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Pattern formation and coexistence domains for a nonlocal population dynamics
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In this Rapid Communication we propose a most general equation to study pattern formation for one-species
populations and their limit domains in systems of length L. To accomplish this, we include nonlocality in the
growth and competition terms, where the integral kernels now depend on characteristic length parameters α and β.
Therefore, we derived a parameter space (α,β) where it is possible to analyze a coexistence curve α∗ = α∗(β)
that delimits domains for the existence (or absence) of pattern formation in population dynamics systems. We
show that this curve is analogous to the coexistence curve in classical thermodynamics and critical phenomena
physics. We have successfully compared this model with experimental data for diffusion of Escherichia coli
populations.
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Introduction. In recent years the phenomenon of pattern
formation has been intensively studied to describe the spatial
distribution of species in population dynamics. This amazing
behavior of populations, observed under certain conditions,
can be modeled by nonlinear equations of reaction and
diffusion types [1–7]. Such mathematical models provide a
rich structure that includes a variety of intra- or interspecific
interactions among species [8,9], and they allow us to describe
many forms of effects of dispersal with or without memory
effects [10–12].

However, the overwhelming majority of the studies has
shown that Fickian-type diffusion [13–15] is unable to describe
spreading of species in population equations formulated
through reaction-diffusion models. Moreover, this is not the
only possible criticism that one can find in the ordinary
nonlinear reaction-diffusion approach. In a population dy-
namics context, it is commonly believed that there is no
real justification for assuming that interactions among species
are, in fact, local. There are many models in which such an
assumption clearly becomes unwarrantable, for example, in
the competition of one species in a habitat where the system
is rapidly equilibrated or in typical biological interactions
where the individuals intercommunicate via chemical means.
Of course, these are typical nonlocal effects that should not be
overlooked. Other forms of nonlocal growth and interaction
effects have also been observed when dealing with a wide
variety of biological fields, such as epidemic spread in a
network [16–18], embryological development, and bacterial
growth [19], where the density of individuals involved is not
small and the analysis of local or short-range diffusive flux is
not sufficiently accurate to understand the dynamical aspects
of these phenomena. In these cases we need to include the
contribution of long-range effects and then to analyze the
domain limits for the existence of patterns in these systems.

This Rapid Communication is an attempt to build a most
general equation to study the effects of pattern formation
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in one-species population dynamics. Our starting point is to
write an equation that includes nonlocal growth and interaction
terms involving long-range effects in the system. This equation
can be written as

∂u(x,t)

∂t
= a

∫
�

gα(x − x ′)u(x ′,t) dx ′

− bu(x,t)
∫

�

fβ(x − x ′)u(x ′,t) dx ′, (1)

where u(x,t) describes the population density with growth a

and competition b terms. Then we denote by gα(x − x ′) the
correlation growth function, which weights the growth of
a population in the domain � for a specific growth length
parameter α. We call fβ(x − x ′) the correlation competition
function, which weights the interaction among the constituents
of the population for a competition length parameter β in the
domain �. In order to modeling population dynamics, we
have assumed that the kernels are symmetric functions, such
that fβ → 0 and gα → 0 as |x − x ′| → ∞. An advantage of
Eq. (1) is that it provides a useful concept for describing a
great variety of long-range diffusive effects in physical systems
by allowing all higher derivatives (diffusion and dissipation
terms) to be absorbed in only the integral term. Moreover,
this model is then parametrized mainly by α and β quantities,
which allows us to theorize on the existence of values (α,β) for
which there are pattern formation. Indeed, the relation between
these length domains offers the simplest model for dealing
with quantitative estimates of experimental data related to
the growth dynamics of bacteria, for example. In this case,
specific domains that show the existence (or absence) of pattern
formation, which incorporates long-range effects as well, are
important for the physical description of the spreading of
individuals with nonlocal dynamics.

