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Inferring directional interactions from transient signals with symbolic transfer entropy
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We extend the concept of symbolic transfer entropy to enable the time-resolved investigation of directional
relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we
consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process.
We derive an index that quantifies the preferred direction of transient interactions and assess its significance using
a surrogate-based testing scheme. Analyzing time series from noisy chaotic systems, we demonstrate numerically
the applicability and limitations of our approach. Our findings obtained from an analysis of event-related brain
activities underline the importance of our method to improve understanding of gross neural interactions underlying
cognitive processes.
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I. INTRODUCTION

Inferring interactions between complex dynamical systems
is of importance in many scientific disciplines, ranging from
physics, chemistry, biology, meteorology, and economy to the
neurosciences. Because the underlying equations of motion are
usually not known, a number of time-series analysis techniques
have been developed that aim at a quantitative description
of interactions from experimentally acquired observables.
While most of these techniques allow one to quantify the
strength of interactions [1–3], the more recent developments
of asymmetric approaches have facilitated the characterization
of the direction of interactions from time series. These
approaches include parametric and nonparametric spectral
methods [4–6], techniques based on interrelations of phases
[7–17], state-space-based methods [18–25], methods based on
the concept of Granger causality [26–28] or on the Fokker-
Planck formalism [29,30], as well as information-theoretic
techniques [31–34]. Within the latter framework, transfer
entropy [35] has been proposed to distinguish effectively the
driving and responding elements and to detect asymmetry
in the interaction of subsystems. Various techniques have
been proposed to estimate transfer entropy from observed
data [36–40], among which symbolic transfer entropy [41] has
been shown to allow a convenient, robust, and computationally
fast quantification of the dominating direction of information
flow between time series.

Almost all of the aforementioned linear and nonlinear
analysis techniques require rather long time series to reliably
estimate the strength or the direction of interactions. Acquiring
long time series from natural systems, however, is often
impossible owing to experimental restrictions. Moreover, in
many systems relevant interactions may occur on quite short
time scales (e.g., with extreme events such as earthquakes or
epileptic seizures), rendering the recording of long time series
unfeasible. In such situations, moving window techniques are
commonly used to track time-dependent interactions but their

*marcel.martini@gmx.de
†klaus.lehnertz@ukb.uni-bonn.de

temporal resolution is still limited depending on the window’s
length. More recently, techniques had been developed that
allow a time-resolved estimation of strength and direction
of an interaction in cases where multiple realizations of
the corresponding transient dynamics are available [42–47].
Similar techniques have been used already for the detection
of transient chaos [48,49] and for the nonlinear denoising of
transient signals [50,51]. Here we follow this line of approach
and propose a method for the time-resolved estimation of
symbolic transfer entropy, particularly with respect to field
applications.

This paper is organized as follows. In Sec. II A we
briefly recall the definition of symbolic transfer entropy, and
in Sec. II B we present our approach to detect directional
couplings with high temporal resolution, given a sufficient
number of realizations of the processes under investigation.
Next, we present our numerical simulation studies that aim at
an exploration of the limitations of our method (Sec. III A). In
Sec. III B we investigate directed interactions in event-related
neuroelectric activities before we draw our conclusions in
Sec. IV.

II. METHODS

A. Symbolic transfer entropy

Let in = i(n) and jn = j (n), n = 1, . . . ,N denote se-
quences of observations from systems I and J . Transfer
entropy [35] is related to the concept of Granger causality
in the sense that it incorporates time dependency by relating
previous samples in and jn to predict the next value in+1,
and it has been shown that Granger causality and transfer
entropy are equivalent for Gaussian variables [52]. Transfer
entropy specifies the deviation from the generalized Markov
property, p(in+1|in,jn) = p(in+1|in), where p denotes the
transition probability density. If there is no deviation, J has no
influence on I . Transfer entropy quantifies the incorrectness
of this assumption, and is explicitly nonsymmetric under the
exchange of in and jn.

