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Continuous-time random walks on bounded domains
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A useful perspective to take when studying anomalous diffusion processes is that of a continuous-time
random walk and its associated generalized master equation. We derive the generalized master equations for
continuous-time random walks that are restricted to a bounded domain and compare numerical solutions with
kernel-density estimates of the probability-density function computed from simulations. The numerical solution
of the generalized master equation represents a powerful tool in the study of continuous-time random walks on
bounded domains.
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I. INTRODUCTION

Anomalous diffusion processes have been observed in many
applications; for example, contaminant flow in groundwater
[1], dynamic motions in proteins [2], turbulence in fluids
[3], and dynamics of financial markets [4] have all been
verified experimentally to exhibit characteristics of anomalous
diffusion; see Ref. [5] for a review. A diffusion process
is termed anomalous when the mean square displacement
satisfies

〈X2(t)〉 =
∫
R

x2v(x,t) dx ∼ tγ , γ �= 1, (1)

unlike normal diffusion, where γ = 1. In (1), v is the
probability-density function of the random variable X(t),
which is the displacement of a diffusing particle at
time t . When 0 < γ < 1, such a process is subdiffusive, while
γ > 1 indicates a superdiffusive process. A thorough survey of
theoretical considerations for anomalous diffusion processes
can be found in Ref. [6].

One common perspective to take when studying anomalous
diffusion processes is that of a continuous-time random
walk (CTRW) and its associated generalized master equa-
tion [6,7]. As discussed in Refs. [6,8,9], this perspective
is especially useful when the diffusion process lacks finite
characteristic scales, e.g., mean square displacement of a
particle or the mean wait-time between collisions. Though
the relationship between a CTRW in free space and anoma-
lous diffusion processes has been well studied, the same
cannot be said for the subsequent relationship on bounded
domains. Of the existing research, much is concerned with
graphs and lattices, and comparatively little work exists on
the generalized master equations for CTRWs on general
bounded domains. Recent efforts, namely, Ref. [8], however,
have made advances to remedy this by investigating certain
Markovian CTRWs with absorbing and reflecting boundary
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conditions. The analysis in Ref. [8] is limited in relying
on special cases so that explicit, closed-form, solutions to
the generalized master equations can be found for simple
one-dimensional domains. This analysis becomes difficult
when the Markovian assumption is removed, the domains
in two and three dimensions are not simple, and the step
density is not suitably chosen; e.g., it is approximated from
data.

There is also a well-known relationship between the gener-
alized master equations for CTRWs in free space and fractional
diffusion equations. For bounded domains, considerably more
research exists for fractional diffusion than for integro-
differential equations, such as the aforementioned generalized
master equations. For instance, Ref. [10] gives a probabilistic
interpretation of the Lévy-Feller fractional diffusion equation
with absorbing boundaries, where the fraction of the Laplacian
is restricted to α ∈ (1,2); i.e., the cases γ � 2 in Eq. (1)
are not considered. Other work, e.g., Ref. [11], considers
fractional diffusion equations on bounded domains with
reflecting boundaries. However, even for fractional diffusion,
there is little notion of general boundary conditions outside
specialized domains, e.g., rectangles and parallelepipeds in
two and three dimensions, respectively.

In this paper, we derive the generalized master equations for
both Markovian and non-Markovian continuous-time bounded
random walks (CTBRWs) with either absorbing or insulated
boundaries. An insulated boundary restricts the random walker
from taking a step past the boundary; e.g., a special case of
insulated boundaries is the reflective behavior described in
Ref. [8].

Boundary conditions such as these appear naturally when
a diffusion process is restricted to a bounded domain, e.g.,
contaminant flow in an underground aquifer. The boundary
conditions for a random walker induce volume constraints
on the solution of the generalized master equation, and
the resulting equations are then studied via a variational
formulation and conforming finite-element method described
in Refs. [12,13]. This computational approach allows for
the study of a wide class of problems on nontrivial
bounded domains in two and three dimensions, a capability
currently unavailable.
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TABLE I. Pseudocode for simulating a CTBRW.