Starting from Eq. (1), we can derive important connections
with classical population models by carrying out appropriate
limits. For example, if fβ(x − x ′) = gα(x − x ′) = δ(x − x ′),
we get the logistic equation [15]

∂u(x,t)

∂t
= au(x,t) − bu(x,t)2. (2)
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We can also consider gα(x − x ′) with a finite range, such that
we can expand the growth term as

a

∫
�

gα(x − x ′)u(x ′,t) dx ′ =
∞∑

m=0

ay2m

(2m)!

∂2m

∂x2m
u(x,t), (3)

where y = x − x ′ and the k moments are

yk =
∫

ykgα(y) dy. (4)

Using this procedure with fβ(y) = δ(y) and retaining the first
two terms in Eq. (3), we get the ordinary Fisher equation:

∂u(x,t)

∂t
= D

∂2u(x,t)

∂x2
+ au(x,t) − bu2(x,t). (5)

Here we show a very important point: The first gain with
the nonlocal growth term is the possibility of connecting the
growth rate a with the diffusion constant

D = ay2

2
. (6)

Note that this equation shows that a species with a large growth
rate has “more need” for diffuse behavior;that is, a large growth
rate creates a large pressure proportional to the concentration
gradient D ∂

∂x
u(x,t), which increases the diffusion. It shows

that the diffusion is intrinsically related to the existence of the
nonlocal growth term gα; that is, it is necessary for a second
moment y2 �= 0 to exist according to Eq. (4).

The higher-order terms (m > 1) in the expansion of Eq. (3)
yield the dispersive terms. It is interesting to note that if gα

is not even, the first derivative yields the convective term
v ∂

∂x
u(x,t), from which we can obtain the convective velocity

as v = ya. On the other hand, if we have an asymmetric gα , it
corresponds to a convective drift [20]. If we keep the expansion
up to second order and fβ(y) in the second integral, we get
nonlocal Fisher equation:

∂u(x,t)

∂t
= au(x,t) + D

∂2u(x,t)

∂x2

− bu(x,t)
∫

�

f (x − x ′)u(x,t) dx, (7)

which has been widely used by many authors to discuss pattern
[9]. Note that Eq. (1) is the most general, incorporating all the
previous equations.

Perturbative analysis. In the study of pattern formation
through a model of population dynamics, it is usual to calculate
a quantity known as the growth rate of pattern γ [9,10] that
leads to the pattern formation in the system. Therefore, we first
shall start with the perturbative analysis through the function

u(x,t) = a

b
+ ε exp (ikx + φ(k)t), (8)

where a/b is the homogeneous steady-state solution, constant
in space and time. The term ε exp(ikx) exp(φt) is a perturba-
tion to the steady state that will grow or die out, depending
on the values of the wave numbers k. Substituting Eq. (8) into
Eq. (1) and retaining only the first-order perturbative terms, we
find a dispersion relation between the complex pattern growth

rate φ and the wave number k, given by

φ(k) = a(Fc{gα(y)} − Fc{fβ(y)})
+ ia(Fs{gα(y)} − Fs{fβ(y)}), (9)

where Fc{·} and Fs{·} are, respectively, the Fourier cosine
and sine transforms of the influence functions gα(y) and
fβ(y) (assumed to be even). Therefore, only the real part
of the complex growth rate φ(k) = γ (k) + iξ (k), where
γ (k) = a[

∫
�

gα(y) cos(ky)dy − ∫
�

fβ(y) cos(ky)dy − 1], i.e.,
the growth rate of pattern γ (k), will be important to determine
whether the perturbation with wave number k will die out
or will generate a pattern for negative or positive values,
respectively. Now, let us consider the simple case of the square
interaction influence function given by

fβ(y) = 1

2β
[�(β − y)�(β + y)], (10)

where � refers to the Heaviside function and β is the cutoff
range (0 < β < L, where L is the size of the system). If we
consider a similar relation for gα with cutoff 0 < α < L, from
condition (10), γ (k) is given by

γ (k) = a

(
sin(kα)

kα
− sin(kβ)

kβ
− 1

)
. (11)

Therefore, we can study self-organization of Eq. (1) consider-
ing that the system depends physically on the domain of the
functions gα and fβ . In this case, pattern formation appears
when wave numbers k, in the growth rate of pattern, obey the
condition γ (k) > 0. Note that for α = 0, γ (k) is larger. This
will happen for less-diffusive systems with D ≈ 0.

