w1〉 = χ1m

χmm

〈wm〉,
... (24)

〈wM〉 = χMm

χmm

〈wm〉.

In Sec. VI, we demonstrate that Eq. (24) can provide quan-
titative information on input-output interindustrial relations
in Japan. Furthermore, one may make reverse use of the
linear response relation (22) to distinguish and detect external
perturbation from observed economic changes in {w}; this is
discussed in Sec. VII.

Now, the remaining problem is how to calculate {χ}. To this
end, we invoke the concept of the FD theorem in statistical
physics. If we assume that the stochastic process of {w}
is characterized by Gibbs’s ensemble, then the probability
density function (pdf) P ({w},{ε}) for {w} is given as

P ({w},{ε}) ∝ exp[−βH({w},{ε})], (25)

where the hidden variables {x} have been integrated out and β

is the inverse temperature of the economic system. For a weak
perturbation, Eq. (25) is expanded to the first order of {ε} as

P ({w},{ε}) � P ({w})
(

1 + β

M∑
�=1

ε�w�

)
, (26)

where

P ({w}) ∝ exp[−βH ({w})] (27)

is the pdf in the absence of {ε}. Equation (26) enables us to
calculate the induced change in w� by {ε} as

〈w�〉 =
∫

P ({w},{ε})w�d{w}

� β

M∑
m=1

εm

∫
P ({w})w�wmd{w}

= β

M∑
m=1

εm〈w�wm〉0, (28)

where 〈·〉0 denotes the ensemble average without perturbation.
Comparison of Eqs. (22) and (28) gives one of the outcomes
of the FD theorem:

χ = βC (0), (29)

where C (0) denotes a correlation matrix in the absence of
external perturbations.

Making use of Eq. (29), we can rewrite the relation (24) of
economic ripple effects caused by the increase in shipments
of final demand goods as

〈w1〉 = C
(0)
1m〈wm〉,

... (30)

〈wM〉 = C
(0)
Mm〈wm〉.
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This is just one example of possible interindustrial relations
derived from the present formulation. What we should em-
phasize here is that Eq. (30) has a rather general form in the
framework of linear response.

For instance, we do not need to determine the temperature
of the economic system for β. Even the assumption of Gibbs’s
ensemble, for example, as given in Eqs. (25) and (27), may
be too restrictive because the assumption (26) about the pdf
is sufficient to derive Eq. (30). We also recall Onsager’s
regression hypothesis [23,24], on which the FD theorem relies.
Once one accepts the hypothesis, one can readily derive
Eq. (30). According to Onsager, the response of a system
in equilibrium to an external field shares an identical law with
its response to a spontaneous fluctuation. In other words, the
regression of spontaneous fluctuations at equilibrium takes
place in the same way as the relaxation of nonequilibrium
disturbances does. Let us suppose that the nonequilibrium
disturbances 〈wi〉 and 〈wm〉 are linearly related through

〈wi〉 = κ〈wm〉. (31)

Accordingly, the spontaneous fluctuations wi and wm satisfy
the same relation as Eq. (31):

wi = κwm. (32)

The ensemble average of Eq. (32) multiplied by wm on both
sides determines the proportionality coefficient κ as

κ = C
(0)
im . (33)

We thus see that Eq. (30) is directly derivable from Onsager’s
hypothesis.

We note that the correlation matrix appearing in Eqs. (29)
and (30) should be measured for a system not subject to any
perturbations. However, the genuine correlation matrix C

(G)
�m

determined by Eq. (15) is possibly contaminated with various
kinds of external economic shocks. While such forces may
easily affect the stochastic motion of each w, it is legitimate
to assume that their influence on the correlations among ws
is much weaker; otherwise, the external factors would have
to work coherently to change springs connecting pairs of ws.
This consideration justifies the replacement of C

(0)
�m in Eq. (30)

with C
(G)
�m .

