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Stress concentration and size effect in fracture of notched heterogeneous material
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We study theoretically and experimentally the effect of long-range correlations in the material microstructure
on the stress concentration in the vicinity of the notch tip. We find that while in a fractal continuum the notch-tip
displacements obey the classic asymptotic for a linear elastic continuum, the power-law decay of notch-tip
stresses is controlled by the long-range density correlations. The corresponding notch-size effect on fracture
strength is in good agreement with the experimental tests performed on notched sheets of different kinds of
paper. In particular, we find that there is no stress concentration if the fractal dimension of the fiber network is
D � d − 0.5, where d is the topological dimension of the paper sheet.
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Understanding how materials fail is one of the most
fundamental open problems in science and engineering (see
Refs. [1–3] and references therein). In notched structures
the fracture is controlled by material behavior around the
notch tip [4]. A common approach to problems of crack
initiation from a notch is based on linear elastic fracture
mechanics (LEFM) [4,5]. Within the LEFM framework, it
was shown that the displacement and stress fields ahead of a
smooth notch scale with the distance from the notch tip r as
ui = Kαr1−αugi(α,θ ) and σij = Kαr−ασ fij (α,θ ), respectively,
where the scaling exponent αu = ασ = α plays a role similar to
that of an eigenvalue and Kα is the generalized stress-intensity
factor [5]. The value of α and the angular eigenfunctions
gi(α,θ ) and fij (α,θ ) can be determined by applying the
traction-free boundary conditions to the notch flanks [4–6]. For
a cut with smooth edges in a homogeneous elastic medium, it
was found that α = 0.5 and K1/2 can be expressed in terms of
the stress intensity factors for three standard loading modes,
KI, KII, and KIII [5]. Therefore, the crack initiation criterion
can be presented in the form K1/2(σij ,a0) = KC , where a0 is
the cut length and KC is the apparent fracture toughness [4–6].
In a special case of the straight cut under loading mode I, the
criterion of crack initiation is KI = σ22

√
2πa0 = KIC , where

KIC is called the material toughness [4]. Accordingly, it is
expected that the crack initiation stress σC scales with the notch
size as σC ∝ KIC/

√
a0, while KIC is related to the critical

value of the crack energy release rate GC as KIC ∝ √
GCE,

where E is the elastic modulus [6].
The heterogeneities in the microstructure of most real mate-

rials lead to inhomogeneous perturbations of the displacement
and stress fields (see Refs. [7–11] and references therein). In
particular, the heterogeneity introduces the disorder-dependent
characteristic length lC in the displacement and stress distribu-
tions [10,11]. As a result, the crack initiation stress is expected
to scale with the cut size as

σC ∝ KC√
a0 + lC

(1)

for a0 > lC [10]. So, in the large cut limit a0 � lC the LEMF
size effect law σC ∝ KC/

√
a0 is recovered, where KC is the

disorder-dependent fracture toughness [10]. The size effect
[Eq. (1)] was observed in experiments [10] and also reproduced
in numerical simulations [10,11].

Once a crack is initiated, its motion is determined by
balancing the energy that it dissipates with that which is
externally supplied [12]. Rough crack paths in real materials
do little resemble to smooth trajectories predicted in the
classical LEFM [13]. Though, it was found that crack traces
z(x) often exhibit some kind of statistical scale invariance
over a wide range of length scale, such that the height-
height correlation function behaves as C ∝ (�x)2ζ , where
ζ is the so-called roughness exponent [14–16]. It has been
experimentally noted and then conjectured that cracks in
materials with random microstructures are characterized by
the universal roughness exponents ζ (d) (see Ref. [15] and
references therein). This conjecture is consistent with the
universality of critical exponents in percolation and other
critical phenomena [17]. However, the situation can be
changed drastically when there are long-range correlations
in the heterogeneous microstructure. Specifically, in fibrous
composites with power-law density correlations, the crack
roughness exponent is a function of the fractal dimension
of the microstructure [18]. Furthermore, some experiments
with such materials suggest that the crack roughness exponent
can be dependent on the fracture regime [19] and the crack
orientation [20].

In this work, we study the effect of long-range density
correlations on the stress concentration, crack roughness,
and size effect in brittle fracture of notched paper sheets.
Paper is a fiber composite material with many types of
structural nonuniformities [21]. It was found that many types of
commercial paper are characterized by a power-law behavior
of the two-point density correlation function,

G(
−→
R ) = 〈[m( −→r ) − m][m( −→r + −→

R ) − m]〉 ∝ R−η, (2)

within a wide, but bounded, interval l0 < R < ξ , where m( −→r )
is the local mass density, m is its average, 〈...〉 is an average over
the sheet, l0 is the lower cutoff of the order of the average fiber
size, and ξ is the structure-dependent correlation length [22].
For self-similar structures, such as fiber networks, the scaling
exponent η is related to the fractal dimension D as η = d − D,
where d is the embedding dimension [18,23]. Hence, at scale
l0 < R < ξ , the paper can be treated within a framework of
the fractal continuum suggested in Ref. [24].