In order to estimate the transition probabilities p, Staniek
and Lehnertz [41] proposed to convert the sequences of
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observations in and jn into a sequence of symbols S(In)
and S(Jn) by using a permutation technique [53]. For a
given but otherwise arbitrary n, w amplitude values In =
{in,in+τ , . . . ,in+(w−1)τ } can be reordered in an increasing order
{in+(k1−1)τ � in+(k2−1)τ � . . . � in+(kw−1)τ }, where τ denotes
the time delay, and w is the embedding dimension. Thus, every
In is uniquely mapped onto one of the w! possible permuta-
tions, and a symbol can be defined as S(In) ≡ (k1,k2, . . . ,kw).
Joint and conditional probabilities can then be estimated using
the relative frequency of these symbols. Given a symbol
sequence S(In) and an analogous defined symbol sequence
S(Jn), symbolic transfer entropy (STE) then reads [41]

T̃J→I =
∑

p(S(in+1),S(in),S(jn))

× log2
p(S(in+1)|S(in),S(jn))

p(S(in+1)|S(in))
. (1)

The sum runs over the sequence of symbols, and T̃I→J is
defined in complete analogy.

B. Time-resolved detection of directional couplings with STE

A reliable estimation of STE requires a sufficient amount
of data points N (N > w!), which hinders the time-resolved
detection of directional couplings. In Refs. [43,46,47] tech-
niques had been proposed that allow one to detect transient
directional interactions in cases where an ensemble of a
sufficiently large number of time series as multiple realizations
of a process is available. Here we follow this line of approach
and propose to estimate STE, at each time point n, from the
distribution of permutation symbols within an ensemble of R

realizations I (r)
n and J (r)

n , r = 1, . . . ,R. In analogy to Eq. (1),
our time-dependent STE then reads
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where the sum runs over the ensemble of realizations (for
each n). With this definition the reliability of T̃J→I (n) does
not depend on the number of data points N but on the number
of realizations R of the processes. Directional interactions can
thus be inferred on very short time scales and with only a few
data points if a sufficient number of realizations is available.
Here we are interested in the preferred direction of information
flow and thus define the time-resolved directionality index
(cf. Ref. [41])

�T (n) = T̃I→J (n) − T̃J→I (n). (3)

Here, �T (n) > 0 for unidirectional couplings with I as the
driver and �T (n) < 0 for J driving I . When analyzing the
field data, however, it is quite difficult to judge whether a
nonzero value of �T (n) unequivocally reflects unidirectional
couplings. In order to minimize false interpretations, we
follow Refs. [43,47] and use a surrogate-based testing scheme.
Under the null hypothesis that the dynamics of systems I

and J are independent, the surrogates are designed such
that they preserve the temporal structure of each time series
and destroy the dependence between systems. To test if the
process of system I is independent on that of system J ,

we randomly permute the realizations of system J and
keep those of system I fixed. We generate M surrogates
and denote their time-dependent STE values with T̃ s

J→I (n).
Values for T̃ s

I→J (n) are derived in complete analogy. With
�T s

min(n) = min(T̃ s
I→J (n)) − max(T̃ s

J→I (n)) and �T s
max(n) =

max(T̃ s
I→J (n)) − min(T̃ s

J→I (n)), we consider �T (n) to
reflect the preferred direction of information flow if �T (n) �∈
[�T s

min(n),�T s
max(n)].

III. APPLICATIONS

A. Coupled Lorenz systems

We studied two diffusively coupled Lorenz systems X and
Y [54]:
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We generated an ensemble of R realizations of the systems
by randomly choosing the initial conditions in state space near
the Lorenz attractor and by randomly adding tiny variations ε ∈
[−0.04,0.04] to the control parameter RL = 28. The equations
of motion were integrated using a fourth-order Runge-Kutta
algorithm [55] with a step size of 0.001 and a sampling
interval of 0.01. For our analyses we generated time series
of the first components with N = 2500 data points each after
5 × 104 transients. With the coupling strengths C1 and C2 we
realized time-variant diffusive couplings between oscillators
such that C1 = 5 ∧ C2 = 0 for n ∈ [500,999], C1 = 0 ∧ C2 =
5 for n ∈ [1500,1999], and C1 = C2 = 0 for n ∈ [0,499] or
n ∈ [1000,1499] or n ∈ [2000,2499]. We chose w = 4 and
τ = 6 [56] to estimate the time-resolved directionality index
�T (n).

