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Model of ciliary clearance and the role of mucus rheology

Michael M. Norton,1,* Risa J. Robinson,1 and Steven J. Weinstein2

1Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
2Department of Chemical and Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA

(Received 12 September 2010; published 31 January 2011; publisher error corrected 24 February 2011)

It has been observed that the transportability of mucus by cilial mats is dependent on the rheological properties
of the mucus. Mucus is a non-Newtonian fluid that exhibits a plethora of phenomena such as stress relaxation,
tensile stresses, shear thinning, and yielding behavior. These observations motivate the analysis in this paper that
considers the first two attributes in order to construct a transport model. The model developed here assumes that
the mucus is transported as a rigid body, the metachronal wave exhibits symplectic behavior, that the mucus is thin
compared to the metachronal wavelength, and that the effects of individual cilia can be lumped together to impart
an average strain to the mucus during contact. This strain invokes a stress in the mucus, whose non-Newtonian
rheology creates tensile forces that persist into unsheared regions and allow the unsupported mucus to move
as a rigid body whereas a Newtonian fluid would retrograde. This work focuses primarily on the Doi-Edwards
model but results are generalized to the Jeffrey’s and Maxwell fluids as well. The model predicts that there exists
an optimal mucus rheology that maximizes the shear stress imparted to the mucus by the cilia for a given cilia
motion. We propose that this is the rheology that the body strives for in order to minimize energy consumption.
Predicted optimal rheologies are consistent with results from previous experimental studies when reasonable
model parameters are chosen.
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I. INTRODUCTION

Mucus and cilia work in tandem in the respiratory tracts
of many species to clear pathogens from the body or perform
other transportation functions. Lubricated by interstitial fluid,
cilia beat asymmetrically to engage mucus and sweep it out of
the body. Though mostly water, mucus is a chemically and rhe-
ologically complex fluid [1]. A variety of glycol-sylated pro-
teins, called mucins, give it its intriguing mechanical properties
while various additional constituents provide immunological
character. Cilial dynamics and mucus rheology have attracted
the scrutiny of theoreticians and experimental investigators
for the past several decades. The ultimate goal of research in
this area is to develop treatment strategies for the maladies
that result when one more or parts of this system break
down owing to disease or hereditary predisposition. Cystic
fibrosis and chronic obstructive pulmonary disease are but
two examples. The quantitative connection between rheology
and mucus transportability is fundamental to understand and
potentially treat these diseases.

Much of the initial theoretical work examining mucus clear-
ance was an extension of studies on aquatic microorganisms
that dwelled in mostly Newtonian fluids dominated by viscous
forces (i.e., low Reynolds number flows). In these models,
the “envelope approach” was used to simplify the problem by
considering the cilia mat to be an undulating surface [2]. Many
theoretical efforts attempted to extract an explicit connection
between the ciliary dynamics and transport of both the mucus
and the underlying interstitial fluid; Stokeslets and slender
body theory were often used analysis techniques. Models often
combined experimentally acquired cilia trajectories with a
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Newtonian bilayer geometry (in which the mucus was treated
as a highly viscous fluid) to determine clearance velocities
[3–6]. The focus on Newtonian fluids in these works precluded
investigation of the interactions between mucus clearance and
fluid rheology, now believed to be essential to mucus clearance
as cited below.

The problem of a viscoelastic film propelled by an un-
dulating layer was first considered several decades ago by
using a form of the convected Maxwell fluid model and the
assumption of small-amplitude deformations of the boundary
wall meant to model the effect of an cilial mat [7]. The net
transport of a material point in the slab was found to increase
monotonically with mucus rigidity; no relationship between
the viscosity of mucus and transport was extracted. More
recently, transport of an Oldroyd-B fluid was examined; as in
previously cited studies, a small-amplitude undulation in the
cilial mat was assumed [8]. In this work, stress relaxation was
predicted to reduce mechanical efficacy of mucus clearance.
It was therefore posited that non-Newtonian rheologies may
be favored for their ability to be tuned by the body rather than
directly improve mechanical effectiveness. Though a nonlinear
constitutive equation incorporating rheology was chosen, the
role of its increased complexity on mucus transport compared
with linear models was not elucidated. A following paper
that considered a finite rigid flapper in the same medium
revealed the benefits of a nonlinear constitutive equation to
defeat the scallop theorem (the inability of a swimmer with
only one degree of freedom to propel itself owing to the
time reversibility of Stokes flow) [9]. Flow characteristics as a
function of Deborah number were explored and implications
of mucociliary transport were discussed. However, while the
model demonstrates the fundamental importance of normal
stress even in the small-amplitude regime, the results are
not readily extendable to the clearance of a thin sheet
in which the movers are not completely immersed in the
medium.
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Green’s functions or Stokeslets for fluids satisfying a linear
Maxwell constitutive equation have been employed to explore
the forces and velocities that result from the movement of cilia
immersed in a viscoelastic mucus. The movement of the cilia
is incorporated as a boundary condition by using experimental
data [10]. A relaxation time that maximizes force density in
a mucus film has been predicted from this technique [11].
However, note that the use of a linear model cannot account
for the development of tensile forces through the action of
shear [12].

Modern increases in computing power have made explicit
predictions of the mucociliary interaction possible [13–15].
Rather than impose the motion of the cilia as a boundary
condition, the cilia are given an internal structure intended
to mimic the fibrous network and motor proteins of actual
cilia. That is, the motion of the cilia themselves is part of the
solution to the simulation. While these models demonstrate
the ability of numerical schemes to simulate complex fluid
structure interactions and understand how force is generated by
the cilia, variations in rheological parameters are not explored
in depth, and trends are not identified. This makes connections
to experimental studies difficult.

There are a variety of experimental studies that examine
specific aspects of mucociliary clearance that are particularly
pertinent to the model proposed in this paper. An examination
of fixed, excised rabbit trachea provides the wavelength
of the metachronal wave that characterizes the release and
engagement of the mucus by cilia [10]. In a separate study,
the direction and speed of the metachronal wave in live
cilia have been examined also [16]. These two sources
disagree about the character of the metachronal wave. The
former only observes antiplectic (wave propagation in a sense
opposite to the direction of clearance) coordination; the latter
only observes symplectic (wave propagation in the same
direction as clearance). Further, it was generally found in
the latter that metachronal wave velocities were larger than
the clearance velocity (a condition that we find necessary to
employ in our model). This disagreement no doubt indicates
that the metachronal wave motion is quite complex, and that
experiments have not identified and controlled all factors
relevant to the relative motion of the mucus and cilia. One fact
that is well established is that the ciliary beat frequency and
the coordination of the metachronal wave are not connected
in a straightforward manner (i.e., the wave does not exhibit
simple harmonic behavior) [16,17].

