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Calculations of the second virial coefficients of protein solutions with
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The osmotic second virial coefficients B2 are directly related to the solubility of protein molecules in electrolyte
solutions and can be useful to narrow down the search parameter space of protein crystallization conditions. Using
a residue level model of protein-protein interaction in electrolyte solutions B2 of bovine pancreatic trypsin inhibitor
and lysozyme in various solution conditions such as salt concentration, pH and temperature are calculated using
an extended fast multipole method in combination with the boundary element formulation. Overall, the calculated
B2 are well correlated with the experimental observations for various solution conditions. In combination with
our previous work on the binding affinity calculations it is reasonable to expect that our residue level model can
be used as a reliable model to describe protein-protein interaction in solutions.
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I. INTRODUCTION

In a remarkable observation, George and Wilson found
that there is a correlation between slightly negative second
virial coefficient of a protein solution and its successful
crystallization condition [1]. There is also a correlation
between the solubility of a protein in an electrolyte solution
and the osmotic second virial coefficient B2 of the solution
(Veesler et al. [2], Boistelle et al. [3]). These observations
have led to numerous studies on the second virial coefficients
of protein solutions with the hope to use this property to
narrow down the parameter space of protein solutions for the
search of optimal crystallization conditions. For example, even
for membrane proteins, rapid screening of small molecules
and detergents as crystallization additives are achieved to
improve the crystallization conditions of light harvesting
protein complexes [4].

Experimentally, the osmotic second virial coefficients B2

can be measured by using Static Light Scattering (SLC)
[1,5,6], Small Angle X-ray Scattering (SAXS) [7], Small
Angle Neutron Scattering (SANS) [8], or Self-Interaction
Chromatography (SIC) [9]. All of these methods, however,
are quite demanding due to large amounts of proteins used in
the measurements. So far, using the B2 of protein solutions as
a tool to screen the solution conditions is not a routine practice
yet in most crystallographers’ labs.

To overcome the protein consumption problem in B2

measurements, one possible alternative is to use computational
methods to calculate the second virial coefficients of protein
solutions. B2 is related to molecular interactions in terms of
the orientationally averaged potential of mean force (PMF),
W (r12), where r12 is the center-to-center distance,

B2 = −2π

∫ ∞

0
(e−W (r12)/kBT − 1)r2

12dr12, (1)

where W is the interaction free energy between two proteins,
kB is the Boltzmann constant, and T the temperature. Previous
efforts to model the interaction free energy between two
protein molecules and to compute B2 have been based on
idealized descriptions of proteins. The protein molecules are
mostly treated as spheres, although Vilker et al. [10] modeled
a protein (bovine serum albumin) as an ellipsoid. For spherical

model approaches, the interaction is normally divided into two
parts: The first part is due to the excluded volume to account for
the size of protein molecules and the second part accounts for
the solution dependent effective interaction between protein
molecules. Due to the spherical shape approximation of
protein molecules, the thickness of the hydration layer is often
considered as an adjustable parameter for B2 calculations.
The solution dependent contributions to B2 are modeled using
standard colloidal methods [11]. Namely the van der Waals
interaction is treated in the Lifshitz-Hamaker framework and
the electrostatic interaction [10,12–14] is obtained using the
Poisson-Boltzmann approach. For such idealized spherical
models, with adjustable parameters such as the Hamaker
constant the computed B2 have been partially successful to
capture the trend of experimental data at various solution
conditions.

Neal et al. [15] calculated the second virial coefficients by
applying orientational dependence protein-protein interaction
models. Electrostatic interactions in their study were obtained
by distributing charges to the ionizable residues, thus an orien-
tationally dependent charge distribution but treating the protein
as a spherical dielectric body. The van der Waals interactions
were calculated by a semiempirical approach. When the
intermolecular distance is large enough, the Lifshitz-Hamaker
approach [16] was implemented with the realistic shape
of proteins in mind. At shorter distance, the Optimized
Potentials for Liquid Simulations (OPLS) parameter set
[17] was used to capture the short-range interaction. Even
though the comparison between their calculations and
experimental measurements yields large errors for some B2

calculations, this approach did not use any further adjustable
parameters.

The goal of our work is to develop a protein-protein
interaction model to account for the realistic shape of
proteins and at the same time to capture the effect of
solutions without adjustable parameters. To this end, a
residue level model of protein-protein interaction had been
introduced [18,19].

In this model, each residue of a protein is represented
by a sphere located at the geometric center of the residue
determined by its native or approximate structure. The

011915-11539-3755/2011/83(1)/011915(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.011915


BONGKEUN KIM AND XUEYU SONG PHYSICAL REVIEW E 83, 011915 (2011)

diameter of the sphere is determined by the molecular volume
of a residue in a solution environment [20]. The molecular
surface of our model protein is defined as the Richard-
Connolly surface spanned by the union of these residue
spheres using the MSMS program from Sanner [21]. Each
residue carries a permanent dipole moment located at the
center of its sphere and the direction of the dipole is given
by the amino acid type from the protein’s native structure.
If a residue is charged the amount of charge is given by
the Henderson-Hasselbalch equation using the generic pKa

values of residues if the local environmental effects on pKa

values are neglected. Alternatively experimental or calculated
pKa values of residues can be used to account for the
local environments as it was done in this paper. For each
residue there is also a polarizable dipole at the center of
the sphere, whose nuclear polarizability had been determined
from our recent work [22] and the electronic polarizability
is estimated from optical dielectric constant augmented with
quantum chemistry calculations [23]. There are three kinds
of interactions in this model: the electrostatic interaction
due to the electric double layer effect, the van der Waals
attraction due to the polarizable dipoles and a short-range
correction term to account for the short-range interactions
such as the desolvation energy, hydrophobic interaction, and
so on. In this article, we only consider the electrostatic
interaction which gives the most contribution to the protein-
protein interaction [24,25], the van der Waals interaction,
and the short-range interaction which is accounted for using
the excluded volume based upon the realistic shape of a
protein.