The temporal evolution of �T (n) obtained from R = 500
realizations of the systems reflects, despite large fluctuations,
the coupling changes (cf. Fig. 1). For time intervals with a
nonzero coupling strength, we observe—as expected—�T (t)
to increase (for the case C1 = 5 ∧ C2 = 0) or to decrease
(for the case C1 = 0 ∧ C2 = 5) rapidly after the onset of the
coupling and then to deviate from the surrogates until the
coupling is switched off. Hence the null hypotheses of
the Lorenz systems being independent is correctly rejected for
most samples. For time intervals with zero coupling strengths,
�T (n) fluctuates at approximately zero but remains well
within the range of the surrogates. The null hypothesis thus
cannot be rejected and the systems are correctly detected as
noninteracting.

Given the large fluctuations seen in the temporal evolution
of �T (n), we estimated the relative number of true and
false detections of the coupling direction. For the cases
C1 = 5 ∧ C2 = 0 and C1 = 0 ∧ C2 = 5, we denote with ftd

the relative number of samples for which the coupling direction
could be correctly detected using our surrogate-based testing
scheme. With ffd we denote the relative number of samples in
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FIG. 1. (Color online) Exemplary temporal evolution of direc-
tionality index �T (n) (black line, a moving average over 20 data
points is shown as a light gray line) and of extreme values [�T s

min(n)
and �T s

max(n); green lines] derived from M = 19 surrogates for an
ensemble of R = 500 realizations of coupled Lorenz systems. The
time-variant coupling strengths are shown as black dotted lines.

the temporal evolution of �T (n) for which our testing scheme
mistakenly detected a coupling direction (i.e., for the case
C1 = C2 = 0) or for which a nonzero coupling could not
be detected (note that ftd and ffd do not necessarily add up
to 1 because we consider different parent populations for true
and false detections). For the example shown in Fig. 1, we
obtained ftd = 71% and ffd = 15%. We note that the number
of true and false detections can be improved by using a higher
number of surrogates.

In order to estimate the performance of our approach,
particularly with respect to the analysis of empirical data,
we investigated the impact of observational noise and the
number of realizations R on the inference of directional
relationships. We repeated the analyses for coupled Lorenz
systems as outlined above for different numbers of realizations
R ∈ [100,2000] and varied the amount of noise contamination
(additive Gaussian δ-correlated noise; the noise-to-signal ratio
is ρ = σ 2

noise/σ
2
signal). In Fig. 2 we show the relative number of

true (ftd) and false detections (ffd) of the coupling direction
depending on the ensemble size R and on the noise-to-signal
ratio ρ. We first consider the case of noise contaminations
to be equal for both systems (ρX = ρY ). For the noise-free
case, ftd increases while ffd decreases monotonically with an
increasing ensemble size R. For the coupled Lorenz systems
investigated here we achieve an unequivocal detection of
the coupling direction (ftd → 1, ffd → 0) for R � 2000.
For small ensemble sizes (R � 200) the relative number of
true detections drops below 0.5 and the coupling direction
cannot be resolved anymore. As expected, ftd decreases
while ffd increases monotonically with an increasing noise-
to-signal ratio. Nevertheless, even for the case ρ = 100%, a
large enough ensemble size (R � 2000) allows the coupling
direction to be resolved with a detection rate above chance
level.

Next, we consider the case of asymmetric noise contamina-
tions (ρX �= ρY ) that is more likely in field applications and is
known to affect various time-series analysis techniques, aim-

FIG. 2. (Color online) Relative number of true (ftd, top) and
false detections (ffd, bottom) of the coupling direction (cf. Fig. 1)
depending on the number of realizations R and on the noise-to-signal
ratio with ρX = ρY . For each R and ρ we show mean values of ftd

and ffd obtained from 50 different sets of noise-contaminated Lorenz
systems.

ing at an inference of directional interactions [8,20,24,57,58].
In Fig. 3 we present our findings for the coupled Lorenz
systems with a fixed ensemble size R = 2000. We observe ftd

to decrease and ffd to increase monotonically with increasing
noise-to-signal ratios. Obviously, detection rates depend on the
sum of the amount of noise in both systems only, no matter how
it is distributed. This indicates that our analysis technique does
not identify the signal with the highest (lowest) noise-to-signal
ratio as the most influential one.