For some time, it has been understood that the complex
rheology of the mucus gel and the intricate dynamics and
coordination of the cilia are coupled for optimal transport of the
mucus. An experimental study that utilizes ciliated frog palates
to study the clearance velocity of (nonmucus) viscoelastic
media samples shows that transport occurs most effectively
over a narrow range of storage moduli [18]. Qualitatively, this
characterization implies that mucus can neither be too “solid”
like or too “runny,” and that only some mucus rheologies are
effectively transported.

A more recent experimental study examines the trans-
portability as a function of rheology by modifying samples
with variable amounts of saline [19]. Their results show that
mucus moduli measured at low frequencies have a stronger
correlation with transport than material properties measured

at shorter time scales. The authors highlight the ambiguity
surrounding the precise mechanical role of mucus as well as
the importance of two times scales in the problem: the ciliary
beat frequency and the comparatively slower time associated
with the wave velocity and metachronal wavelength. These
works demonstrate the important effect of mucus rheology
on clearance efficacy but are not able to establish a specific
mechanical description of their results. Though theoretical
work has advanced since this study was performed, the
mechanistic role of mucus remains vague.

Three studies are now cited that report force measurements
(either direct or indirect) on the cilial mat. In the first study,
a spatially and temporally averaged shear stress of ∼1–10 Pa
is calculated by analyzing an experiment in which a mucus
plug moves with a constant velocity on the order of 1 μm s−1

against an adverse pressure difference [20]. Our interpretation
of this estimate is that it may be viewed as the maximum
force imparted by the cilia (used in this case to fight the
pressure gradient) and already includes the adverse drag forces
associated with the pericilliary fluid and imbedded cilia. More
recent studies calculate the force of single cilium as they
beat (without the presence of mucus) by using atomic force
microscopy coupled with visual observation. The maximum
force is found to be on the order of 0.1 nN [21]. Additionally, it
is shown that, owing to geometric constraints of the beat cycle,
this force is linearly dependent on the beat frequency [22].

Experimental studies have yielded the clearance ability of
the cilia through direct observation of excised or cultured
cilial mats and indirect means. Based upon experimentally
acquired bulk clearance volumes and available surface area,
the average flow velocity as a function of lung generation
has been estimated [23]. Observation of the flow profiles
in more controlled situations has also been performed by a
number of researchers by using excised ciliated tissue [24–27].
Velocities on the order of 10–100 μm s−1 are consistently
reported.

The above-cited experimental works examine many aspects
of transport independently. With rare exception are there
works that simultaneously examine mucus clearance, mucus
rheology, and cilial dynamics. When done, these studies
involve excised cilia in horizontal configurations [18,19].
Additionally, there appear to be no in vivo measurements of
mucus clearance, no doubt owing to measurement complexity.
Ideally, experiments would combine the rheological charac-
terization of mucus across a continuum of time scales with
relaxation studies [28,29] rather than at a handful of time
scales [30–32], and this would be coupled to an examination
of the transportability of those same specimens. Furthermore,
the most elegant theoretical treatments all appear to be missing
at least one piece of the clearance mechanism. We assume
this because prior studies either do not reveal an optimal
rheology [7,8], or they are overly limited in applicability by
the viscoelastic model they choose [11].

In this paper, we propose a mechanism by which cilia
motion and the non-Newtonian mucus rheology act in tandem
to achieve mucus clearance in an optimal way. In order to over-
come limitations of previous studies, a model of the mucocil-
iary mechanisms is constructed that explicitly incorporates
what we believe to be some of the key physical components
while avoiding the complexities of more detailed simulations.
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We begin with the fact that, on average, an arbitrary section of
the mucus film transports in a steady-state manner. Next we
consider, from the frame of reference moving with the mucus,
the cyclic loading that it experiences as it traverses active and
inactive regions of the cilial mat. In this portion of the analysis
the rate of strain owing to moving cilia is imposed and the
resulting buildup and relaxation of stress in the viscoelastic
fluid is examined. Finally, we incorporate what we posit is the
most dominant effect of nonlinear viscoelasticity present in the
mucus film: tensile forces. By assuming a purely unidirectional
flow (reasonably valid when the metachronal wavelength is
large with respect to the film thickness), we are able to extract
an estimate of the tensile forces that result when a fluid obeying
an upper convected Maxwell (UCM) rheology is sheared.
Maxwell model results are also generalized to both Jeffrey’s
and Doi-Edwards fluids [12]. Though nonlinear viscoelasticity
has been incorporated in previous models that consider the
complex flow generated by model cilium [9], its effect has
not been explored in such a way that its importance in bulk
transport of mucus when there are many cilia can be examined.

In tandem, these three analyses are able to predict mucus
rheology (relaxation time and zero-shear-rate viscosity) as a
function of average clearance velocity and other parameters
such as metachronal wave and mucus dimensions. Despite
its simplicity, the model is capable of predicting a rheology
that maximizes stress for a given cilial motion (which is
accounted for by a bulk strain rate in our analysis). Our
model is unique in that it invokes an assumption that stress
relaxation is necessary for positive transport of the mucus;
the non-Newtonian character of mucus is an essential piece
of the model. It is acknowledged at the onset that the lack of
sufficient experimental data precludes our ability to validate
whether our proposed mechanism is indeed correct, although
it is consistent with available experimental data taken from
a variety of sources. The purpose of this model, then, is to
provide a framework for future theoretical and experimental
exploration. The model indicates the key parameters that need
to be measured and or predicted from more fundamental
studies, and will guide further experiments by allowing for
hypotheses based on model predictions to be tested. No doubt,
more refined models can and will be generated in the future,
but at this point, the level of available data precludes a more
detailed theoretical study.

II. THEORY

The model we propose combines three individual fluid-
mechanical analyses. (a) The first analysis yields a time-
averaged overall force balance on a slab of mucus in order
to establish a connection between mucus flow velocity and
average force applied by the cilia. The analysis establishes the
necessary condition for the cilia to sweep the mucus as a rigid
body against the pull of gravity and overcome viscous drag
of the underlying periciliary fluid (including the resistance
of the cilia themselves). (b) The second analysis focuses on
one rheological property of mucus, i.e., the relaxation time
from the Maxwell model, which delays both the buildup
and dissipation of shear stress. We consider a slice of the
convected mucus slab that experiences the strain rate imparted
by cilia for only a fraction of its length corresponding to

the metachronal wave. We incorporate the the mucociliary
interaction by introducing an effective strain rate and assume
that all energy is imparted through shear. (c) The third analysis
posits that the ability of mucus to develop tensile forces
when it is sheared is essential to support regions of the
mucus that are not actively sheared by cilia. A unidirectional
approximation is applied to the UCM model to establish
an analytical relationship between shear stress and tensile
force. The Maxwell model analyses are extended to Jeffrey’s
and Doi-Edwards rheological equations, taking advantage of
similarities in their mathematical structure.