By using the concept of fractal continuum [24], the authors
of Ref. [25] have shown that small strains in an elastic fractal
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medium obeying the conventional constitutive law of linear
elasticity, σij = λεkkδij + 2μεij , should be defined as

εij = 0.5[cj (∂ui/∂xj ) + ci(∂uj/∂xi)], (3)

where ck’s are the fractal functions (k = 1,2,3). For the fractal
continuum considered in Ref. [24], the fractal functions have
the form ck = νkx

νk

k , where νk = Dij + 1 − D, while Dij

is the fractal dimension of surface in the (i,j ) plane [26].
In the vicinity of a straight cut (Dij = d − 1) in a linearly
elastic heterogeneous medium, the displacements scale as ui ∝
(r + lC)1/2 [10]. If at scales R > l0 = lC the medium obeys the
fractal behavior characterized by Eq. (2), the fractal functions
ck can be represented in the form ck = νk (xk + l0)d−D , and
so the cut-tip strains defined by Eq. (3) and stresses σij =
λεkkδij + 2μεij will behave as

εij ∝ σij = Kα (r + l0)−ασ fij (α,θ ), (4)

where the cut-tip stress exponent is

ασ = 1 − 2(d − D)

2
, if D � d − 1/2,

(5)
while ασ = 0, if D � d − 1/2.

Accordingly, for a sheet with a straight cut of size a0 > l0
under loading mode I, the crack initiation stress is expected to
obey the following size effect law,

σC ∝ KMF (a0 + l0)−ασ , (6)

where KMF is the fractal material toughness. Notice that the
fracture size effect law [Eq. (1)] is recovered from Eqs. (5)
and (6) in the Euclidean limit D = d, e.g., for regular fiber
networks and random networks with an exponential decay of
G(R), whereas, if D � d − 1/2, there is no the power-law
stress concentration in the notch-tip vicinity, and so σC =
KMF = const [27].

The paper toughness evaluation based on fracture
mechanics has been extensively investigated by many scien-
tists for the past two decades (see Ref. [28] and references
therein). In many experimental works it was noted that the
apparent toughness KC obtained in tests of notched paper
sheets is not a constant, but rather it is an increasing function
of the notch size [29,30]. Furthermore, the analysis of the strain
field in notched papers suggests that the notch-tip field cannot
be described with stress intensity factor K1/2 [31]. At the same
time, the experimental data reported in Refs. [29,30], and [32]
are consistent with the size effect [Eq. (6)] with ασ < 0.5.
However, there are no dates on density correlations in papers
tested in Refs. [29–32] and so, using lC = l0 and α as the fitting
parameters, we can satisfactorily fit the same experimental data
with either Eq. (1), or with Eqs. (5) and (6), over more than
one decade of cut length scale [33].

To verify the size effect [Eqs. (5) and (6)], in this work
we tested two types of paper with the known values of η.
Specifically, we used the Secante paper of grade 200 ± 1 g/m2

and the Filtro paper of grade 103.4 ± 0.9 g/m2. Earlier,
both papers were used in Ref. [18] for the study of damage
fractures in sheets without notches. It was found that for both
papers the two-point density correlation function obeys the
scaling behavior (2) with l0 = 1.8 mm and η = 0.37 ± 0.03 for
Secante paper, while it was l0 = 1.15 mm and η = 0.51 ± 0.05

FIG. 1. Snapshot of stable crack propagation in the notched sheet
of the Filtro paper of width W = 300 mm and a0/W = 0.25.

for Filtro paper [18]. In this work, we tested the center notched
sheets of length 200 mm (the working length is 110 mm),
while the sheet width W = λW0 was varied within the interval
10 = W0 � W � 400 mm with scale factors of λ = 1, 2.5,
5, 10, 15, 20, 25, 30, 35, 40. The initial cuts in the sheets
were made by a scalpel [34]. Three series of tests were
performed in specimens with different ratios of the cut length
to the sheet width, μ = a0/W . First, the crack initiation tests
were performed in specimens with the fixed ratio μ = 0.25.
Additionally, we tested the notched Filtro paper sheets of
width 300 and 400 mm with different ratios μ in the range
of 0.025 � μ � 0.375. In addition, the sheets without notches
were tested to determine the tensile strength σt of each paper.
Mechanical tests were carried out on a mechanical testing
system (MTS) 858-5 testing machine. The sheets were held
by pneumatic vise-action grips between two parallel textured
jaw faces (see Fig. 1). At least ten identical specimens of
each size were tested under the same loading conditions [35].
In all experiments, the crack initiation was determined from
in situ observations with an optical microscope. In some
experiments, crack propagation through the specimen was
monitored through the use of a video recording system. Both
papers obey elastoplastic behavior (see Fig. 2) and the failure of
sheets without notches is governed by the damage mechanics
(see Ref. [18]). However, we noted that the crack initiation
stresses (σC) in the notched sheets of these papers are less than