Equation (11) is plotted in Fig. 1 for different values of
the growth length α = (0.01,0.03,0.09,0.40) with competition
length parameter β = 0.45 fixed. In Fig. 1, we verified that
when α < β, we have γ (k) > 0. If α → β, the function γ (k)
becomes negative. This behavior of γ (k) is very important for
determining if we have a large or a negligible amplitude of
pattern. We show in Fig. 1 that pattern formation appears for
values of α < β with γ (k) > 0. This behavior is also verified
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FIG. 1. The real part of growth exponent γ (k) as a function of k

plotted for different values of the correlation length of growth α with
the length interaction of individuals β fixed. The pattern formation
appears for those values of k for which γ is positive.
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later with numerical results (see Fig. 4) and discussed through
experimental values.

Numerical method. To solve Eq. (1) numerically, we applied
the operator-splitting method (OSM) [21]. By this method, the
operator of a differential equation is split into several parts,
which act additively on u(x,t). If we write Eq. (1) as

∂u(x,t)

∂t
= T̂ u(x,t), (12)

where T̂ is the total operator, then

T̂ u(x,t) = T̂growu(x,t) + T̂intu(x,t), (13)

with

T̂growu(x,t) = a

∫
�

gα(x − x ′)u(x ′,t) dx ′ (14)

T̂intu(x,t) = −bu(x,t)
∫

�

fβ(x − x ′)u(x ′,t) dx ′. (15)

In Eqs. (14) and (15), T̂grow and T̂int are nonlocal growth and
nonlocal interaction operators, respectively. In our numerical
calculations, we have used periodic boundary conditions
u(x = 0,t) = u(x = L,t) with spatial period L. For each part
of the operator, we apply a known difference scheme for
updating the function u(x,t) from step j to step j + 1.

In Fig. 2 we show the evolution of u(x,t). We start with a
distribution of individuals

u(x,0) = 1

�
exp

[
− (x − x0)2

2σ 2

]
, (16)

where � = √
π
2 σ [erf( x0√

2σ
) + erf(L−x0√

2σ
)], and we see the evolu-

tion to a state that exhibits pattern. We use σ = 0.3, x0 = 0.5,
and L = 1.0. The spatial and time increments are δx =
1 × 10−3 and δt = 1 × 10−2, respectively. In all simulations
we use a = b = 1.0. Several numerical experiments show the
final state independent of the initial conditions [20]. These
simulations are fundamental to showing the pattern formation
that appears after a long time of bacterial growth [8–11,22].
Similar simulations are used to compose Figs. 3 and 4.

In Fig. 3, we show the evolution after 60000 time steps,
when the density has reached its final form. Each curve
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FIG. 2. The typical pattern formation on density u(x,t) as a
function of x and t in arbitrary units. The growth rate and interaction
rate are a = b = 1.0. The competition length parameter β = 0.15,
and the growth length parameter α = 0.009.
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FIG. 3. Snapshots of the stationary state u(x) for several values
of the competition length parameter β and growth length parameter
α with the correlation competition function and correlation growth
function in Eq. (10). Here we consider the growth rate a and
competition rate b to be 1.0. For a fixed β, as α increases, the pattern
disappears.