B. Event-related brain potentials

In this section we present our findings obtained from
applying our method to infer directional interactions in so-
called event-related brain potentials (ERPs). The electroen-
cephalogram (EEG) reflects electrical neural activity owing
to intrinsic dynamics and/or responses to external stimuli.
To examine the pathways and time courses of information
processing in the brain under specific conditions, numerous
experiments have been developed controlling sensory or other
stimuli [59,60]. The neural activity induced by this kind of
stimulation leads to potential changes in the EEG. These
ERPs often exhibit a sequence of multiphasic peak amplitudes
after stimulus onset and extending over a time period of
several 100 ms. ERPs reflect different stages of information
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FIG. 3. (Color online) Relative number of true (ftd, top) and false
detections (ffd, bottom) of the coupling direction (cf. Fig. 1) depend-
ing on the noise-to-signal ratio for asymmetric noise contaminations.
For each ρX,Y we show mean values of ftd and ffd obtained from 50
different sets of noise-contaminated Lorenz systems with R = 2000
realizations.

processing in the brain, and insights into the underlying
neural processes can be achieved already from the analysis
of specific aspects of ERPs, such as peak amplitude or
moment of occurrence (latency). Because individual ERPs
possess very low peak amplitudes, as compared to the ongoing
EEG, multiple realizations with respect to a given stimulus
are commonly averaged, assuming phase-locked responses
not correlated with the ongoing EEG. In Refs. [50,61–66]
data-analysis techniques have been proposed that make use
of only a few measurements instead of large preprocessed
ensembles.

We analyzed directional interactions in ERP data that we
recorded from 12 healthy volunteers during the so-called
Simon task [67]. All volunteers had signed informed consent
that their data might be used and published for research
purposes, and the study protocol had been approved previously
by the local ethics committee. The Simon task is often used
in cognitive psychology to study the effects of cognitive
control and requires pressing a key with the right (left)
index finger upon presentation of a red (blue) circle on a
screen (diameter of circle: 1.5 cm; stimulus duration: 50 ms;
presentation randomized in time and position). ERPs were

acquired from Nc = 21 scalp electrodes arranged according
to the International 10-20 system [60]. Data were sampled
against a common average reference at a sampling rate of
1000 Hz by using a 16-bit analog-to-digital converter and
were bandpass filtered between 0.5 and 300 Hz at 12 dB
per octave. We recorded R = 100 trials for each of the four
subtasks [red (blue) circle–left (right) index finger]. For this
experiment, we mainly expect directed interactions from the
occipital lobe (processing of visual information) to the frontal
lobe (decision making) and from the frontal lobe to the motor
area (key press) [68]. For our analyses, we concentrated on
the time interval ranging from 200 ms before stimulus onset to
1000 ms after stimulus onset. The time interval ranging from 0
to 1000 ms after stimulus onset is sufficient to capture the main
components of the averaged ERPs that have been described in
previous studies [68–70]. With w = 4 [56] and τ = 3 sample
points [71] we estimated the time-resolved directionality index
�T (n) for the data from all nonredundant combinations of
recording sites, and eventually corrected all values with respect
to the mean directionality indices estimated for the data from
the prestimulus interval, which is usually taken to be a period
of inactivity.

Figure 4 shows, as an example, the temporal evolution
of directional interactions between the occipital lobe and
the frontal lobe and between the frontal lobe and the motor
area (central-parietal region). We do not differentiate between
subtasks here and show values of �T (n) averaged over all
subtasks. For this subject, we observe a preferred direction of
information flow from the occipital lobe to the frontal lobe
that is most pronounced during the time interval ranging from
150 to 250 ms after stimulus onset. This time frame coincides
quite well with latencies of ERP components known to reflect
stimulus processing within primary sensory or secondary
association regions as well with stimulus evaluation processes,
such as identification and classification [68]. Directional
interactions between the frontal lobe and the motor area
peak during the time interval ranging from 400 to 500 ms,

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  100 200 300 400 500 600 700 800 900 1000