Absorbing boundaries Insulated boundaries

a0 = 0 a0 = 0
simulate x0 ∼ u0(x) simulate x0 ∼ u0(x)
for k from 1 to T for k from 1 to T

simulate tk ∼ ω(t) simulate tk ∼ ω(t)
ak = ak−1 + tk ak = ak−1 + tk
simulate sk ∼ φ(s) simulate sk ∼ φ(s)
xk = xk−1 + sk xk = xk−1 + sk

if xk /∈ (0,1) if xk /∈ (0,1)
break xk = xk−1

end end
end end

We demonstrate that the numerical solutions to the gen-
eralized master equations agree with kernel-density estimates
of the solution from CTBRW simulations. This renders the
aforementioned finite-element formulation a powerful tool
in studying CTBRWs as models of anomalous diffusion
because computationally intensive CTBRW simulations may
be avoided.

II. CTRW IN A BOUNDED DOMAIN

We consider separable CTRWs; i.e., wait times are
independent of the choice of step. The wait-time density
is denoted with ω and the step density with J (y,x); i.e.,
J (y,x) is the probability density of taking a step from y to
x and, consequently,

∫
R J (y,x) dx = 1. Note, however, that∫

R J (y,x) dy �= 1 in general. It is well known (see, e.g.,
Refs. [4,6,14]) that the probability-density function of the
CTRW, u(x,t), satisfies the generalized master equation

ut (x,t) =
∫ t

0
�(t − t ′)LJ

Ru(x,t ′) dt ′, (2)

where the Laplace transform of the memory kernel � is

�̂(ζ ) = ζ ω̂(ζ )

1 − ω̂(ζ )
,

and we have introduced the operator

L
f

I u(x,t) :=
∫

I

[u(y,t)f (y,x) − u(x,t)f (x,y)] dy.

The analogous operator to L
f

I u(x,t) for a CTRW on a lattice
has been studied previously; see, e.g., Ref. [15].

For this paper, we consider two choices of � in (2):

�(t − t ′) = 1

2τ
δ(t − t ′), (3a)

�(t − t ′) = 1

τ 2
exp

(
− t − t ′

τ/2

)
, (3b)

which are tantamount to specifying that wait times are
distributed as

Exp(2τ ), i.e., ω(t) = 1

2τ
exp

(
− t

2τ

)
, (4a)

Gamma (2,τ ), i.e., ω(t) = t

τ 2
exp

(
− t

τ

)
, (4b)

respectively, both of which imply finite mean wait times. In
fact, (4a) and (4b) imply that the underlying CTRWs are com-
pound Poisson and renewal reward processes, respectively.
With (3), (2) reduces to

ut (x,t) = 1

2τ
LJ
Ru(x,t), (5a)

ut (x,t) + τ

2
utt (x,t) = 1

2τ
LJ
Ru(x,t). (5b)

Since the mean wait time is finite, (5a) and (5b) are models
for either normal diffusion or anomalous superdiffusion,
depending on whether

∫
R (x − y)2J (y,x) dx is finite or

infinite, respectively. By selecting a heavy-tailed wait-time
density, we may obtain models for subdiffusion, normal
diffusion, or superdiffusion, depending now upon the interplay
between the characteristic step-length variance and character-
istic mean wait time. We refer the reader to Ref. [6] for further
information.

Boundary conditions for CTBRWs manifest themselves in
the definition of the step density J (y,x) and are now described.
We let φ be a symmetric probability density that should be
interpreted as the step density in the absence of boundary
conditions.

We first describe the behavior of fully absorbing bound-
aries. Once a random walker reaches, or steps beyond, the
boundary ∂�, it is banned from � for all future time. This
description gives the step density

J (y,x) =
{
φ(x − y), y ∈ �,

δ(x − y), y /∈ �,
(6)

so that a random walker may step from y ∈ � to x ∈ R via the
radial density φ(x − y).