The electrostatic problem in the electrostatic and the van
der Waals interaction is solved using the Poisson-Boltzmann
equation where the realistic shapes of protein molecules
are considered. The Boundary Element Method (BEM) in
combination with the Fast Multipole Method [26,27] is
implemented to circumvent the extensive memory problem
similar to the recent work by Lu et al. [28]. The validity of
our model was already tested by binding affinity calculations
of several protein complexes [29]. Direct comparisons be-
tween our calculations of B2 and experimental measurements
under various solution conditions were made and reasonable
agreements from these comparisons provide further concrete
evidence that our model can be used as a universal model for
studies of nonspecific protein-protein interactions in aqueous
solutions.

II. THEORETICAL DEVELOPMENT

A. General formulation for the second virial coefficient
calculation using a residue level patch model

The osmotic second virial coefficient (B2) can be
expressed in terms of the interaction energy between two
proteins [30]:

B2 = −V

2

[
2Q2(T )

Q2
1(T )

− 1

]
, (2)

where Q1 and Q2 are one-protein and two-protein partition
functions and V is the volume. Noting that the partition
function involves the integration of the center of mass

R = (x,y,z) in a space-fixed Cartesian coordinate and the
rotational coordinates � = (α,β,γ ) in Euler angles, we have

B2 = − 1

128π4V

∫
· · ·

∫
[e−W (R1,�1,R2,�2)/kBT − 1]

× dR1d�1dR2d�2, (3)

where the interaction potential W describes the anisotropic
interaction between two proteins. dRi = dxidyidzi and d�i =
dαi sin βidβidγi . After a transformation to the center of mass of
the protein pair and to the relative coordinates R = R1 − R2,
we assume that protein 1 is in the space-fixed coordinate,
thus, the interaction potential W is now independent of �1.
The integration over the center of mass of the protein pair
coordinate and �1 for B2 yields

B2 = − 1

16π2

∫ ∞

0

∫ π

0

∫ 2π

0

∫ 2π

0

∫ π

0

∫ 2π

0

× [e−W (R,θ,φ,α2,β2,γ2)/kBT − 1]

×R2dR sin θdθdφdα2 sin β2dβ2dγ2. (4)

In this expression of the orientation dependent potential
W (R,θ,φ,α2,β2,γ2), protein 2 moves around protein 1 and
(α2,β2,γ2) capture all of the orientations of protein 2 relative
to the space-fixed coordinate (R,θ,φ) of protein 1 (Fig. 1 ).

In our residue level protein-protein interaction model,
there are three contributions to the interaction energy
W (R,θ,φ,α2,β2,γ2). The electrostatic interaction and the van
der Waals interaction will be obtained in the next two sections
when the protein molecules are not in contact with each other.
When the protein molecules are in contact a simple excluded
volume model will be used. Thus, Eq. (4) can be split into two

FIG. 1. (Color online) Schematic illustration showing the for-
mulation of the electrostatic interaction between two proteins. The
orientation of protein 1 (signified by a triangle on protein 1) is
defined by two spherical coordinate angles (θ,φ) in a space-fixed
coordinate (X,Y,Z). The orientation of protein 2 (signified by a
triangle on protein 2) is specified by Euler angles (α,β,γ ) relative
to the space-fixed coordinate. The molecular surfaces are defined by∑

1 and
∑

2 for each protein and the n1 and n2 are the outward unit
normals on

∑
1 and

∑
2. ε1 and ε2 are the dielectric constants of the

protein cavity and the solution, respectively. κ represents the inverse
Debye screening length. Charge qi and dipole μi are located at the
geometric center ri of residue i.
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FIG. 2. (Color online) Schematic illustration showing the
formulation of the van der Waals interaction of two proteins. The
molecular surfaces are defined by

∑
1 and

∑
2 for each protein

and the n1 and n2 are the outward unit normals on
∑

1 and
∑

2

and ε(ω,κ) is the dielectric constant of the outside solution as a
function of the frequency ω and the inverse Debye screening length
κ . The orientations of two proteins are defined by two surface
patches( triangles) at the center-to-center distance R. mrs stand for
the polarizable dipoles located at the residue centers.

parts, the hard core contribution and the rest:

B2 = 1

16π2

∫ π

0

∫ 2π

0

∫ 2π

0

∫ π

0

∫ 2π

0

{
1

3
r3
c

−
∫ ∞

rc

(e−W (R,θ,φ,α2,β2,γ2)/kBT − 1)R2dR

}
× sin θdθdφdα2 sin β2dβ2dγ2, (5)

where rc = rc(θ,φ,α2,β2,γ2) is the distance between two
protein molecules when the interaction becomes really
high.