A. Steady-state force balance on mucus

Mucus must be swept upward against gravity or in hori-
zontal configurations must overcome the viscous drag of the
periciliary fluid whose properties are convoluted with the cilia
imbedded in them. The cilia must supply the forces necessary
to propel the mucus. For the purposes of the force balance
to follow, the mucus is modeled as a rigid body, despite
the fact that there is some mucus deformation owing to the
cilia. This is justified because the viscosity of the mucus is
extremely large compared with that of the periciliary layer
(PCL) on which the mucus rests (Fig. 1). Additionally, in this
model, the precise details of the cilia motion in the PCL are
neglected. The effect of the cilia motion is incorporated via
propulsive force and a drag force, both of which act on the
interface between the mucus body and the PCL. The stresses
that exist within the mucal layer owing to the cilia motion will
be considered in Sec. II B. Because of the repeating nature of
the metachronal wave, the control volume is drawn in over one
complete wavelength unit in such a way that forces incurred
when cutting through the mucus film are equal and opposite,
and thereby cancel.

Consider a finite rectangular slab of mucus of thickness,
hM , length ξ , and width w, riding over a PCL against the
action of gravity of magnitude gx (Fig. 1). If the mucus slab is
to maintain constant velocity VM , then all external forces on
the moving slab must balance:∑

Fx = 0 = Fcilia − Fdrag − Fmucus. (1a)

The length is chosen to be equal to that of the metachronal
wavelength ξ . The periodic nature of the metachronal wave

FIG. 1. Schematic of rigid-body problem. The relevant forces are
labeled as (1) drag, (2) average stress applied by cilia, and (3) weight
of mucus.
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allows us to assume that stresses which exist at the top and
bottom of our free body are equal and opposite. Note that
in Fig. 1, the x-y coordinate system is as indicated, and the
motion of the slab is upward. The two forces opposed to
the propulsive force are the body force owing to the weight of
the mucus and the frictional drag of the PCL. The body force is
given as

Fmucus = ρgxhwξ. (1b)

The frictional drag of the PCL, although intuitively an
obvious contribution, is difficult to express mathematically.
Modeling the PCL has been a topic of interest in several
previous works [6,33–35]. When active, the densely packed
cilia directly engage the mucus and propel it. Cilia that are
inactive or execute their recovery stroke, however, impose a
drag on the mucus layer above. Thus the PCL can be thought
of as a continuous distribution of forces, some of which
are beneficial and others which are detrimental. It has been
proposed by some investigators that this drag be modeled by
assuming that the PCL behaves as a porous medium [36].
At present we are, however, uninterested in the subtleties
of this region and lump the positive and negative effects of
the cilia into two stresses. The first incorporates the effect
of the drag of the PCL augmented by the cilia themselves,
and is assumed to be proportional to the velocity through a
frictional coefficient μ. We expect this value to be quite high
as to account for the fact that the cilia are closely packed;
however, because of the aforementioned complexities, we do
not attempt to predict its value through a theoretical treatment.
A value for the coefficient will be estimated later in the analysis
when we compare the rheologies predicted by our model with
experimentally acquired data:

Fdrag = τdragwL = μVMwξ. (1c)

The beneficial stress, denoted by 〈τ 〉, is a shear force
imparted to the mucus slab by the cilia; the brackets indicate
that the quantity is spatially and temporally averaged:

Fcilia = 〈τ 〉wξ. (1d)

Substituting all of the components into the force balance
yields the following equality:

wξ (〈τ 〉 − VMμ − ρgxh) = 0. (1e)

Solving for the average stress yields the desired result of
the first analysis:

〈τ 〉 = VMμ + gxρh. (1f)

The resulting Eq. (1f) tells us that for a fixed mucus velocity,
the average stress is entirely known if we select a friction
coefficient. In Secs. II B and II C we will impose more complex
restrictions on 〈τ 〉; however, we will continue to enforce the
requirement of rigid-body motion throughout the analysis.

B. Stress development

We now examine how stress builds in the mucus owing
to the motion of the cilia and quantify it via a simplified
analysis. The goals of the analysis to follow are (1) to establish
a relationship between the average strain rate imparted by the

cilia and the average shear stress developed in the mucus,
and (2) to determine the instantaneous shear stress in the
mucus layer. A proper choice of reference frame will allow
us to examine the derived stress as either a function of time
or position within the metachronal wave. The shear stress
itself does invoke tensile stresses in the mucus, which will
be examined in Sec. II C.

Literature cited in Sec. I indicates that a distinguishing
rheological property of mucus is its tendency to behave as
an elastic solid on short time scales. A universal constitutive
equation between stress and strain for viscoelastic media does
not exist. By contrast, there are many nonelastic fluids that can
be described by a Newtonian constitutive equation in which
its key parameter, the viscosity, is a material property that
can be measured. The material property character assures
that the measurement of viscosity can occur in a system
different from the particular configuration being analyzed
(e.g., in a viscometer or rheometer). The rheology of mucus is
complex enough that a single constitutive equation describing
its stress-strain relationship has not yet been established
in terms of fundamentally measurable material quantities.
Therefore, phenomenological models that incorporate the
elastic character of the mucus must be assumed, although the
parameters involved may not in fact be material parameters.
Providing a model that accounts for stress relaxation versus
time is the most fundamental building block. Mucus, as other
organic polymeric solutions, is capable of additional behaviors
beyond time-scale dependence whose implications are beyond
the scope of the current paper [28,29,37].

When mucus is deformed abruptly by cilia, the relationship
between stress and strain tends toward the elastic behavior
of a solid. The simplest viscoelastic fluid model that allows
for elastic behavior on short time scales is the Maxwell
constitutive equation, which relates the rate of strain and stress.
The Maxwell model should be thought of as the addition of
elasticity to a Newtonian fluid model; it can be represented
schematically as a viscous dashpot of viscosity η0 (commonly
referred to as the zero-shear-rate viscosity) and a Hookean
spring with spring constant G in series as shown in Fig. 2. This
constant G is often related to the viscosity and relaxation time,
λ, of the material, as G = η0/λ.

The differential equation describing the relationship be-
tween stress and strain rate is given as

λ
dτ

dt
+ τ = η0γ̇ , (2)

where τ and γ̇ are the generally time-dependent stress and
strain rate, respectively. A cursory inspection of the equation
shows that in cases of small relaxation times (λ → 0), Eq. (2)
reduces to a Newtonian relationship between stress and strain.

