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Extent of validity of the hydrodynamic description of ions in dense plasmas
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We show that the hydrodynamic description can be applied to modeling the ionic response in dense plasmas
for a wide range of length scales that are experimentally accessible. Using numerical simulations for the Yukawa
model, we find that the maximum wave number kmax at which the hydrodynamic description applies is independent
of the coupling strength, given by kmaxλs � 0.43, where λs is the ionic screening length. Our results show that
the hydrodynamic description can be used for interpreting x-ray scattering data from fourth generation light
sources and high power lasers. In addition, our investigation sheds new light on how the domain of validity of
the hydrodynamic description depends on both the microscopic properties and the thermodynamic state of fluids
in general.
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With the availability in the past decade of high power
lasers and fourth generation x-ray sources, extreme states of
matter found in inertial confinement fusion (ICF) and in the
core of compact astrophysical objects, such as planets and
stars, can be produced and diagnosed in the laboratory [1–5].
These experiments will require significant theoretical advances
[6]. In particular, models are needed for the dynamical
response of strongly correlated matter over a wide range of
thermodynamic conditions—a goal that has thus far remained
elusive. While a number of involved approaches have proven to
be successful under some conditions [7–10], the hydrodynamic
description retains a much simpler physical picture in terms
of fundamental transport and thermodynamic properties of the
plasma. In this Rapid Communication, we show that in fact
this often overlooked description is applicable to conditions
accessible to the experiments.

One ordinarily thinks of the hydrodynamic picture as
applying only for wave numbers k such that klf � 1, with
lf the mean free path, and frequencies ω such that ω/ωc � 1,
with ωc the mean collision frequency. These conditions,
derived and already rather qualitative for a system governed
by uncorrelated binary collisions (e.g., a dilute gas), become
even more indeterminate when many-body correlations are
present (as in the dense plasma case) because the concepts of
mean free path and mean collision time cease to have a clear
physical meaning. Indeed, we certainly expect the domain of
validity of the hydrodynamic description to depend strongly
on the thermodynamic state of the plasma. For instance, one
expects that for the ions in a plasma, the description never
applies on length scales smaller than the screening length
λs of the effective ion-ion potential (i.e., kλs � 1)—in other
words, that the domain of validity will shrink as the screening
length increases. In fact, in the extreme case of λs = ∞, the
very existence of a hydrodynamic description is a known but
unsolved problem [11].

Here, we address with numerical simulations the question of
the extent of validity of the hydrodynamic description of ions
in a plasma at or near equilibrium as the level of many-body
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correlations in the system is varied. We use the Yukawa inter-
action potential v(r) = (Ze)2 exp(−r/λs)/(4πε0r), where Ze

is the ionic charge, to represent the screened ion-ion interaction
in a plasma [12]. The screening length λs [3,10,13] reduces
to either the Debye-Huckel law or the Thomas-Fermi distance
in the limiting cases of classical and degenerate electron fluid,
respectively [1,14]. For λs = ∞ one recovers another standard
model in plasma physics known as the one-component plasma
(OCP) [11], which allows us to answer the question of the
existence of the hydrodynamic limit referred to previously.
Most importantly, the Yukawa model is very convenient
here because it is known to be fully characterized by two
dimensionless parameters only [12]—the reduced screening
length λ∗

s = λs/a, where a = (4πn/3)−1/3 is the Wigner-Seitz
radius, and the coupling strength � = q2/(akbT ), which itself
characterizes completely the degree of many-body correlations
present in the system for a given screening length [7]
(here n and T are the ion number density and temperature,
respectively). For a wide range of � and λ∗

s values, thus
spanning states ranging from gaseous ideal plasmas to dense
liquidlike plasmas [15], we determine the length and time
scales at which the hydrodynamic description breaks down.

To accomplish this, we have computed with molecular
dynamics (MD) simulations the dynamical structure factor,
S(k,ω), that is the Fourier transform in space and time of
the density autocorrelation function, for a wide range of �

(0.1,1,5,10,50,120,175) and λ∗
s (0.5,1,1.4,2,3.3,10,∞) values.