As the electrostatic and the van der Waals interactions are
computed based upon the Boundary Element Method (BEM)
of solving the Poisson-Boltzmann equations, a natural way to
capture the detailed protein orientations is to set up a patch
model by utilizing discrete elements of the molecular surface
used in the BEM. To this end, let us assume there is N1

triangular elements to represent protein 1, thus there are N1

patches and each patch is specified by surface area σ1l and r1l

centered at (r1l ,θ1l ,φ1l). For protein 2, there are N2 patches and
each patch is specified by surface area σ2m and r2m centered at
(α2m,β2m,γ2m), where r2m is the distance from patch m to the
center of mass of protein 2. For such a patch model, calculation
of the interaction can be done explicitly,

B2 = 2π

N1∑
l=1

N2∑
m=1

σ1lσ2m

σ1σ2

×
[

1

3
r3
clm −

∫ ∞

rclm

(e−Wlm(R)/kBT − 1)R2dR

]
, (6)

where rclm = r1l + r2m is the distance between two proteins
when the surface element l on protein 1 and the surface element
m on protein 2 are in contact. σi is the surface area of protein
i. Wlm(R) is the interaction potential between two patches l

and m from proteins 1 and 2. In this article, the interaction
energy between two protein molecules can be calculated by
the sum of the electrostatic interaction energy and the van der
Waals interaction energy at various patch combinations and
distances,

Wlm(R) = 
Eelec,lm(R) + 
Evdw,lm(R), (7)

which will be presented in the following sections.

B. General formulation of the electrostatic interaction
free energy between two proteins with the boundary

element method

Integral equations of the linearized Poisson-Boltzmann
equation for two protein model were derived [19] following
previous work from Juffer et al. [31] on the single protein
problem. Consider the molecular surfaces

∑
1 and

∑
2

which cover two protein molecules, respectively. There are N

charges qi and dipoles �μi at position ri enclosed by the surface∑
1 and also there are N charges qj and dipoles �μj at position

rj enclosed by the surface
∑

2. Inside each dielectric cavity
the dielectric constant is ε1 and the dielectric constant of the
solution is given as ε2 (see Fig. 1). The inverse Debye screening
length κ is given by the solution’s ionic strength and the

temperature, κ =
√

2IF 2

4πε0εRT
=

√
I
T

× (1.586 115 104)Ȧ−1,
where ε0 is the permittivity of free space, ε is the dielectric
constant of water, R is the gas constant, F is the Faraday
constant, and I is the ionic strength of the electrolyte solution.
The integral equations for the potential ϕ1(r) and ϕ2(r) and
their gradient ∂ϕ1(r)/∂(n1) and ∂ϕ2(r)/∂(n2) on the molecular
surfaces are [19]

1

2

(
1 + ε2

ε1

)
ϕ1(r01) +

∫ ∫
∑

1

L1(r1,r01)ϕ1(r1) dr1

+
∫ ∫

∑
1

L2(r1,r01)
∂ϕ1(r1)

∂n1
dr1

−
∫ ∫

∑
2

L1(r2,r01)ϕ2(r2)dr2

+
∫ ∫

∑
2

L2(r2,r01)
∂ϕ2(r2)

∂n2
dr2

=
2N∑
i=1

{qiF (ri,r01) + �μi · ∇F (ri,r01)}/ε1, (8)

1

2

(
1 + ε1

ε2

)
∂ϕ1(r01)

∂n1
+

∫ ∫
∑

1

L3(r1,r01)ϕ1(r1) dr1

+
∫ ∫

∑
1

L4(r1,r01)
∂ϕ1(r1)

∂n1
dr1

−
∫ ∫

∑
2

L3(r2,r01)ϕ2(r2)dr2

+
∫ ∫

∑
2

L4(r2,r01)
∂ϕ2(r2)

∂n2
dr2

=
2N∑
i=1

{
qi

∂F

∂n01
(ri,r01) + �μi · ∇ ∂F

∂n01
(ri,r01)

}/
ε1, (9)
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1

2

(
1 + ε2

ε1

)
ϕ2(r02) −

∫ ∫
∑

1

L1(r1,r02)ϕ1(r1) dr1

+
∫ ∫

∑
1

L2(r1,r02)
∂ϕ1(r1)

∂n1
dr1

+
∫ ∫

∑
2

L1(r2,r02)ϕ2(r2)dr2

+
∫ ∫

∑
2

L2(r2,r02)
∂ϕ2(r2)

∂n2
dr2

=
2N∑
i=1

{qiF (ri,r02) + �μi · ∇F (ri,r02)}/ε1, (10)

1

2

(
1 + ε1

ε2

)
∂ϕ2(r02)

∂n2
−

∫ ∫
∑

1

L3(r1,r02)ϕ1(r1) dr1

+
∫ ∫

∑
1

L4(r1,r02)
∂ϕ1(r1)

∂n1
dr1

+
∫ ∫

∑
2

L3(r2,r02)ϕ2(r2)dr2

+
∫ ∫

∑
2

L4(r2,r02)
∂ϕ2(r2)

∂n2
dr2

=
2N∑
i=1

{
qi

∂F

∂n02
(ri,r02) + �μi · ∇ ∂F

∂n02
(ri,r02)

}/
ε1, (11)

where

L1(r,r0) = ∂F

∂n
(r,r0) − ε2

ε1

∂P

∂n
(r,r0), (12)

L2(r,r0) = P (r,r0) − F (r,r0), (13)

L3(r,r0) = ∂2F

∂n0∂n
(r,r0) − ∂2P

∂n0∂n
(r,r0), (14)

L4(r,r0) = − ∂F

∂n0
(r,r0) + ∂P

∂n0
(r,r0)

ε1

ε2
, (15)

and

F (r,r0) = 1

4π |r − r0| ,
(16)

P (r,r0) = e−κ|r−r0|

4π |r − r0| .