η0G=η0 /λ

FIG. 2. Schematic of the Maxwell fluid element. The rigidity of
the elastic element G is defined in terms of the relaxation time λ and
zero-shear-rate viscosity η0; this notation is common in texts.
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TABLE I. Parameters for various rheological models in Eq. (2b).
The subscripts 1 and 2 refer to relaxation time and retardation time,
respectively. The retardation time must always be less than the
relaxation time [12]; β is therefore always less than 1. If λ appears
without a subscript in the body of the text, relaxation time is implied.

Model α β δ

Maxwell 1 1 1/λ1

Jeffrey’s 1 (λ1 − λ2)/λ1 1/λ1

Doi-Edwards 96/π 4 1 π 2/λ1

In the limit of large relaxation times λ � 1, holding fixed the
rigidity of the elastic element, G = η0/λ, Eq. (2) reduces to
Hooke’s law.

Rheological studies of mucus often consist of the automated
acquisition of the real and imaginary parts of the frequency-
dependent dynamic modulus, the storage, and loss modulus.
To truly characterize mucus by this method, the moduli need
to be acquired at a continuum of time scales. Unfortunately,
most studies in the literature report the moduli at only a
handful of time scales that are orders of magnitude apart
[30–32]. These data points are insufficient to reconstruct the
rheological profile of mucus. For this reason, we turn our
attention to two studies. One has fit rheological parameters
for the Jeffrey’s model to a stress relaxation curve acquired
by using a standard cone and plate rheometers [29]. A second,
more recent, study utilizes aunique microrheological technique
by using paramagnetic beads to yield a relaxation time for the
Doi-Edwards model [28]. Both models are mathematically
similar to the Maxwell model [Eq. (2)], so we can generalize
our solution and thus make our final model compatible with
these studies and make comparison more transparent. This is
accomplished by introducing the parameters δ, α, and β, which
are defined in Table I:

δτ + dτ

dt
= αη0

[
δγ̇ + (1 − β)

dγ̇

dt

]
. (3a)

We are interested in the amount of stress that cilia can
impart into mucus as it is convected in the respiratory tract.
Here, we will use the fact that the collective beating of cilia
possesses wavelike organization to impose periodic conditions
on an element of mucus as it continuously builds and dissipates
stress. While the advent of efficient numerical solvers has
made explicit inclusion of complex cilia beat patterns a feature
in previously cited works, we move forward by using an
effective strain rate to lump together the collective beating
of the cilia. That is, our analysis focuses on the bulk transport
characteristics of the mucus.

As indicated in Fig. 3, the problem is examined from
the perspective of a parcel of mucus as it moves at the
velocity of the mucus, VM . The frequency of the switching
between “on” and “off” regions is therefore a function of the
metachronal wave velocity VW , and wavelength ξ and average
mucus convection velocity. We note that the phase speed and
wavelength of the metachronal wave, and the beat frequency
of the cilia, are not linked together as they might be if the wave
exhibited simple harmonic behavior [16,17].

FIG. 3. Strain rate imposed on an element of mucus that travels
along the mucus-PCL interface. The element of mucus is observed
from a reference frame x ′ that moves at the average clearance velocity
of mucus VM .

From a frame of reference moving at the average clearance
velocity of the convected mucus, the cilial mat has a wave
velocity of

VW,rel = VW − VM. (3b)

The total time for a strain cycle, t0, is given by

t0 = ξ

VW − VM

, VW > VM, (3c)

where ξ is the wavelength of the metachronal wave. The
reason for the restriction on the relative velocity between the
clearance velocity and wave velocity will become apparent
in the Sec. II C. For now, it suffices to say that our postulate
for rigid-body clearance of the mucus relies on a favorable
distribution of stresses that only occurs if the wave speed
travels at a velocity greater than the clearance velocity in the
same direction. This transformation between time and position
is only possible when the velocity of the wave does not equal
the mean velocity, VW �= VM .

We assume that input strain rate comprises two components
that can be superimposed owing to the linearity of the Maxwell
model. The cilia apply a constant strain rate �̇1 throughout
the course of its interaction with the mucus defined by using
the step function u (t). Additionally, a strain rate �̇0 that
uniformly retards the motion of the mucus slab is imposed
by the periciliary fluid. The input strain rate is therefore
given by

γ̇ = �̇1[u(t) − u(t − ϕt0)] − �̇0. (3d)

The duration of the interaction between the cilia and the
mucus is represented as some fraction ϕ of the total time to
traverse the entire wavelength. We argue that it can be no more
than 0.5 because at least 0.5 of the cilia must be recoiling
from the active part of their stroke at any given time, but
otherwise leave the fraction variable in the analysis. Periodicity
is enforced by requiring the stress in the mucus element at the
end of the metachronal wavelength equal to the stress at the
beginning:

τxy(t = 0) = τxy(t = t0) = τ0, (3e)

where τ0 is the initial stress. This stress is part of the solution of
the problem, determined by the enforcing equation (3e). The
solution of the system of Eqs. (3) by using Laplace transforms
yields the following time-dependent solution for stress (the
full derivation is presented in Appendix A):
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τxy(t) =
{

α(η0�̇1)(1 − βe−δt ) + τ0e
−δt − α(η0�̇0), t ∈ [0,ϕt0],

e−δt [α(η0�̇1)(βeδφt0 − β) + τ0] − α(η0�̇0), t ∈ [ϕt0,t0],
(4a)

where

τ0 = α(η0�̇1)β
(eδφt0 − 1)

(eδt0 − 1)
. (4b)

The results [Eqs. (4)] are general for the three similar vis-
coelastic fluid models: Maxwell, Jeffrey’s, and Doi-Edwards;
parameters are chosen in accordance with Table I. A sketch of
Eqs. (4) is shown in Fig. 4 for the Maxwell fluid case.

Equations (3a) and (3b) provide the stress state of an
infinitesimal amount of mucus as it is convected at velocity VM .
The solution for stress as a function of time is then averaged
over the period of the cilia beat cycle. This is done in order to
relate the stress described by the viscoelastic model back to the
average shear stresses imposed by the mucus and periciliary
fluid in the steady-state force balance discussed in Sec. II A.
The integral average of the stress result [Eqs. (4)] is expressed
as

1

t0

∫ t0

0
τxy(t) dt = αη0�̇1ϕ − αη0�̇0. (5a)

We recognize the first term on the right-hand side of
Eq. (5a) as the average active shear generated by the cilia
〈τ 〉; the second term is the stress imposed on the mucus owing
to the periciliary fluid (which translates into an internal stress
in the mucus). For reference, then, we write

αη0�̇1ϕ − αη0�̇0 = 〈τ 〉 − τdrag, (5b)

where

〈τ 〉 = αη0�̇1ϕ, (5c)

τdrag = αη0�̇0. (5d)

FIG. 4. Transient buildup and relaxation of shear stress within an
element of mucus as it is convected for three different active fractions,
0.1, 0.3, and 0.5, as described by Eqs. (4). Parameters from Table I
for the Maxwell model are used with a relaxation time λ1 = 0.3 s.