FIG. 2. Stress-strain curves for the sheets of (a) Secante and
(b) Filtro papers without (dashed curve) and with (solid curve) a
central cut. The arrows indicate the paper yield stresses σ0.2 (defined
as the stress at which a plastic deformation achieves 0.2%) and
the crack initiation stresses σC determined from observation with
an optical microscope in notched sheets of width W = 400 mm and
a0/W = 0.25. Notice that for sheets with notches the stress is defined
as σ = F/h(W − a0), where F is the applied tensile force and h is
the sheet thickness.
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FIG. 3. Crack initiation stress σC vs cut length a0 in sheets of
(a) Secante and (b) Filtro papers. Symbols: experimental data for
sheets with a0/W = 0.25 (circles) and for sheets of width W =
400 mm (triangles) and W = 300 mm (squares); notice that each
experimental point is the average over ten experiments, while error
bars denote the statistical error calculated as ±2s(σC), where s(σC)
is the standard deviation of ten measurements [for clarity in (b),
error bars are shown for one series of tests only]. Solid curve
in (a): data fitting by Eq. (6) with l0 = 1.8 mm, α = 0.14, and
KMF = 6.78 MPa m0.14. In (b) the solid line represents the mean value
σC = 16.3 MPa, while dashed lines show the interval of confidence
at 95%.

their yield stresses (σ0.2) such that the crack propagation is
brittle.

The log-log plots of the crack initiation stress σC versus
the cut length a0 in sheets with a ratio a0/W = 0.25 are
shown in Figs. 3(a) and 3(b). The data for the Secante paper
obey the size scaling law shown in Eq. (6) with the scaling
exponent α = 0.14 ± 0.02 [see Fig. 3(a)], which is consistent
with Eq. (5). Therefore, the crack initiation criterion can be
presented in the form Kα = σ (a0 + l0)0.14 = KMF , where
the fractal material toughness of Secante paper is KMF =
σCa0.14

0 = 6.78 ± 0.07 MPa m0.14. In contrast to this, the crack
initiation stress in the Filtro paper is found to be independent
on the crack length in the range of 5 � a0 � 150 mm, as well
as on the ratio a0/W in the range of 0.025 � a0/W � 0.375
[see Fig. 3(b)]. This is consistent with the prediction of the size
effect law [Eq. (6)] with ασ = 0 expected from Eq. (5). The
difference between the crack initiation stress, σC = KMF =
16.3 ± 1.3 MPa, and the maximal tensile strength of the Filtro

papersheets without notches, σt = 28 ± 3 MPa [see Fig. 1(b)],
can be attributed to the difference in the fracture mechanisms of
sheets with and without the initial notch. In fact, sheets without
notches fail owing to damage accumulation (see Ref. [18]),
whereas the fracture of notched sheets is owing to single crack
propagation. It should be pointed out that the independence of
crack initiation stress within a wide range of the cut length a0 >

l0 ≈ lC cannot be explained with the size effect law defined by
Eq. (1) [29].

Once stated, the crack follows an irregular path, reflecting
certain constituents of paper microstructure and stress fluc-
tuations. To study crack roughness, all fractured sheets were
scanned with a 1200 ppp resolution and then the crack traces
were digitized with the help of Scion Image software (see
Ref. [36]). The crack roughness exponents of digitized crack
traces were determined by the variogram, power spectrum,
roughness length, and rescaled range (R/S) methods with the
help of the BENOIT 1.3 software (see Refs. [18] and [37]). In this
way we found that the roughness of cracks in the Secante and
Filtro papers is characterized by the local roughness exponents
ζ = 0.64 ± 0.03 and ζ = 0.49 ± 0.01, respectively. We noted
that these values are statistically indistinguishable from the
roughness exponents of damage fractures obtained in tensile
tests of sheets without notches (see Ref. [18]). In Ref. [18],
it was shown that the damage fracture roughness exponent
is related to the fractal dimension of the fiber network as
ζ = D − (d − 1). Our findings suggest that the roughness
exponents of brittle cracks in the Secante and Filtro papers
also obey this relation [38].

In summary, we showed that in a fractal continuum the
distribution of notch-tip stresses is controlled by the long-
range density correlations. This is reflected in the notch-size
effect on the crack initiation stress [Eqs. (5) and (6)]. The
scale invariant density fluctuations also determine the scaling
properties of crack roughness. These findings provide a novel
insight into the fracture phenomena in materials with a fractal
microstructure.
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(México–European Union) under Project 96095 and the
Government of Mexico City under Grant No. PICCT08-64.

[1] L. Ponson, Phys. Rev. Lett. 103, 055501 (2009); J. Scheibert,
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