Although the traditional boundary element method such as
Atkinson and his coworkers [32] can be used to solve the above
integral equations, the memory requirement is too costly for
current computers using either a direct linear system solver or
an iterative solver, such as the Generalized Minimal Residual
Method (GMRES) for a moderate size protein. In the current
work the Fast Multipole Method is used and the details of our
implementation will be outlined in Secs. II D and II E. Once
the above integral equations are solved the potentials inside
the dielectric cavity are

ϕ1(r1) = −
∫ ∫

∑
1

L1(r1,r01)ϕ1(r01) dr01

−
∫ ∫

∑
1

L2(r1,r01)
∂ϕ1(r01)

∂n01
dr01, (17)

ϕ2(r2) = −
∫ ∫

∑
2

L1(r2,r02)ϕ2(r02) dr02

−
∫ ∫

∑
2

L2(r2,r02)
∂ϕ2(r02)

∂n02
dr02, (18)

∇1ϕ1(r1) = −
∫ ∫

∑
1

∇1L1(r1,r01)ϕ1(r01) dr01

−
∫ ∫

∑
1

∇1L2(r1,r01)
∂ϕ1(r01)

∂n01
dr01, (19)

∇2ϕ2(r2) = −
∫ ∫

∑
2

∇2L1(r2,r02)ϕ2(r02) dr02

−
∫ ∫

∑
2

∇2L2(r2,r02)
∂ϕ2(r02)

∂n02
dr02. (20)

The electrostatic free energy between the protein molecules
at a center-to-center distance, R, and relative orientations,
�1 = (θ,φ) and �2 = (α2,β2,γ2), is given by

Eele(R,�1,�2) =
N∑

i=1

{
qi

ε1
ϕ1(ri) + 1

ε1
�μi · ∇ϕ1(ri)

}

+
N∑

j=1

{
qj

ε1
ϕ2(rj) + 1

ε1
�μj · ∇ϕ2(rj)

}
. (21)

Finally, the effective electrostatic interaction between two
proteins is


Eele(R,�1,�2) = Eele(R,�1,�2) − Eele(R → ∞,�1,�2)

+
N∑

i=1

N∑
j=1

1

ε1

{
qiTij qj − qi

∑
α

T α
ij μj,α

+
∑

α

μi,αT α
ij qj −

∑
αβ

μi,αT
αβ

ij μj,β

}
,

(22)

where the interaction tensors for charge-charge, charge-dipole,
and dipole-dipole are given by

Tij = e−κrij

rij

,

T α
ij = ∇αTij = e−κrij

(1 + κrij )

rij
3

rij,α,

(23)

T
αβ

ij = ∇α∇βTij = e−κrij

{(
3

rij
5

+ 3κ

rij
4

+ κ2

rij
3

)
rij,αrij,β

−
(

1

rij
3

+ κ

rij
2

)
δαβ

}
.

Here ∇α is ∂
∂rij,α

for each α = x,y,z and rij = |ri − rj |. The
last summation terms in Eq. (22) are the interaction energy
between charges and dipoles in two proteins when the solution
has the same dielectric constant ε1 as inside the protein and
with the inverse Debye screening length κ .

011915-4



CALCULATIONS OF THE SECOND VIRIAL . . . PHYSICAL REVIEW E 83, 011915 (2011)

C. General formulation of the van der Waals
interaction free energy

The van der Waals interaction energy between two proteins
is defined as


Evdw(R,�1,�2) = Evdw(R,�1,�2)

−Evdw(R → ∞,�1,�2). (24)

Song and Zhao [18] formulated the van der Waals interaction
between the protein molecules in an electrolyte solution using
the following effective action in Fourier space for polarizable
dipoles mr,n:

S[mr,n] = −β

2

∑
r

n=∞∑
n=−∞

1

αr,n
mr,n · mr,−n

+ β

2

∑
r�=r′

n=∞∑
n=−∞

1

αr,n
mr,n · T (r−r′) · mr,−n

+ β

2

∑
r,r′

n=∞∑
n=−∞

1

αr,n
mr,n · Rn(r−r′) · mr,−n, (25)

where αr,n is the frequency-dependent polarizability of a
residue located at position r. T (r − r′) is the dipole-dipole
interaction tensor between r and r′. Rn(r − r′) is the reaction
field tensor at the Matsubara frequency ωn = 2πn/βh̄ (see
Fig. 2). If the electrolyte solvent is treated by the Debye-Hückel
theory, this reaction field tensor can be calculated by solving
the Poisson-Boltzmann equation with the dielectric constant
ε(iωn). The quantum partition function from this effective
action of the system is

Q(R,�1,�2) =
∏
n

[
2π

βdetAn
(R,�1,�2)

]1/2

, (26)

where An’s matrix element is given by

An(r,r′) = 1

αr,n
δr,r′ − T (r − r′) − Rn(r − r′), (27)

where r and r′ represent residues in each protein. For the rigid
residue level model in our work, the residue positions r and r′
are completely determined by (R,�1,�2) in the spaced-fixed
coordinate. The symbol “det” represents the determinant of the
matrix. Therefore, the van der Waals interaction free energy is
given by


Evdw = 1

2
kBT

n=∞∑
n=−∞

[ln{detAn(R,�1,�2)}

− ln{detAn(R→∞)}]. (28)

In order to evaluate the van der Waals interaction in
our model, the reaction field matrix Rn(r − r′) has to be
calculated using the properties of the proteins and the
solution. The boundary element formulation which is used
to evaluate the electrostatic free energy can also be used to
calculate the reaction field matrix. Consider two molecular
surfaces

∑
1 and

∑
2 spanned by two protein molecules.