We can define the contribution to the strain rate in the mucus
owing to the drag forces of the periciliary region by combing
Eqs. (1c) and (5d) to yield

�̇0 = VMμ

αη0
. (5e)

The results shown in Eqs. (5c)–(5e) are the desired
relationships from our derivation. The physics of the result
presented in Eq. (5b) can be assessed by considering the
original force balance [Eq. (1e)]. The difference between the
productive stress generated by the cilia and their own drag is
the amount of stress left to do work, i.e., lift the mucus against
gravity.

Note that expression (5c) is devoid of δ and β. It is
therefore independent of the transient details of the applied
strain rate. In other words, the viscoelastic character of the
mucus does not change the relationship between the effective
strain rate and stress once transience has been averaged out.
The inability of these models to produce results that differ
from the Newtonian stress on average is a consequence of the
linearity of the models and the periodicity of the boundary
conditions.

C. Continuity of tensile stress

In addition to the stress buildup and decay exhibited
by viscoelastic media, tensile stresses readily develop in
polymeric solutions. This ability is responsible for die-exit
swell and rod-climbing phenomena as well as the ability of
melts and polymeric solutions to be spun into fibers. We
propose that tensile forces not only arise in the mucus flow,
but play a fundamental role in maintaining positive transport
in spite of the heterogeneity of the strain supplied by cilia.
Thus, we will use this postulated mechanism in order to further
restrict the rheological parameters λ and η0. During the first
portion of the wave cycle, the cilia actively strain the mucus
toward the underside of the mucus slab and thereby invoke
shear stresses, and during the latter portion of the cycle, they
do not (Fig. 5). Tensile stresses generated during cilia contact
must support the portion of the mucus that has lost this contact
in the latter part of the cycle so as to maintain the assumed
rigid-body transport.

A model is required to incorporate this physics; we
require a linkage between the imposed shear from the cilia
to tensile stress in the mucus. The simplest model that
predicts the existence of tensile stresses is an extension
of the Maxwell model considered in Sec. II B. The UCM
model allows for the convection of the stress tensor by
replacing the time derivative in Eq. (2a) with the convected
derivative as

λτ(1) + τ = η0γ̇(1), (6a)
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where

τ(1) = Dτ

Dt
− {τ · ∇v}T − {τ · ∇v}, (6b)

γ(1) = (∇v)T + (∇v). (6c)

This model suffers from quantitative inaccuracies [12].
However, it captures the essential physics for the purposes
of our model. Again, Eq. (6a) can be generalized to the other
rheological models considered by using the notation given in
Table I:

δτ + τ(1) = αη0[δγ(1) + (1 − β)γ(2)], (6d)

γ(2) = D

Dt
γ(1) − {(∇v)T · γ(1) + γ(1) · (∇v)}. (6e)

To our knowledge, a convected form of the Doi-Edwards
model has not been proposed. Therefore, because its linear
form is similar to that of the Maxwell model, we choose to
extend it to large deformations by using the same convected
derivative present in the UCM. Inclusion of the more general
time derivative in Eqs. (6) makes all but the simplest flows
analytically intractable. Similarly, we introduce the convected
form of the rate of strain tensor to extend this part of the
analysis to the convected Jeffrey’s (also referred to as an
Oldroyd-B fluid).

To simplify the analysis, we assume that the fundamental
behavior of one cycle repeats for all other regions experiencing
metachronal coordination. The frame of reference for the anal-
ysis is taken to be moving with the velocity of the metachronal
wave, VW . In this frame of reference the mucus slab has a
velocity VM − VW . We utilize a small slope approximation,
and assume that changes in the velocity and stress fields in the
direction of flow are small as the mucus convects:

τxy = αη0
∂ux

∂y
, (7a)

τxx = 2αη0(β − 1)

δ

(
∂ux

∂y

)2

+ 2

δ
τxy

∂ux

∂y
. (7b)

The relationship (7b) implies that a fully developed steady
flow in Cartesian coordinates invokes normal stresses when
there is shear but they are latent; they do not change the flow
field compared with a Newtonian analog. However, tensile
forces are present, and can be extracted in terms of the known
flow. Simplifications of the constitutive relationship which lead
to this conclusion are shown in the Appendix B [12]. The total
tensile stress generated by the active region is calculated by
assuming a stress profile that does not vary across the cross
section of the mucus film:

αη0
∂ux

∂y
= τxy(x ′′), (7c)

where we have defined the spatial coordinate that moves with
the metachronal wave x ′′ in the following way:

x ′′ = t(VW − VM ),VW > VM. (7d)

By using Eqs. (7), the normal stress distribution in the
actively sheared region τxx is given by the following equation,

where τxy is the building and decaying shear stress given by
Eqs. (4):

τxx(x ′′) = 2β

αη0δ
τxy(x ′′)2. (8)

The resulting equation (8) is strictly valid only when the
ratio of the mucus film thickness to that of the metachronal
wavelength is small in accordance with the small slope
assumption.

Next, we obtain an expression for the total force owing
to tensile stresses that can be used in an appropriately drawn
free body. We assume that the fundamental unit shown here
repeats along the mucus; mucus flows into and out of the
control volume at a velocity VW − VM .