is similar to the simulations described in Fig. 2. The left
column of Fig. 3 shows β = 0.07 for (from top to bottom)
α = (0.009,0.012,0.019). The right column shows β = 0.11
for (from top to bottom) α = (0.012,0.020,0.030). For each
β the lower curve represents the height value of α, for which
there is no longer pattern formation, i.e., for α � α∗, where
we get u(x,t) = a/b.
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FIG. 4. The phase diagram of tje critical correlation growth
length αc as a function of the critical competition length pa-
rameter βc. The “Pattern” and “No Pattern” regions indicate the
separation of large-amplitude patterns and negligible-amplitude
patterns for Eq. (16).
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In Fig. 4, we show the region in the space (α,β) where
pattern can exist. For each β the points represent the α∗ above
which there is no longer pattern, such as described in Fig. 3.
The shaded area is limited by the coexistence curve

α∗(β) = P (β) (βc − β)μ, (17)

which is the best fit of the points. P (β) is a polynomial with
no roots in the region 0 < β < βc. For β → βc we get from
Eq. (10) βc = 1/2, i.e., the function fβ(y) weights equally
the whole space 0 < x < L, and consequently, we have no
pattern formation for β � βc. Finally, from the data we have
estimated the value μ = 0.53 ± 0.06 at the vicinity of βc for
the exponent in Eq. (17).

Experimental data. Starting from Eq. (10), we can compute
y2 = α2/3. By inserting this result into Eq. (6) we get

α =
√

6D

a
. (18)

Now, using the experimental values for a = (2.23 ± 0.2) ×
10−4s−1 and D = (2.2 ± 0.2) × 10−5 cm2 s−1 obtained by
Perry [22], for systems with Escherichia coli populations, we
can estimate the value of α, given by α = (7.70 ± 0.09) mm.
Then, to form pattern in a finite system of length L, β

must be inside the shaded area in Fig. 4. In fact, the
value of α as obtained in Eq. (18) is determined by the
coefficient of diffusion D of the system, and it establishes
a lower referential limit for the presence (or absence) of
pattern formation. For β 	 L, we are in the linear part of
Eq. (17), and we get α = 0.3β; therefore, we have pattern
for β > 25.4 m. In this case, only experimental values of the
width of the influence function β > 25.4 mm permit patterns,
which are in concordance with our theoretical and numerical
results. Moreover, our formulation allows us to analyze pattern
formation as an interplay between two length parameters α

and β. It is important to note that the fact that 0 < α < β

is not just a curiosity of the theory, it is one of its major
results. Without a finite value of α, there will be no diffusion,
which is fundamental for any species, and so reproduction and
propagation are associated. Consequently, one should expect
a non-null α. On the other hand, if α is too large, bonds are
tight, and they may be difficult to meet and, consequently,
to reproduce. The phenomenon described here for pattern
formation in a bacterial colony can be observed in large
animals with migratory habits, such as deer and wolves, who
only travel with family; we call this phenomenon the faithful
sailor travel.

Conclusion. The presence of memory and nonlocality in
time have been used to explain ergodicity violation in particle
diffusion [23,24]. Since pattern formation implies ergodicity
breaking, one could expect that a nonlocal space kernel
would yield that. Consequently, we proposed here a new
formulation for population dynamics that includes growth
and competitive nonlocal terms. The presence of two kernels
gα(x) and fβ(x) demands the existence of a growth length
parameter α and a competition parameter β. Particular values
for the kernels yield most of the previous formulations of
population dynamics. We obtain a domain region 0 < α < β

where patterns may arise, a coexistence curve similar to
those in phase transition, and a direct connection between
the diffusion constant D, the growth rate a, and the mean-
square deviation y2 = ∫

fα(y)y2dy, which is a function of α.
More results can be obtained from this formulation; however,
there are some restrictions, and we need more-detailed
dynamical experiments in growth so that we can propose
more-elaborate kernels. Those presented here in Eq. (4) give us
a rough idea of the dynamics. More-accurate gα(x) and fβ(x)
will permit us to get a better description and a generalization
for two dimensions.
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