There are N polarizable dipoles mr at position r enclosed
by each surface

∑
1 and

∑
2. Inside this dielectric cavity

the dielectric constant is one and the dielectric constant
of the solution is ε(iωn) at the Matsubara frequency ωn.
The inverse Debye screening length κ is given by the
solution’s ionic strength and the temperature. If we recognize
that in order to calculate the potential at the molecular surface

a dipole m at position r0 can be described by an effective
charge density ρeff(r) = −m∇δ(r − r0) [33], the reaction
field matrix involving residues ri and rj can be given as

R(ri ,rj ) =
∫ ∫

∑
p

[∇iF (ri ,rj )

−∇iP (ri ,rj )]
∂ϕp

∂np

(rj ,rp)drp

+
∫ ∫

∑
p

[
−∇i

∂F

∂nj

F (ri ,rj )

+ ∇i

∂P

∂nj

(ri ,rj )ε

]
ϕp(rj ,rp)drp, (29)

where F and P are defined in Eq. (16) and for p to be 1 or 2
depends upon rj in

∑
1 or

∑
2. The potential and its gradient

ϕp and ∂ϕp on the molecular surface p due to residue i can be
obtained by solving the following integral equations [19,31]:

1

2
[1 + ε(iωn)]ϕ1(ri ,r01)

+
∫ ∫

∑
1

L1(r1,r01)ϕ1(ri ,r1) dr1

+
∫ ∫

∑
1

L2(r1,r01)
∂ϕ1

∂n1
(ri ,r1) dr1

−
∫ ∫

∑
2

L1(r2,r01)ϕ2(ri ,r2) dr2

+
∫ ∫

∑
2

L2(r2,r01)
∂ϕ2

∂n2
(ri ,r2) dr2

= ∇iF (ri ,r01), (30)
1

2

(
1 + 1

ε(iωn)

)
∂ϕ1

∂n1
(ri ,r01)

+
∫ ∫

∑
1

L3(r1,r01)ϕ1(ri ,r1) dr1

+
∫ ∫

∑
1

L4(r1,r01)
∂ϕ1

∂n1
(ri ,r1) dr1

−
∫ ∫

∑
2

L3(r2,r01)ϕ2(ri ,r2) dr2

+
∫ ∫

∑
2

L4(r2,r01)
∂ϕ2

∂n2
(ri ,r2) dr2

= ∇i

∂F

∂n01
(ri ,r01), (31)

1

2
[1 + ε(iωn)]ϕ2(ri ,r02)

−
∫ ∫

∑
1

L1(r1,r02)ϕ1(ri ,r1) dr1

+
∫ ∫

∑
1

L2(r1,r02)
∂ϕ1

∂n1
(ri ,r1) dr1

+
∫ ∫

∑
2

L1(r2,r02)ϕ2(ri ,r2) dr2

+
∫ ∫

∑
2

L2(r2,r02)
∂ϕ2

∂n2
(ri ,r2) dr2

= ∇iF (ri ,r02), (32)

011915-5



BONGKEUN KIM AND XUEYU SONG PHYSICAL REVIEW E 83, 011915 (2011)

1

2

(
1 + 1

ε(iωn)

)
∂ϕ2

∂n2
(ri ,r02)

−
∫ ∫

∑
1

L3(r1,r02)ϕ1(ri ,r1) dr1

+
∫ ∫

∑
1

L4(r1,r02)
∂ϕ1

∂n1
(ri ,r1) dr1

+
∫ ∫

∑
2

L3(r2,r02)ϕ2(ri ,r2) dr2

+
∫ ∫

∑
2

L4(r2,r02)
∂ϕ2

∂n2
(ri ,r2) dr2

= ∇i

∂F

∂n02
(ri ,r02), (33)

where L1, L2, L3, and L4 are defined in Eqs. (12), (13),
(14), and (15). To evaluate the van der Waals interaction
energy in Eq. (28), the reaction field matrix should be
built corresponding to the dielectric constant ε(iωn) for each
frequency ωn. The total polarizability of a residue in a protein is

αn = α(iωn) = αnu

1 + ωn/ωrot

+ αel

1 + (ωn/ωI )2 , (34)

where αnu is the static nuclear polarizability of a residue [22]
and ωrot is a characteristic frequency of nuclear collective
motion from a generalization of the Debye model. αel is
the static electronic polarizability of a residue and ωI is the
ionization frequency of a residue as in the Drude oscillator
model of electronic polarizabilities. ωrot = 20 cm−1 for
this calculation which is typical rotational frequency of
molecules [34]. Further improvements may be archived if
individual rotational frequencies are used for each amino
acid type used in the method described in Ref. [22]. Other
properties listed in Table I from Kim et al. [29] are based on
the calculated results from Millefiori et al. [23] An accurate
parametrization of the dielectric function ε(iω) of water based
on the experimental data is taken from Parsegian’s work [35].

D. Solving the linear system: The iterative double-tree
fast multipole method

The integral equations Eqs. (8), (9), (10), and (11) for the
electrostatic interaction energy and Eqs. (30), (31), (32), and
(33) for the van der Waals interaction energy will become a
linear system once a basis set is constructed over molecular
surfaces,

(I − L)A = B, (35)

where A and B are single column vectors with the size of
2N , where N is the number of surface elements on the protein
molecules for the electrostatic energy calculation and will be
the (2M) × (2N ) matrix for the reaction field calculation of
the van der Waals energy calculation, where M is the number
of residues in a protein. More explicitly,