As it flows through this control volume, the stress built
while the mucus was actively strained decays. We integrate
Eq. (8) over the cross-sectional area of the mucus (width w

and height hM ) to find the total tensile force FT at any given
location x along the mucus:

FT (x ′′) = 2β

αη0δ
τxy(x ′′)2whM. (9)

A force balance on the inactive portion of the flow includes
three contributions (Fig. 5): the difference between the tensile
forces on the top and bottom of the unstrained region (at x ′′ = 0
and x ′′ = ξϕ), the shear at the mucus-PCL interface, and the
weight of the mucus:∑

Fx = [FT (x ′′ = ϕξ ) − FT (x ′′ = ξ,0)]

−Fdrag − Fweight = 0. (10)

We note that if VM > VW , x ′′ and the shear stress profile
would be oriented in the opposite sense. Thus, the difference
between the tensile forces on the top and bottom of the inactive
region only results in a productive tensile force for the case
when VW − VM is a positive quantity; this is the reason for
our restriction cited earlier in Eq. (2d). That is, in our model

FIG. 5. Problem schematic for a unidirectional flow of a UCM
fluid. The forces to be balanced on the “inactive” region (gray) are
labeled as (1) drag, (2) weight, (3a) beneficial tensile stress τxx, max,
(3b) detrimental tensile stress τxx,0 = τxx,final. The spatial coordinate
x ′′ denotes the moving reference frame within which this free body is
drawn. Note that from this perspective the mucus enters through the
top of the control volume and exists through the bottom at velocity
VW − VM . For this reason, x ′′ = 0 corresponds with t = 0 in result
shown in Eqs. (4) and Figs. 3 and 4.
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we can only predict clearance when wave coordination is
symplectic. This is contrary to some but not all observations
of cilial coordination, [10,16] an issue to be discussed in
Sec. IV.

In our simplified picture of the dynamics we continue to
use the effective drag coefficient, which assumes a priori
that the region that is no longer actively sheared continues

to evacuate at the constant clearance velocity VM . The stress
at the beginning and end of the unstrained region is given
by the stress relationship derived earlier by considering the
buildup and relaxation of stress within a parcel of mucus as it
is convected at an average velocity VM . The final stress balance
that results from substituting Eqs. (9) and (4) into Eq. (10) is
stated below:

2β

αδη0
hM

{[
αη0�̇1(1 − βe−δϕt0 ) + αη0�̇1e

−δφt0β

(
eδϕt0 − 1

eδt0 − 1

)
− τdrag

]2

−
[
αη0�̇1β

(
eδϕt0 − 1

eδt0 − 1

)
− τdrag

]2}

− (1 − ϕ)ξ 〈τ 〉 = 0, (11)

where the time for an element of mucus to traverse the
metachronal wavelength t0 given by Eq. (3c) is used for
compactness.

Alone, this balance is not capable of examining the effect
of rheology on mucus clearance. Even if all of the geometric
variables are fixed (active fraction, mucus film thickness,
etc.), there is still the unknown effective strain rate and the
rheological parameters. The goal of the next section will be
to combine the models in a way that yields an interpretable
result and reveals useful relationships between the rheological
parameters, clearance, and the action of cilia.

D. Final model

So far we have examined the problem from three self-
consistent points of view. First, the relationship resulting from
Eqs. (1) in Sec. II A provides a steady-state force balance that
connects the spatially and temporally averaged relationship
between the stress exerted by the cilia and the velocity
of the mucus. It tells us that for a fixed mucus velocity,
the average stress is entirely known if we select a friction
coefficient; Eq. (1f).

Second, in Sec. II B, we consider an element of mucus
as it was convected from a region strained by the cilia to a
region that was unstrained. Because of relaxation time, stress
in the mucus slowly builds and then relaxes. We use this model
for two purposes. By averaging over a period of the mucus’
stress cycle, Eqs. (4), we arrive at relationship between an
effective strain rate imparted by the cilia and the average stress
[Eqs. (5)].

We use the same relationship [Eqs. (4)] between stress
and time (or position) in yet another force balance where we
examine only the unstrained portion of the mucus. In this
reference frame, we travel with the metachronal wave for
convenience. We introduce the convected time derivative to
expand our viscoelastic models and estimate a relationship
between tensile stresses and the established shear stress field,
Eq. (11).

Now we wish to assemble these three analyses in a way
that reveals the fundamental relationships between clearance
velocity, strain by cilia, and the rheological parameters of the
mucus. Algebraically, it will be most convenient to first arrive
at an expression for η0 as function of λ. In order to gain physical

insights, we will then examine the ratio between average shear
stress (fixed for a given velocity) and strain rate (as a function
of a relaxation time). Though not a dimensionless quantity, we
posit that this ratio defines a kind of efficiency of the system as
it describes how much shearing is required to achieve a given
shear stress in the film. To accomplish these goals, we first
note that the factor αη0�̇1 can be eliminated from Eq. (11) by
using Eq. (5c). This leaves one instance of η0, which can then
be solved for directly:

η0 = 2βhM

ξδα

〈τ 〉[(C1)2 − (C2)2] + 2ϕτdrag(C2 − C1)

ϕ2(1 − ϕ)
, (12a)

C1 =
[

(1 − βe−δϕt0 ) + e−δφt0β

(
eδϕt0 − 1

eδt0 − 1

)]
, (12b)

C2 = β

(
eδϕt0 − 1

eδt0 − 1

)
, (12c)

t0 = ξ

VW − VM

,VW > VM. (12d)

where dimensionless coefficients Ci have been introduced for
compactness.

We have effectively found a functional relationship between
the material parameters that define a transportable rheology.
For Doi-Edwards and Maxwell models this simplifies to a
two-parameter relationship η0 = f (λ). We use this expression
to examine the ratio of shear stress to strain rate (as a function
of relaxation time) that defines a measure of efficiency of the
cilial mat in aggregate. This ratio quantity is readily obtained
by dividing Eq. (5c) by the strain rate and employing the
equation for η0 [Eq. (12a)]:

〈τ 〉
�̇1

= αη0ϕ. (12e)

When the left-hand side of Eq. (12e) is plotted as a function
of the right-hand side, it may be viewed as dependent on the
relaxation time. Note that 〈τ 〉 is imbedded in the expression
for η0 in Eq. (12a), but it is in fact a known quantity for a given
velocity and film thickness according to Eq. (1e).

III. RESULTS

We posit that the body chooses the rheology that maximizes
the stress for a given strain rate, the ratio in Eq. (12e).
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(Worded conversely, the body minimizes the strain rate that
must be imposed by the cilia to achieve a given stress.) This
optimization can be viewed as maximizing the “efficiency”
of the cilia motion in inducing mucus flow. Because relative
motion is required by the cilia to induce shear stress at the
mucus interface, minimizing the strain rate can be interpreted
roughly as a minimization in the cilial tip velocity. It is
therefore straightforward to see that this minimization would
also lead to minimal power consumption by the cilial mat.

By choosing some reasonable values for the variables in
the model, we plot Eq. (A1) for a few clearance velocities and
active fractions in Fig. 6. For the purposes of demonstrating
our model, we choose to examine only the Doi-Edwards model
scenario. Experimentally acquired Jeffrey’s fluid parameters,
while available for comparison [29], would require that the
retardation time remain variable λ(2), which complicates the
optimization. This will be left to a future work.

In order to bring our predicted rheologies into agreement
with experimental works, the friction coefficient μ is adjusted;
this is the only parameter that appears in the final model that
does not arrive from a direct experimental measurement.