VI. INTERINDUSTRIAL RELATIONS

We are now in a position to quantitatively estimate the
strength of the interindustrial relations by making use of the
genuine correlation matrix through Eq. (30). In particular, we
focus on ripple effects on production of intermediate goods that
are triggered by applying an external stimulus to consumption
of final demand goods:

〈w1,20〉 = C
(G)
1,20;2,g〈w2,g〉, (34)

〈w1,21〉 = C
(G)
1,21;2,g〈w2,g〉, (35)

with g = 1,2, . . . ,19.
The results for production of intermediate goods for

mining and manufacturing (g = 20) are shown in Fig. 11
(top), in which those obtained with the original correlation
matrix are also added for comparison. This figure shows

(a)

(b)

FIG. 11. Input-output interindustrial relations based on the gen-
uine and original correlation matrices. (a) Vertical axis indicates
the extent to which the logarithmic growth rate of production
of intermediate goods for mining and manufacturing (g = 20) is
accordingly elevated when the logarithmic growth rate of shipments
of each of the final demand goods specified on the horizontal axis is
increased by one unit. (b) Same as (a), except showing the relationship
between production of intermediate goods for others (g = 21) and
shipments of each of the final demand goods.

an increase in the logarithmic growth rate of production of
intermediate goods that is predicted from unit increments
of the logarithmic growth rate of shipments of each of the
final demand goods. As expected, increase in shipments
of final demand goods with large weights, as represented
by manufacturing equipment (g = 1), construction (g = 9),
motor vehicles (g = 15), housework (g = 16), and food and
beverage (g = 19), certainly causes large ripple effects in the
production of intermediate goods. If the original correlation
matrix is replaced with the genuine one, then the relative
importance of species of final goods is interchanged between
construction and motor vehicles. This is understandable
because sales of cars are sometimes promoted just for
inventory adjustment, having no effect on the growth of pro-
duction of intermediate goods. We also note that the original
correlation matrix significantly underestimates the effects of
furniture and furnishing (g = 13) and nondurable consumer
goods (g = 17,18,19). It is noteworthy that furniture and
furnishing and clothing and footwear, having much smaller
weights than the major final demand goods, have comparable
contributions; some feedback mechanism must be working
through the inner loop in the economic system.

Figure 11 (bottom) shows the corresponding results for
production of intermediate goods for others (g = 21), whose
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TABLE II. Phases of periodic oscillations with T = 60 and 40
of production (P), shipments (S), and inventory (I) for all goods, in
the unit of degrees ranging from −180 to 180. They are measured
relative to the production of g = 20.

T = 60 T = 40

Goods P S I P S I

1 −8.5 −8.2 −60.3 −9.8 −9.5 −117.7
2 −22.2 −45.3 −75.8 −35.4 −95.4 −130.4
3 −43.8 −40.9 −81.3 −92.2 −85.7 −133.6
4 −16.0 26.8 −85.6 −22.1 17.6 −135.9
5 4.4 61.6 −60.5 4.0 31.0 −117.8
6 2.5 15.8 −42.0 2.4 11.9 −88.2
7 −24.2 −7.0 −33.1 −40.3 −7.8 −65.1
8 −15.6 −4.3 −58.9 −21.3 −4.6 −116.1
9 13.8 37.0 −80.0 10.7 22.0 −132.9
10 56.2 28.4 −93.5 29.1 18.3 −139.6
11 9.2 83.8 −56.6 7.6 39.3 −113.4
12 −10.2 105.8 −54.3 −12.3 50.7 −110.5
13 7.8 48.1 −63.2 6.6 26.2 −120.6
14 −3.8 −4.2 −396.6 −4.0 −4.5 −74.6
15 1.2 −0.7 −24.2 1.1 −0.7 −40.3
16 9.7 27.2 −78.5 8.0 17.8 −132.1
17 11.6 35.4 −80.9 9.3 21.3 −133.4
18 −15.6 6.0 −66.1 −21.2 5.3 −123.2
19 44.6 55.2 −73.0 24.9 28.7 −128.6
20 0 15.8 −89.5 0 11.9 −137.8
21 7.4 40.7 −89.9 6.3 23.5 −138.0
Average −0.6 25.2 −66.6 −0.6 16.9 −123.7

weight is 1 order of magnitude smaller than that of mining
and manufacturing. The important species of final demand
goods are common in both categories of intermediate goods.
In contrast, the original correlation matrix significantly under-
estimates the effects of different final demand goods such as
those given by g = 3 to g = 7.