I

⎛
⎜⎜⎝

ϕ00

ϕ11

ϕ22

ϕ33

⎞
⎟⎟⎠ −

⎛
⎜⎜⎜⎝

L00
1 L01

2 L02
1 L03

2

L10
3 L11

4 L12
3 L13

4

L20
1 L21

2 L22
1 L23

2

L30
3 L31

4 L32
3 L33

4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ϕ00

ϕ11

ϕ22

ϕ33

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F00

F11

F22

F33

⎞
⎟⎟⎟⎠ ,

(36)

where I is the identity matrix with the size of (2N ) × (2N ).
ϕ00 and ϕ11 are the potential and the gradient of potential
on surface 1, and ϕ22 and ϕ33 are the corresponding ones on
surface 2. The matrix element, L1, L2, L3, and L4 are defined
in Eqs. (12), (13), (14), and (15), and the upper indices are
the equation indices from Eqs. (8) to (11) or from Eqs. (30)
to (33) for the electrostatic interaction and the van der Waals
interaction, respectively, according to the ϕ’s indices. If the
distance between two proteins is large, the contribution from
the matrix elements in indices 02, 03, 12, 13 and 20, 21, 30,
31 to the matrix-vector multiplications is relatively small in
comparison with other matrix elements. Thus, the one-body
problem can be solved first and the cross-body contributions
can be treated perturbatively,(

ϕ̄00 0

0 ϕ̄11

)
−

(
L00

1 L01
2

L10
3 L11

4

)(
ϕ̄00

ϕ̄11

)
=

(
F00

F11

)
, (37)

(
ϕ̄22 0

0 ϕ̄33

)
−

(
L22

1 L23
2

L32
3 L33

4

)(
ϕ̄22

ϕ̄33

)
=

(
F22

F33

)
, (38)

where

ϕii = ϕ̄ii + δϕii (39)

and i = 0,1,2,3. Substituting Eq. (39) into Eq. (36) and using
the definition from Eqs. (37) and (38) yield a new system of
linear equations,

I

⎛
⎜⎜⎜⎝

δϕ00

δϕ11

δϕ22

δϕ33

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

L00
1 L01

2 L02
1 L03

2

L10
3 L11

4 L12
3 L13

4

L20
1 L21

2 L22
1 L23

2

L30
3 L31

4 L32
3 L33

4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δϕ00

δϕ11

δϕ12

δϕ13

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

L02
1 ϕ̄22 + L03

2 ϕ̄33

L12
3 ϕ̄22 + L13

4 ϕ̄33

L20
1 ϕ̄00 + L21

2 ϕ̄11

L30
3 ϕ̄00 + L31

4 ϕ̄11

⎞
⎟⎟⎟⎠ . (40)

The same argument can be made for the above linear system,
hence this linear system can be reduced to the following two
linear systems with the order O(N2):(

δϕ00 0

0 δϕ11

)
−

(
L00

1 L01
2

L10
3 L11

4

) (
δϕ00

δϕ11

)

=
(

L02
1 ϕ22 + L03

2 ϕ33

L12
3 ϕ22 + L13

4 ϕ33

)
, (41)

(
δϕ22 0

0 δϕ33

)
−

(
L22

1 L23
2

L32
3 L33

4

) (
δϕ22

δϕ33

)

=
(

L20
1 ϕ00 + L21

2 ϕ11

L30
3 ϕ00 + L31

4 ϕ11

)
. (42)

To solve the system of linear equations in Eq. (36), we first
solve the one-body linear systems in Eqs. (37) and (38), then
the right-hand side vectors in Eqs. (41) and (42) are obtained
from the previous solutions of the one-body problem and the
cross-matrix elements from the two-bodies. The perturbations
δϕ are computed after solving two linear systems in Eqs. (41)
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R

FIG. 3. (Color online) Schematic illustration showing the double
tree Fast Multiple Method (dt-FMM). Two tree structures are set up
with the center-to-center distance (R). On level = 2, all the Multipole-
to-Local (M2L) translations are computed for far-field interactions.
On level = 3, the long interaction (solid line) is not allowed in the
M2L translation list (the interaction list) but the interaction (dashed
line) is allowed. On level = 4, long interactions (dotted lines) are not
allowed but the interaction within the interaction list (long dashed
line) is computed.

and (42). The new solution ϕ is the sum of the one-body
solution and the perturbation solutions from Eqs. (41) and (42).
By solving Eqs. (41) and (42) using the new ϕ a close loop is set
up to solve the problem iteratively. In this iterative method, we
only need one matrix-vector product operation between two
separated bodies in each iteration. This iteration is called the
“outer” iteration to separate the term with the “inner” iteration
which is used to solve the one-body linear system with an
iterative solver, such as GMRES. The “outer” iteration can
reduce the size of system from O(2N × 2N ) to O(N × N )
and the “inner” iteration can be accelerated by introducing the
Fast Multipole Method (FMM) [29]. Figure 3 shows how the
double tree structures are defined to cover one body in one tree
and the interactions between two separated bodies are allowed
in the FMM algorithm to calculate matrix-vector products in
Eqs. (41) and (42) to calculate the right-hand side vectors.

This double-tree FMM with “outer” iterative method has
an advantage that can reduce the computational cost from the
traditional direct Boundary Element Method, O[(2N )2] to the
one of the single-body problem, O(N ). But the drawback is
that the closest distance between two bodies has to be that there
is no overlap of trees in this double-tree FMM. For example, the
closest center-to-center distance between two BPTI proteins in
the crystal lattice structure is about the range of 24–28 Å, but it
should be more than 33Å in double-tree FMM to avoid the tree
overlapping. The accuracy of the double-tree FMM is going to
be worse if two trees are getting close (as will be seen in Fig. 7).
In this case, the number of the “outer” iteration is also getting
larger, thus, the overall performance will be slower. In general,
the double-tree FMM is useful when the center-to-center
distance is about 1.5–2 times longer than the size of the tree.