It is convenient then to set u(x,t) = 0 for x /∈ �, and
inserting (6) into (2) gives{

ut (x,t) = ∫ t

0 �(t − t ′)Lφ

Ru(x,t ′) dt ′, x ∈ �,

u(x,t) = 0, x /∈ �,

and, thus,

ut (x,t) = 1

2τ
L

φ

Ru(x,t), x ∈ �, (7a)

ut (x,t) + τ

2
utt (x,t) = 1

2τ
L

φ

Ru(x,t), x ∈ �. (7b)

Equation (7a) was studied in the context of a Markovian
CTRW in Ref. [8], and (7b) belongs to a non-Markovian
CTRW.

The case of fully insulated boundaries restricts a random
walker from reaching, or stepping beyond, ∂�. One interpre-
tation of this description gives rise to

J (y,x) = χ�(x)φ(x − y)

+ δ(x − y)
∫
R\�

φ(z − y) dz, y ∈ �. (8)

The step density (8) states that a random walker may step
from y ∈ � to x ∈ � via the radial density φ(x − y). Further,
there is a nonzero probability,

∫
R\� φ(z − y) dz, of the walker

at y ∈ � not taking a step. Together, these guarantee that the
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random walker remains in � for all time, and, consequently,
defining J (y,x) for y /∈ � in (8) is not required.

Insertion of (8) into (2) gives

ut (x,t) =
∫ t

0
�(t − t ′)Lφ

�u(x,t ′) dt ′, x ∈ �,

and, thus,

ut (x,t) = 1

2τ
L

φ
�u(x,t), x ∈ �, (9a)

ut (x,t) + τ

2
utt (x,t) = 1

2τ
L

φ
�u(x,t), x ∈ �. (9b)

Now, we relate Eqs. (7) and (9) to nonlocal boundary value
problems that have been postulated and studied in various
different settings [8,12,13,16,17]. A nonlocal boundary value
problem augments (5) by constraining the solution on a
nonzero volume, generalizing the notion of classical boundary
conditions to that of a volume constraint. Such volume
constraints need not be relegated to the exterior of �. We
specify an initial density u0(x) on �, satisfying u0 � 0 and∫
�

u0(x) dx = 1.
The nonlocal Dirichlet boundary value problems are⎧⎨⎩ut (x,t) = 1

2τ
L

φ

Ru(x,t), x ∈ �,

u(x,t) = 0, x /∈ �,

u(x,0) = u0(x), x ∈ �,

(10a)

and⎧⎪⎪⎨⎪⎪⎩
ut (x,t) + τ

2 utt (x,t) = 1
2τ

L
φ

Ru(x,t), x ∈ �,

u(x,t) = 0, x /∈ �,

u(x,0) = u0(x), x ∈ �,

ut (x,0) = 0, x ∈ �.

(10b)

The nonlocal Dirichlet boundary condition constrains u for
x /∈ �, analogous to the classical Dirichlet boundary condition
that does so at the points on the boundary.

The nonlocal Neumann boundary value problems are{
ut (x,t) = 1

2τ
L

φ
�u(x,t), x ∈ �,

u(x,0) = u0(x), x ∈ �,
(11a)

and⎧⎨⎩ut (x,t) + τ
2 utt (x,t) = 1

2τ
L

φ
�u(x,t), x ∈ �,

u(x,0) = u0(x), x ∈ �,

ut (x,0) = 0, x ∈ �.

(11b)

The integrals in (11), in contrast to those in (10), are over �

rather than all of R. This implies a constraint on diffusion so

that it occurs strictly inside �; i.e., density neither enters nor
exits �, which is analogous to the classical Neumann boundary
condition.