S(k,ω) contains complete information of the system dynamics
at and near thermal equilibrium through the fluctuation-
dissipation theorem, and can be obtained in inelastic light
and neutron scattering experiments (e.g., Refs. [1,8,16]).
Three main difficulties are involved with the MD calculation
of S(k,ω). First, for large screening lengths (large λ∗

s ), it
is essential to include the Ewald summation; we compute
this for all our λ∗

s values using the particle-particle-particle-
mesh method [17]. Second, obtaining accurate MD data for
S(k,ω) requires averaging the results of a large number of
simulations to improve statistics. Third, in order to investigate
the long wavelength dynamics that concern the hydrodynamic
description, very large scale simulations (a large number of
ions N ) are needed: The minimum reduced wave vector (ka)min
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at which the system dynamics can be determined by using
MD is ∝N−1/3. These computational demands have made
a thorough study such as ours impractical before now. In
our computation of S(k,ω), we average the results of fully
25 simulations, each of duration 819.2ω−1

p (the ion plasma

frequency ωp =
√

3q2Ma3 is the natural time scale for our
system, where M is the ion mass), with up to 500 000 ions [18].

First, we consider the case of finite screening lengths
(λ∗

s < ∞). In this case the MD data can be compared to
the result obtained from the linearized hydrodynamic (Navier-
Stokes) equations [8,19]

SH (k,ω)

S(k)

= γ − 1

γ

2DT k2

ω2 + (DT k2)2

+ 1/γ

(
σk2

(ω + csk)2 + (σk2)2
+ σk2

(ω − csk)2 + (σk2)2

)
,

(1)

where the static structure factor S(k) in Eq. (1) is also
determined from our MD simulations. Equation (1) consists
of a central (Rayleigh) peak representing a diffusive thermal
mode and two ion-acoustic (or more generally, Brillouin) peaks
at ω = ±csk corresponding to propagating sound waves in
the plasma. As illustrated in the top panel of Fig. 1, at the
smallest k value accessible to our MD simulations we find
that the MD S(k,ω) can always (i.e., for all � and λ∗

s ) be
very accurately fitted to Eq. (1), thus giving numerical values
for the thermal diffusivity DT , sound attenuation coefficient
σ , adiabatic sound speed cs , and ratio of specific heats γ

that appear in the hydrodynamic description. When obtained
in this way, these parameters are found to be in very good
agreement with previous equation-of-state and transport coef-
ficient calculations for the Yukawa model [20]. In particular,
we find that γ ≈ 1—that is, the Rayleigh peak at ω = 0 is
negligible. In all cases, however, we find two ion-acoustic

FIG. 1. (Color online) Sample of our MD results for S(k,ω) (dots)
vs SH (k,ω) in Eq. (1) (solid line) and when a “mean field” is added
(dashed line—bottom panel only).

FIG. 2. (Color online) Ion-acoustic peak position w(k)/ωp as
obtained from MD (symbols), along with the corresponding linear
relations ω = csk (solid lines).

peaks, at ω = ±csk, representing damped ion-acoustic waves.
Figure 2 shows the position of the ion-acoustic peak obtained
from our MD simulations. We see that as the screening length
becomes larger, it is necessary to look at increasingly long
length scales (small ka) for the hydrodynamic description to
be applicable. Clearly in all cases, at some k value, which
we denote by kmax, the position ω(k) of the ion-acoustic
peak as computed by MD diverges from the linear relation.
Quantitatively, we define kmax as the minimum k value for
which ω(k)/(csk) > 1.01. Using this criterion, for all values
of the coupling �, we find that kmaxλs � 0.43.