Presence of a correlation between two stochastic variables
A and B does not indicate the existence of a mechanical
connection between them. Actually, correlating A and B might
be driven by a third variable C; then there would be no causality
relationship between A and B. To address this question, we
provide detailed information on phase relations in the business
cycles identified in the previous study [1]. Table II lists phases
of the cyclic motion of production, shipments, and inventory at
T = 60 and 40 for each of the goods. We can see that shipments
of final demand goods are ahead of or almost in phase
with production of intermediate goods; the resolution limit
(1 month) is 6◦ and 9◦ for T = 60 and 40, respectively. Elec-
tricity (g = 2) and communication and broadcasting (g = 3)
are exceptions to this observation. The wave of production
arrives first and then that of shipments follows for electricity;
the production activity for communication and broadcasting
behaves significantly out of phase with that averaged over
goods. Since we have adopted a static approximation for the
interindustrial relations, it may be more appropriate to average
the phase relations over frequency. The results are shown in
Fig. 12 and Table III. The frequency-averaged phase relations
in the cyclic behavior of the economic fluctuations thus support
our postulate that production of intermediate goods is driven

FIG. 12. Frequency-averaged phases of production, shipments,
and inventory for each type of goods, measured relatively to
production of g = 20 in the unit of degrees.

by increasing shipments of final demand goods, with a few
exceptions.

VII. EXTERNAL STIMULI

Finally, we try to identify the presence of external stimuli
hidden in real data by inversely using the linear response
relationship (22). The recent global economic crisis certainly
has delivered an extremely large shock to the economic system
of Japan, as is clearly shown in Fig. 2. In our previous paper [1],
however, we demonstrated that the crisis has simply increased
the level of fluctuations associated with the dominant modes
that were determined from the data during the normal time,
instead of destroying the industrial structure itself; this is also
manifested here, as shown in Fig. 9. And the information on
collective movement of the IIP that we could extract from
the dominant modes remains intact even in such an abnormal
situation. This result thus conforms to the idea of Onsager’s
regression hypothesis, indicating the validity of the FD theory
even in an economic system that is supposed to be far away
from equilibrium.

Since approximation (15) has been adopted for the correla-
tion matrix, we consider only two independent external fields
{η1,η2} that are coupled to the normal coordinates {a1,a2}
associated with the two dominant eigenmodes V (1) and V (2),
respectively. The total Hamiltonian [Eq. (19)] is therefore
simplified to

H = H (a1,a2,{x}) − η1a1 − η2a2. (36)

TABLE III. Frequency-averaged phases of periodic motion of
production (P), shipments (S), and inventory (I) for final demand and
producer goods in the unit of degrees. The results for final demand
goods were obtained by averaging over goods excluding g = 2 and 3;
the numbers in parentheses are those obtained with all final demand
goods.