An interpretation of the friction coefficient can be garnered
by considering the plane shear flow of a film between a fixed
wall and one moving at the average clearance velocity. In this
scenario, the drag shear stress is given exactly by μeffVM/hPCL,
where μeff is an effective viscosity of the PCL. Thus, based
on our expression [Eq. (1c)] for the drag force, the friction
coefficient is defined simply as μ = μeff/hPCL. For water and
a PCL depth of 10 μm, the friction coefficient μ is roughly
1 × 108. Our analysis shows that μ between 1 × 107and
1 × 109 still lead to acceptable overlap of the rheology space
mapped out by our model (Fig. 7) and experimental data points.
These values correspond to effective viscosities that are 0.1×
and 10× that of water. We attribute the high end to the fact
that suspensions of rodlike particles will increase the apparent
viscosity of the medium [38] Alternatively, by assuming a

FIG. 6. 〈τ 〉 /�̇1 as a function of relaxation time λ [Eqs. (12)] for a
Doi-Edwards fluid for two clearance velocities VM = 100 (solid lines)
and 149 μm s−1 (dashed lines) and two active fractions ϕ = 0.4 and
0.5. Global maxima are only present for ϕ � 0.5.

TABLE II. Parameter values to be held constant in the parametric
study; values are from literature if cited.

Parameter Units Value

Mucus thickness, hM m 1.0 × 10−5 [10]
Density of mucus, ρM kg m−3 1.0 × 103 [28]
Wavelength of metachronal m 1.0 × 10−4 [10]

wave, ξ

Velocity of metachronal m s−1 (1.0 − 4.0) × 10−4 [16]
wave, VM

Friction coefficient, μ Pa s m−1 ∼1.0 × 107 to 1.0 × 109

linear profile in this back of the envelope calculation, we
gloss over the complex flow profile that no doubt results
from the cilial activity. Numerical estimates of the space-
and time-averaged PCL flow profile have shown that the flow
profile is flatter near the PCL-mucus interface, which would
significantly reduce drag. [39]

Figure 5 plots results for the efficacy ratio [Eqs. (12)] versus
the relaxation time for a Doi-Edwards fluid (see Table I).
Results show that there is a global maximum in the plots
that exists only when the active fraction is less than ∼0.5. This
seems a reasonable finding; it has been cited that the cilia spend
roughly 1/3 of their beat cycle actively propelling mucus [35].

The local maximum is physically relevant as it corresponds
to a rheology where the force invoked by a given cilia
motion is maximized; one might expect the body to perform
this maximization. By selecting the relaxation times that
correspond to the peaks we can plot optimal rheology contours
[Eq. (12b)] as a function of active fraction and clearance
velocity (Fig. 7). By choosing a range of velocities and active
fractions we see that experimentally acquired values lie in the

FIG. 7. Optimal rheology contours of constant active fraction
(solid line) and constant clearance velocity (dashed line) [Eq. (12b)
by using optimal values illustrated in Fig. 6]. All contours are evenly
spaced: ϕ ∈ [0.01,0.49], VM ∈ [10 149 μm s−1]. Other parameter
values: VW = 150 μm s−1, μ = 1 × 107 Pa s m−1. The Doi-Edwards
model parameters are used in this plot to allow for direct comparison
with experimental values (data points) [28].
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space spanned by our model. All contours are evenly space on
a linear scale; thus we can see that optimal rheology changes
abruptly as clearance velocity approaches that of the wave
velocity (150 μm s−1) and at the extrema of active fractions
(0.01 and 0.49).

IV. DISCUSSION

In this paper we have developed a model for transport of
a viscoelastic mucus film by considering three self-consistent
analysis of the mucociliary system. Key to our work is the
appropriate choice of reference frames that allow us to simplify
governing equations and consider only what we posit are
the most important aspects of the clearance mechanism. Our
model readily reveals an optimal choice of rheology for given
clearance velocity and other parameters. We are also able to
demonstrate that the rheologies we predict align with those
acquired experimentally. Alternatively, one could also consider
the inverse problem and calculate the velocity at which a given
sample can be expected to clear by using this model.

Figure 7 shows us that as the clearance velocity approaches
that of the wave velocity, the relaxation time must increase.
This occurs because as the similarity in velocities increases, the
effectiveness of the tensile stresses to support the unstrained
region as a rigid body is reduced. When the velocities are
equal, “infinite” relaxation time would be required to satisfy
the force balance we have constructed. The explanation is clear
when the problem is viewed in a frame of reference moving
with the mucus; crucial cyclic loading would not occur. In
this case, mucus is either permanently in a state of strain, or
never strained at all. According to our model assumptions, this
situation will not allow for net tensile forces to overcome the
adverse effects of friction and mucus weight, according to the
analysis in Sec. II C.

We also find that decreasing the active fraction for a given
clearance velocity leads to a decrease in the optimal relaxation
time but also to an increase in the associated viscosity,
according to Eq. (12b). That is, the mucus relaxation time is
lessened despite having to effectively maintain its stress state
when it has a longer unstrained region to traverse. In spite of
this, the stress that is built initially during the active region is
larger for two reasons: The required viscosity is larger in this
scenario, and the initial stress builds faster when the relaxation
time is shorter (under the Maxwell description). Thus, this
result reveals the origin of the optimal rheology we observe
in our model: Relaxation hinders shear stress development but
prevents dissipation of stress upon which tensile forces are
reliant.

An interesting consequence of our model is that it implies
that mucus rheology is dependent on the generation of the res-
piratory tract. As available surface area for transport changes,
mucus film thickness and velocity must change accordingly
owing to mass conservation. Estimates of clearance velocity as
a function of lung generation have been calculated by other
researchers. Roughly speaking, mucus clearance velocity was
found to increase in the larger airways and decrease in the
finer generations of the respiratory tract [23]. Our model, in
conjunction with these results, therefore predicts that mucus
found in the trachea should possess a longer relaxation time
and higher viscosity as compared to finer lung generations.

While it is known that the mucus production capability
of the respiratory tract varies with generation [40], to our
knowledge generation-dependent rheological data has not
explicitly examined.

By altering the one free parameter in our model, the
friction coefficient, we can bring the model’s optimal rheology
contours (Fig. 7) into proximity of experimentally acquired
rheologies. However, we note that the data points we plot
are for different prepared solutions of varying mucin concen-
tration. Therefore, all of the data points may not necessarily
correspond to a naturally occurring state. Furthermore, other
physiological parameters that accompany the procured sam-
ples (VM ,VW ,hM , etc.) obviously have been assumed in this
paper based on prior measurements and existing data. (i.e.,
we do not know the film thickness or transport velocity of the
samples with which we are making our comparison in Fig. 7).
These factors too can shift the contours we have shown. Yet
the order-of-magnitude agreement of rheologies predicted by
Eqs. (12) and existing rheological data may indicate that the
correct mechanisms for bulk transport have been considered.