The kmax obtained from the peak position is found also to
characterize well the departure of the height and width of the
ion-acoustic peak from the predictions of the hydrodynamic
description (Fig. 3). Therefore, kmax is the maximum wave
vector at which the hydrodynamic description of Eq. (1) is
applicable. As shown in Fig. 3, beyond kmax the height of
the ion-acoustic peak decreases more slowly, and its width
increases more slowly, than predicted by Eq. (1). Clearly,
however, the hydrodynamic description is valid for a relatively
large range of k values, well beyond k = 0. In real space, we
find that the length scale 2π/kmax is, for all � values, greater

FIG. 3. (Color online) Height and width of the ion-acoustic peak
as computed from MD (open symbols), and the predictions of Eq. (1)
(solid lines).
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FIG. 4. (Color online) Ion-acoustic peak position as obtained
from MD (symbols), and the prediction of Eq. (2) (solid lines).

than the short-range correlation length over which the pair
correlation function g(r) exhibits peaks and troughs [11]. It
is remarkable that kmax does not depend on �; indeed, one
would intuitively expect the domain of validity of Eq. (1)
to increase as the system becomes more “collisional” (i.e.,
with increasing �). We also note that, provided k < kmax,
the hydrodynamic approximation of Eq. (1) for S(k,ω) is
extremely accurate for all ω where S(k,ω) is not negligibly
small; in this range, the ion-acoustic peaks exhaust the
frequency sum rules (see the top panel of Fig. 1). The extensive
domain of validity given by our criterion for kmax certainly has
notable experimental applicability: For example, assuming a
hydrogen plasma with n = 1 × 1023 cm−3 and T = 13 eV [6]
(this gives � ≈ 1 and we use the Debye length for λs),
the hydrodynamic description can be expected to accurately
model the ionic response in x-ray scattering experiments
with a 4 keV probe up to a scattering angle of ≈15◦ [16],
which is large enough to be attainable in forthcoming
experiments [21].

Much detailed work has been carried out to extend, from
macroscopic to microscopic length scales, the domain in
which ordinary hydrodynamics applies (e.g., Refs. [8,9,19]).
Interestingly, we find that simply by adding to the usual stress
tensor the mean field term, one can account very well for
the position of the ion-acoustic peak. Microscopically, this
additional term stems from the inclusion of a self-consistent
“mean field” or “Vlasov” term—usually neglected because
one considers length scales longer than the range of the
potential—in the appropriate kinetic equation. By including
the mean field term in the macroscopic equations, one obtains
for the Yukawa model a modified expression for the position
of the ion-acoustic peak [22]

ω(k) =
(

K + ω2
p

k2 + λ2
s

) 1
2

k , (2)

where K = c2
s − ω2

p/λ2
s . We note that for systems with

γ = 1, which is a good approximation for the � and λ∗
s

values considered here, the addition of the mean field does
not change the hydrodynamic description of the height or
width of the ion-acoustic peak (see Ref. [22] for details). As
shown in Fig. 4, Eq. (2) gives a remarkably good description

of the ion-acoustic peak position, even up to ka ≈ 2 in
most cases (although, as shown in Fig. 1, the height and
width of the peak do not always compare well with the MD
simulations). Indeed, this dramatic improvement is somewhat
unexpected, since dynamics at these large wave vectors are
not usually thought to be well described by macroscopic
approaches.

For finite λ∗
s , the mean field only begins to play a role

when kλs > 0.43 (i.e., when the range of the potential is
large compared to the length scale of the density variations).
Therefore, one may expect that in the OCP case of λ∗

s = ∞,
when the interaction potential is Coulombic [23], the mean
field is important at all length scales (in this case, our criterion
kmaxλs � 0.43 gives kmax = 0). To be sure, the peculiarity
of the Coulomb potential is very well known—in this case
the longitudinal waves are not low-frequency sound waves,
as for λ∗