Producer goods

Final demand goods g = 20 g = 21

P −0.69 (−2.35) 0 0.99
S 2.99 (0.20) 5.84 5.15
I −28.7 (−29.5) −37.4 −37.5
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The reduced external fields {η} in Eq. (36) are derived from
the original ones in Eq. (19) through

ηn =
M∑

�=1

ε�V
(n)
� . (37)

Then Eq. (22) is projected onto the two-dimensional reduced
state space as (〈a1〉

〈a2〉
)

=
(

χ̂11 χ̂12

χ̂21 χ̂22

) (
η1

η2

)
, (38)

where

〈an〉 =
M∑

�=1

〈w�〉 V
(n)
� , (39)

and the reduced susceptibilities {χ̂} are defined as

χ̂mn =
M∑
i=1

M∑
j=1

V
(m)
i χijV

(n)
j . (40)

The relative values of {χ̂} with reference to χ̂11 are calculated
from C (G) as(

χ̂11 χ̂12

χ̂21 χ̂22

)
= β

(
1 1.30 × 10−3

1.30 × 10−3 0.433

)
. (41)

These results shows that the two eigenmodes are almost
decoupled from each other, which is understandable from the
orthogonality [Eq. (8)] of the normal coordinates.

One can obtain {η} using the inverse of Eq. (38) along with
Eqs. (39) and (40), although it is not so straightforward. We
first recall that 〈w�〉 on the right-hand side of Eq. (39) is the
deviation of w� from the equilibrium value induced by external
perturbation and not fluctuations of w� directly observed in
the real data. We then identify 〈w�〉 as residuals obtained
by subtracting the long-period components arising from the
inherent business cycles from moving-average fluctuations of
the IIP.

To extract 〈w�〉, we first define the Fourier transform of the
coefficients an(tj ) as

an(tj ) = 1√
N ′

N ′−1∑
k=1

ãn(ωk) e−iωktj , (42)

with the Fourier frequency ωk = 2πk/(N ′�t) and hence
ωktj = 2πkj/N ′. The relevant long-period component
a(LP)

n (tj ) is obtained by limiting the sum over k only to k = 1
(T = 240), k = 2 (T = 120), k = 4 (T = 60), and k = 6
(T = 40) or by summing all of the terms with periods larger
than 2 years (k � 9) in Eq. (42). The formula for 〈w�〉 is finally
expanded as

〈w�(t)〉 =
2∑

n=1

an(t) V (n)
α,g −

2∑
n=1

a(LP)
n (t) V (n)

α,g. (43)

Figure 13, for which we arbitrarily set β = 1 in Eq. (41),
shows the external fields η1 and η2 thus derived from 〈w�〉.
Two computational schemes were adopted to evaluate the
long-period components in the IIP data, and no appreciable
difference was observed between the two results. Here the
economic system was assumed to respond instantaneously to

(a)

(b)

FIG. 13. External stimuli η1 and η2, derived from IIP data through
the linear response relation (38), shown as a function of time in (a)
and (b), respectively; the system is assumed to respond instantly to
the applied external fields. The solid curves depict results obtained
only with the terms of k = 1,2,4,and 6 in Eq. (42), and the dotted
curves depict those calculated with the terms of k � 9. The shaded
area is the same as depicted in Figs. 2 and 9.

the applied external fields without any time delay. Referring to
Fig. 2, we clearly confirm that such a large external shock as
manifested in η1 causes the drastic drop in industrial activities
in Japan. We also see that another large shock in η2, which
leads to reduction in inventory, immediately accompanies the
first shock. In contrast, the maximum fluctuation levels of
η1 and η2 are 0.1 and 0.2, respectively, in the normal period
(before the end of 2007).

VIII. CONCLUSION

This paper has described our attempt to utilize the FD theory
for elucidating the nature of input-output correlations in the
Japanese industry on the basis of IIP data. We were able to
quantitatively estimate the strength of correlations between
goods by using the genuine correlation matrix obtained in this
study. We were also successful in extracting external stimuli
over the last two decades. The noise reduction along with the
RMT enabled us to detect economic signals hidden behind
the complicated dynamics of the IIP. The strong coincidence
between the sudden change in IIP data and the external shocks
described here may prove that the present method is capable
of predicting the input-output interindustrial relationship with
a much higher time resolution than the annual resolution.
We thus expect the results of this study to provide a new
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methodology for gaining deeper understanding of complex
economic phenomena at a macroscopic level.
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