E. Solving the linear system: The single-tree
fast multipole method

In order to calculate the interaction energy when two bodies
are too close to be reliable using the double-tree FMM, we
introduce the single-tree FMM in Fig. 4 . This method is based
on the single-body FMM [29]. The system of linear equations

R

FIG. 4. (Color online) Schematic illustration showing the single
tree Fast Multiple Method (st-FMM). Only one tree is set up to cover
two surfaces of proteins with the center-to-center distance (R). On
level = 2, only the Multipole-to-Local (M2L) translations which are
in the interaction list (solid line) are computed but the long interaction
(dashed line) is not allowed for the M2L translation.

from Eqs. (8), (9), (10), and (11) for the electrostatic interaction
and Eqs. (30), (31), (32), and (33) for the van der Waals
interaction can be described by the equations of a single body.
One subtle complication is the additional negative signs of L02

1 ,
L12

3 , L20
1 , and L30

3 in Eq. (36) where the signs of gradients are
changed because of the convention used for outside normal at
the cavity surfaces. Thus we need to consider this sign change
when the integral is performed on the surface of one body when
the source is in another body. In the traditional single-body
FMM, there is no way to deal with this conventional change,

FIG. 5. (Color online) Schematic illustration showing the single-
tree Fast Multiple Method (st-FMM) in level = 2 to level = 5.

∑
1

and
∑

2 are the surfaces of two proteins. All cells with light shade
belong to the surface

∑
1 and cells with lighter shade belong to the

surface
∑

2, respectively. From the lowest level, level = 5, the surface
index (either 1 or 2) is transferred from the level = 5 center x1 or x2

to the level = 4 center O1 or O2 by Multipole-to-Multipole (M2M)
translations. This index also can be transferred to the upper level’s
cell. For example, on level = 3 the center O ′

1 or O ′
2 has the surface

index during the process of M2M translation. The arrows in O1 cell
indicate the flow of the surface index 1 and the arrows in O2 cell for
the surface index 2. The dashed arrows represent level = 5 to level =
4 M2M translations and solid arrows represent level = 4 to level = 3
M2M translations, respectively.
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but this problem can be solved by transferring the additional
information of the ownership of surface elements during
the process of Multipole-to-Multipole(M2M) and Local-to-
Local (L2L) translations. Figure 5 shows the details how
the ownership of each surface element in a leaf cell can be
transferred to the parent’s cell in FMM.

Because this single-tree FMM is based on the single-body
FMM, the computational cost follows the order O(2N ), that
is about twice more than the one of the double-tree FMM
algorithm. Even though the single-tree FMM takes twice more
memory than the double-tree FMM, this cost is still highly
competitive compared with the traditional direct Boundary
Element Method. Figure 6 shows that the direct BEM follows
the quadratic increase as a function of the number of surface
elements and two FMMs follow only the linear increase via
order O(N ) or O(2N ) for the double and single-tree FMM,
respectively.

To test both FMM methods, we applied them to the
electrostatic interaction energy calculation of two identical
spheres. According to Fig. 7 , both solutions gave correct
effective electrostatic interaction energies compared with the
analytic solution of two identical spheres based on Eq. (A13)
in the Appendix. Furthermore, we had the consistent results by
two FMM methods when the effective electrostatic interaction
energies between the two BPTI molecules are computed. Also
these results were compared to the result from the direct BEM
solver and we found that the single-tree FMM is slightly
more accurate when two particles are getting closer and the
double-tree FMM is more accurate when two particles are
farther than twice of the size of a particle. So we used both
FMM methods to calculate the effective interaction energy
between two protein molecules.

F. Preparation of protein structures

The bovine pancreatic trypsin inhibitor (BPTI) is used
to validate our model by calculating the osmotic second
virial coefficients because it is a relatively small protein (the
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FIG. 6. (Color online) Memory cost comparison between the
direct Boundary Element Method (BEM) in solid circles, the double-
tree FMM (solid squares), and the single-tree FMM (solid upper
triangles). The number of surface elements is the number of surface
elements from a single protein (N ). So the order of each method is
O[(2N )2] for the direct BEM, O(N ) for the double-tree FMM and
O(2N ) for the single-tree FMM, respectively.
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FIG. 7. (Color online) Effective electrostatic interaction energy
comparison between the analytic solution (solid line) from Eq. (A13)
and the solutions of the double-tree FMM (upper triangle) and the
single-tree FMM ( square). The radius of both spheres is 1.0Å and
the unit charge is located at the center of each sphere. The inverse
Debye screening length is 0.1Å−1 and the dielectric constant is 1.0
inside the spheres and 10.0 outside spheres.

number of residues is 58), the structure is well known and the
experimental B2 data are known from Farnum and Zukoski
[5]. We will use the anisotropic patch model introduced in
Sec. II A by treating surface elements as patches to define
the anisotropic interactions between two protein molecules.
Because of the large number of patches on the protein surface,
it is really time consuming to compute interaction energies
of all patch pairs. To reduce the number of calculations for
patch pairs between two protein molecules, we only consider
the most probable configurations of pair interactions between
two protein molecules. To this end, a natural starting point is
to consider the patch pairs appearing in the crystal structure
(PDB code = 6PTI). The crystal space group of BPTI for this
structure is P 21212. Using the transformation matrix given
in the PDB file, other unit cell elements, B, C, and D can be
obtained from the original structure, A (Fig. 8 ). For example, B
is generated from the symmetry operation (x̄,ȳ,z), which leads
to an AB pair configuration. The opposite direction (x,y,z̄)
leads to an additional AB′ pair configuration. From this PDB
structural information we have all six pairs of interactions, AB,
AC, AD, AB′, AC′, and AD′. Figure 9 describes the relative
orientations of BPTI elements in a unit cell.