s < ∞, but instead high-frequency plasma waves
(ω ≈ ωp), even at k = 0. The resulting “plasmon” peak in
S(k,ω), the position of which is illustrated in Fig. 2 (red upward
pointing triangles), is certainly not described by the low-
frequency hydrodynamic equations that lead to Eq. (1); one can
indeed wonder why hydrodynamics should describe plasma
oscillations at all. The difficulty here is underlined by a kinetic
theoretical derivation of the hydrodynamic equations [11]:
When proceeding with the Chapman-Enskog expansion of the
appropriate kinetic equation, the mean field term is usually
treated as a small perturbation, since, in the small-gradient
region of interest to hydrodynamics, the kinetic equation
is always dominated by the collision term. For the OCP,
however, the mean field term cannot be considered as small,
since its straightforward small-gradient expansion diverges
with the characteristic Coulomb divergence (see Ref. [11]
and references therein). Based on this analysis, Baus and
Hansen [11] argued that only when the collisionality dominates
the mean field, which they predicted would occur at sufficiently
high coupling strength �, could a hydrodynamic description
be expected for the OCP. In this case the hydrodynamic
description is identical to Eq. (1) [24] but with csk replaced

with ωp(1 + c2
s k

2

2ω2
p

) [25]. This macroscopic description is known

not to work for small � [11]; exactly how large � has to be
for it to be applicable was left as an open question until now.
We show here that in fact the hydrodynamic description of the
OCP is not valid at any �.

Baus and Hansen [11] based the arguments outlined earlier
on an exact formula for S(k,ω) of the OCP, derived using
generalized kinetic theory, which at small k is given by [24]

SB(k,ω)

S(k)
= bk2[

ω + ωp

(
1 + k2

2 a
)]2 + (

k2

2 b
)2

+ bk2[
ω − ωp

(
1 + k2

2 a
)]2 + (

k2

2 b
)2 , (3)

where a and b are generalized coefficients with k and ω

dependence. They were able to show that only at large � would
it be possible for these coefficients to equal their macroscopic
counterparts [of Eq. (1)], c2

s /ω
2
p and 2σ , respectively [11]. We

have estimated a and b by fitting S(k,ω) at the smallest k value
accessible to our MD simulations to Eq. (3)—this gives a very
good fit. However, as shown in Table I, the values obtained for
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TABLE I. Comparison of the generalized coefficients obtained
by fitting the MD S(k,ω) at our smallest k value to Eq. (3) with the
analogous coefficients that appear in the hydrodynamic description.
cs is determined from the internal energy fit given in Ref. [26] while
σ is obtained from Ref. [15].

� a c2
s /ω

2
p b 2σ

1 0.895 0.304 0.192 1.825
5 0.088 −0.034 0.109 0.333

10 −0.009 −0.080 0.078 0.235
50 −0.056 −0.112 0.032 0.212

120 −0.062 −0.127 0.021 0.349
175 −0.065 −0.129 0.009 0.550

a and b do not agree at all with their macroscopic counterparts,
even at our highest coupling strength of � = 175, which is
close to the freezing point of the system [11]. For example,
the width of the plasmon peak b does not even follow the
same trend predicted by the hydrodynamic scaling 2σ at our
higher � values. From this we conclude that the combination of
mean field and collisional effects means that the hydrodynamic

description in the manner of Navier and Stokes is not valid for
the OCP at any coupling strength �.

In summary, our results show that the conventional hy-
drodynamic description can be used to model ion dynamics
in plasmas for a surprisingly large range of length scales:
Our criterion of kmaxλs � 0.43 gives a quantitative measure
of this. What is more, below kmax—which we find to be inde-
pendent of the level of many-body correlations in the system
(i.e., �)—the hydrodynamic equations give an accurate
description of the entire ion-acoustic peak. For the OCP,
λ∗

s = ∞, the persistence of both mean field and collisional
effects causes the ordinary hydrodynamic approach to fail. As
forthcoming x-ray scattering experiments on fourth generation
light sources will be able to resolve the ion dynamics [21], we
provide testable predictions that also significantly enhance our
understanding of dense plasmas for conditions relevant to ICF
and laboratory astrophysics.
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