Our model invokes a variety of assumptions. The most
severe of these is the requirement of rigid-body movement on
the part of the unsupported region. This limits the model to the
symplectic wave case; however, we note that mucus transport
could still occur if the mucus elongated and subsequently
shortened so as not to translate as a rigid body but still convect
without losing fluid connectivity. Such a model could be
developed in the future. It is worth noting that the experimental
evidence for symplectic motion being the dominant mode of
metachrony is strong [16]; it has been observed in tissues from
multiple species by using high-speed video while previous
conclusions of antiplectic metachrony [10] were arrived at
through the examination of fixed tissues. It is also compelling
that our requirement that the wave velocity must be greater
than the transport velocity (arrived at in Sec. II C) concurs
with the bulk of the observations in the same study where
symplectic coordination was noted [16].

The initial purpose of the model was to test our postulates
about how mucus relaxation time and the production of tensile
forces along flow lines could benefit transport. We have
constructed a model that incorporates our hypotheses of the
most salient features of linear and nonlinear viscoelasticity. In
the end, we show that a particular combination of viscosity and
relaxation time maximizes the stress for a given rate of strain,
and this metric can be used to assess the efficacy of a cilia stroke
on mucus clearance. This result is intuitively pleasing, as the
body must have some means of choosing what mucus rheology
is best for transport. Perhaps the proposed mechanism explains
in a simple manner how that is done. No doubt, more refined
models can and will be generated in the future, but at this
point, the level of available data precludes our ability to
refine and test improvements. Our proposed mechanism is
consistent with experimental data taken from a variety of
sources, as seen in Fig. 7. Our model is simple to implement,
and all of the parameters, save for the friction coefficient,
are experimentally acquirable. We therefore hope that our
description of mucociliary transport provides a framework
that guides future experimental and theoretical investigations.
A more rigorous validation will be possible once additional
experimental data is available.
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APPENDIX A: STEP RESPONSES TO
THE GENERAL MODEL

In Sec. II we proposed a general linear viscoelastic
model that could be solved to yield simultaneously the
responses of Maxwell, Doi-Edwards, and Jeffrey’s fluid
models:

δτ + dτ

dt
= αη0

[
δγ̇ + (1 − β)

dγ̇

dt

]
. (A1)

We begin by taking the Laplace transform of the entire
expression, leaving both shear stress and the strain rate as
variable functions of time:

L{τ (t),γ̇ (t)} = T (s),G(s) → δT + (T s − τ0)

= αη0[δG + (1 − β)(Gs − γ̇0)]. (A2)

Values for the parameters α, β, and δ were given in
Table I. We assume that the strain rate is imposed, and given
by

γ̇ = �̇1[u(t) − u(t − ϕt0)].

Note that here we are only solving for the transient
component of the stress response. Superposed on this solution
is a constant shear stress owing to strain rate �̇0. The initial
condition for γ̇ is given as

γ̇ (t = 0) = γ̇0 = 0. (A3)

The Laplace transform of the strain rate becomes

G(s) = �̇1

(
1

s
− e−ϕt0s

s

)
. (A4)

Substituting these relationships into Eq. (A2) yields the
following:

δT + (T s − τ0) = αη0

{
δ

[
�̇1

(
1

s
− e−ϕt0s

s

)]

+ �̇1(1 − β)(1 − e−ϕt0s)

}
. (A5)

Next, the Laplace transform of the shear stress T (s) is
solved for

T (s) = �̇1αη0δ

(
1

s(s + δ)
− e−ϕt0s

s(s + δ)

)

+ (1 − β)�̇1αη0
(1 − e−ϕt0s)

(s + δ)
+ τ0

(s + δ)
. (A6)

Inverting the expression yields the shear stress as a function
of time:

L−1{T (s)}
= τxy(t) → τxy(t)

=
{

αη0�̇1(1 − βe−δt ) + τ0e
−δt , t ∈ [0,ϕt0],

αη0�̇1(−β + βeϕt0 )e−δt + τ0e
−δt , t ∈ [ϕt0,t0].

(A7)

Note that for the Jeffrey’s fluid case (β �= 0), jumps in
stress are present at the beginning and end of the applied rate
of strain. This is owing to the additional viscous element in
the model that responds instantly to changes in applied strain.

APPENDIX B: TENSILE STRESSES IN A
UNIDIRECTIONAL FLOW

In Sec. III we extended our general viscoelastic model to
one that allowed, for large deformations,

δτ + τ(1) = αη0
[
δγ(1) + (1 − β)γ(2)

]
. (B1)

For a steady, simple shear flow where uy,uz = 0, this
reduces to the following [12]:

δ

[
τxx τxy

τxy τyy

]
−

[
2τxy τyy

τyy 0

]
∂ux

∂y

= αη0

⎧⎨
⎩δ

[
0 ∂ux

∂y

∂ux

∂y
0

]
− (1 − β)

⎡
⎣ 2

(
∂ux

∂y

)2
0

0 0

⎤
⎦

⎫⎬
⎭ .

(B2)

In this scenario, each component of the stress tensor can be
stated in terms of the strain rate:

τxx = 2αη0(β − 1)

δ

(
∂ux

∂y

)2

+ 2

δ

∂ux

∂y
τxy, (B3)

τyy = 0, (B4)

τxy = αη0
∂ux

∂y
. (B5)

By combining these relationships between stress and strain
rate with momentum conservation equations in the x and
y directions, we get

ρ

(
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y

)
= −∂P

∂x
+ ∂τxy

∂y
+ ∂τxx

∂x
,

(B6)

ρ

(
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y

)
= −∂P

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
,

(B7)

and simplifying for unidirectional flow we have

αη0
∂2ux

∂y2
= 0, (B8)

∂P

∂y
= 0. (B9)

We assume that there is no pressure gradient in the direction
of flow because there is negligible pressure drop in the free
stream over the length scale of interest. Thus, according to
Eq. (B8), the strain rate and shear stress must be constant within
the film. Because the stress is fixed at the PCL-mucus interface
and must be constant throughout the cross section, from
Eq. (B5), the strain rate must then be

∂ux

∂y
= τxy

αη0
. (B10)

This leads to the result that we seek, which is the
normal stress distribution in terms of the shear stress
distribution:

τxx = 2β

δαη0
τ 2
xy. (B11)
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