In summary, the descriptions of the boundary conditions
for the CTBRW determine J in (2) so that (2) reduces to an
appropriate nonlocal boundary value problem in (10) or (11).
Evidently, these nonlocal boundary value problems describe
the time evolution of the probability density of the state of the
corresponding CTBRW. The analysis in Refs. [12,13] allows
us to analyze (10) and (11) via a variational formulation and
conforming finite-element method, so extending the class of
problems computationally tractable.

We simulate N random walkers, and a kernel-density
estimate of u at various points in time is computed. This
kernel-density estimate is compared to the finite-element
solution of the associated nonlocal boundary value problem.
We select φ to be a Lévy stable density with stability index α,
characterized via

φ(s) = F−1{exp(−εα|ξ |α)} (s) (12)

and choose α = 3/2 and ε = 0.25. For simulations with
absorbing boundaries, we use u0(x) = 2x, and for insulated
boundaries, u0(x) = π

2 sin(πx). These choices of u0, in consid-
eration of the respective boundary conditions, were opportune
and have no effect on our conclusions.

A walker begins at a random location x0 ∈ (0,1) according
to the initial density u0(x). For each k, a wait time tk is
generated from ω, and the arrival time ak = ak−1 + tk is
recorded. A step sk is generated from φ, the new location
xk = xk−1 + sk is recorded, and then boundary conditions are
imposed. For instance, if xk /∈ (0,1) for the case of absorbing
boundary conditions, the random walk is stopped. In the case of
insulated boundary conditions, if xk /∈ (0,1), we set xk = xk−1;
i.e., the walker waits at the current position. Again, this
treatment of an insulated boundary differs from the reflective
behavior in Ref. [8] and is merely one approach for treating
insulated boundaries. Deciding on the appropriate treatment
is application specific and depends largely on the mechanism
driving the CTBRW. Note that the position of the random
walker is known for all time; e.g., the walker is at position xk

for the time interval [ak,ak+1). A summary of the algorithm
for simulating a CTBRW is given in Table I.

Data from the CTBRW simulations are used to estimate
the density u(x,t). Let pi(t) denote the ith random walker’s
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FIG. 1. (Color online) Panels (a)–(d) show kernel-density estimates of the CTBRW simulations (solid lines) on � = (0,1) with N = 8 × 104

and numerical solutions (dashed lines) of the nonlocal boundary value problems (10a)–(11b), respectively. The horizontal axis is x and the
vertical axis is the value of the density. The ten curves represent ten different values of t ∈ [0,0.5].
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position at time t and partition � = (0,1) into n subintervals
�i . Then define the kernel-density estimate:

μN (x,t) :=
n∑

k=1

χ�k
(x)

{
1

Nh

N∑
i=1

χ�k
(pi(t))

}
. (13)

Though results exist that give the “optimal” bandwidth, i.e.,
h, so as not to oversmooth or undersmooth the data, it is
convenient in this case to pick h to be the mesh size induced
by the finite-element discretization. We denote the numerical
solutions to (10) and (11) with uh.

We present simulation results for N = 8 × 104 random
walkers with h = 0.01 and t ∈ [0,0.5]. To produce a, visually,
more pleasing comparison between uh and μN , the kernel-
density estimate in (13) is plotted as a continuous piecewise
linear function by connecting the heights of μN at each of the
midpoints of the subintervals �i . Figure 1 shows results of the
CTBRW simulations on (0,1).

III. CONCLUSIONS

The results in Sec. II corroborate that the nonlocal boundary
value problems in (10) and (11) are indeed the generalized
master equations for a CTBRW with appropriate boundary
conditions. Consequently, a rapid means of investigating
statistics of the CTBRW, e.g., exit times, exists via finding
numerical solutions to generalized master equations and thus
renders the recently developed variational formulation and
numerical methods powerful tools. Without this capability,
estimating such statistics requires simulations of the CTBRW,
a computationally demanding task.
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