ΔT

time [ms]

FIG. 4. (Color online) Exemplary temporal evolution of the
preferred direction of information flow �T (n) between the occipital
lobe and the frontal lobe (blue dashed line) and between the frontal
lobe and the motor area (green solid line). Moving average over 20
data points (no overlap), corresponding to 20 ms. Positive values
reflect directional influences of the occipital (frontal) lobe on the
frontal lobe (motor area), and vice versa.
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FIG. 5. (Color online) Spatial distributions of the preferred direc-
tion of information flow from each recording site to the remaining
sites projected onto the surface of the head. Grand average over
12 healthy volunteers for subtasks that either required a left key
(upper row) or a right key response (lower row). Left-hand column:
100–200 ms after stimulus onset; right-hand column: 400–500 ms
after stimulus onset. White circles mark electrode locations.

with the frontal lobe identified as driving brain region. This
time frame coincides quite well with latencies of components
of the averaged ERPs known to reflect motoric processes,
and the mean reaction time of this subject amounted to
421 ± 38 ms.

In Fig. 5 we show, as a grand average over all
volunteers, spatial distributions of the preferred direction
of information flow from each recording site c to the
remaining Nc − 1 sites. We calculated �T (n,c) = (Nc −
1)−1 ∑

c′ �=c[�Tc→c′(n) − �Tc′→c(n)] for each time point n and
averaged the data from the time intervals n ∈ [100,200] ms and
n ∈ [400,500] ms. Eventually, we averaged the data for those
subtasks that either involved pressing a key with the right or
the left index finger, irrespective of the color of the stimulus.
For the time interval 100–200 ms after stimulus onset, we
observe, as expected, a preferred direction of information

flow mainly from the occipital lobe to the frontal lobe, and
the spatial distributions do not differ substantially between
different subtasks. In contrast, for the time interval 400–500 ms
after stimulus onset, we observe the frontal lobe to drive either
the right motor area for subtasks that involve pressing the left
index finger or the left motor area for subtasks that involve
pressing the right index finger. The mean reaction time of all
volunteers amounted to 442 ± 43 ms for the former and to
433 ± 47 ms for the latter subtask.

IV. CONCLUSION

We have proposed an approach that allows the time-
resolved investigation of directional relationships between
coupled dynamical systems from short and transient noisy
time series. We have extended the concept of symbolic transfer
entropy [41] for an ensemble of such time series representing
multiple realizations of some interaction process and derived
an index that quantifies the direction of a transient interaction.
Using a surrogate-based testing scheme [43,47,72] we assessed
the significance of our index. With numerical examples, which
are representative of interacting chaotic systems contaminated
with observational noise, we have exemplified the applicability
of our approach.

Our findings obtained from an analysis of directional
relationships between event-related potentials recorded non-
invasively from 12 healthy volunteers underline the versatility
of our approach as a tool to improve understanding of gross
neural interactions underlying cognitive processes. We expect
that our approach will also find applications in other scientific
fields where transient couplings are considered an interesting
aspect of interacting dynamical systems.
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[34] J. Jamšek, M. Paluš, and A. Stefanovska, Phys. Rev. E 81,

036207 (2010).
[35] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
[36] A. Kaiser and T. Schreiber, Physica D 166, 43 (2002).
[37] R. Marschinski and H. Kantz, Eur. Phys. J. B 30, 275 (2002).
[38] J. M. Nichols, M. Seaver, S. T. Trickey, M. D. Todd, C. Olson,

and L. Overbey, Phys. Rev. E 72, 046217 (2005).
[39] P. F. Verdes, Phys. Rev. E 72, 026222 (2005).
[40] M. Lungarella, A. Pitti, and Y. Kuniyoshi, Phys. Rev. E 76,

056117 (2007).
[41] M. Staniek and K. Lehnertz, Phys. Rev. Lett. 100, 158101

(2008).
[42] M. A. Kramer, E. Edwards, M. Soltani, M. S. Berger, R. T.

Knight, and A. J. Szeri, Phys. Rev. E 70, 011914 (2004).
[43] R. G. Andrzejak, A. Ledberg, and G. Deco, New J. Phys. 8, 6

(2006).
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