Using our residue level model and the CHARMMING
web portal [38], the positions of residues of protein pairs,
the charges, and the dipole moments can be generated. The
calculations of the osmotic second virial coefficients of the
BPTI protein in solutions are performed using the solution
conditions from Farnum and Zukoski [5]. The temperature of
the solution is 20◦C which is used both in the calculation
of B2 from Eq. (6) and in the inverse Debye screening
length. The pH of the solution, 4.9, is used to calculate the
charge of each amino acid residue in the protein using the
Henderson-Hasselbalch equation and the pKa of the residues
are calculated by PROPKA 2.0 [39]. The generic pKa values of
amino acids are not used because the local pKa of a residue
which is either burred inside the protein or on the surface of
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FIG. 8. (Color online) 2D illustration shows the unit cell of the
point group P 21212. In unit cell, there are four elements indicated
by the capital letters: A is at the origin of coordinate system and its
symmetrical operation is (x,y,z), B can be obtained by the operation
(x̄,ȳ,z), C can be obtained by the operation (1/2 + x,1/2 + ȳ,z̄),
and D can be obtained by the operation (1/2 + x̄,1/2 + y,z̄). All the
notations follows the Hermann-Mauguin symmetry notation and the
style of Wondratschek and Müller [36]. This diagram is adapted from
Jasinski and Foxman [37].

the protein may have a shifted pKa as the case of P1 Glu
and P1 Asp mutations in the BPTI-trypsin complexes [29]
and the PROPKA 2.0 is an accurate program for the pKa

prediction [40]. The dependence of B2 of BPTI molecules
on the concentration of the sodium chloride solution and the
comparison with the experimental B2 data will be described in
Sec. III.

To test the reliability of the small sampling in relative
orientations of proteins, we increased the number of relative
orientations up to 10 and converged results are obtained
for all the NaCl concentration dependence of BPTI B2.

B
C

A

D

FIG. 9. (Color online) 3D illustration shows the relative orienta-
tions of all BPTI molecules in a unit cell of P 21212. Ribbon structures
labeled element A, B, C, and D are shown. UCSF Chimera [41] was
used to draw this figure.

The converged results are a little bit different from the six
orientations’ results, but the comparison with experiential
results remains the same. Thereafter, all of our calculations are
done with six orientations sampled from the protein’s crystal
structure.

In addition to the calculations of the second virial coeffi-
cients of BPTI as a function of the concentration of the sodium
chloride solution, we also calculated the osmotic second virial
coefficients of lysozyme in various solution conditions. To
generate the most probable configurations of pair interactions
between two lysozyme molecules, the crystal structure (PDB
code = 2ZQ3) is used. In this case, the crystal space group
of lysozyme is P 212121. Again, we apply the transformation
matrix given in the PDB file to the original structure, A, to
generate other unit cell elements, B, C, and D. As in the BPTI
case, six pairs of relative orientations, AB, AC, AD, AB′, AC′,
and AD′ are generated.

The calculations of the osmotic second virial coefficients
of the lysozyme in solutions are performed using the same
conditions as in [6] and [9]. The concentration dependence
from 2% to 7% of salt concentration, the pH dependence from
pH = 4.0 to pH = 5.4 and the temperature dependence from
25◦C to 5◦C are used for the sodium chloride solution. The
concentration dependence from 0.50M to 1.10M of the am-
monium chloride solution is used at pH = 4.5 and temperature
18◦C. The concentration dependence from 0.10M to 0.70M of
the magnesium bromide solution at pH = 7.8 and temperature
23◦C are also calculated. Comparisons between calculated B2

and experimental ones will be presented in Sec. III using the
experimental data from Guo et al. [6] and additional data for
the magnesium bromide salt from Tessier et al. [9].

III. RESULTS

The electrostatic interaction energies and the van der
Waals interaction energies between two BPTI molecules
are calculated by the single-tree FMM algorithm when the
center-to-center distance R between two proteins is less
than twice the size of the protein and by the double-tree
FMM when the center-to-center distance is greater. Figure 10
shows the interaction energy changes as a function of R,
relative orientations, and the inverse Debye screening length κ .
The results agreed with our previous findings [18,19] that the
electrostatic and van der Waals interactions are sensitive to the
relative orientations. The ionic strength affects the electrostatic
interactions much more than the van der Waals interactions.
From these calculated interaction energies, B2 can be obtained
from Eq. (6), where the contact distances and patch surface
areas can be obtained from the molecular surfaces used in the
BEM calculations.

The soft interaction contribution (the electrostatic and the
van der Waals contribtion) to B2 is calculated using the six
pair configurations to represent all orientational dependence
of the soft interaction potential. Figure 11 shows the NaCl
concentration dependence of the osmotic second virial
coefficients of the BPTI from the experimental data and our
calculations. The error bars of the experimental data are from
[5].

It is well known that the electrostatic contribution depends
on the choice of the molecular surface [42], in our model
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FIG. 10. (Color online) The electrostatic interaction energies (left) and the van der Waals interaction energies (right) between two BPTI
molecules at various solution conditions. Each pair configuration is represented by a solid line, dotted line, and dashed line for AB, AC, AD
configuration, respectively (the lines are only to guide the eye). Using the same code, two curves for each pair configuration are shown: the
open circle indicates the interaction energies for 2% NaCl solution and the filled diamond indicates the energy for 7% NaCl solution. Because
of the three-dimensional structure of the BPTI protein, the starting distance of the single-tree FMM calculation for each pair interaction is
different as the contact distance varies.

there is a coupling between the hard core contribution to B2

and the electrostatic contribution as both of them are related
to the choice of the molecular surface. As for the van der
Waals contribution, our model’s attraction strength at contact
is very similar to the estimate from other ones [43], thus, we
will treat the electrostatic contribution with a scaling factor
which is determined by matching the calculated B2 with the
experimental one at one solution condition (0.75M NaCl in
this case, other matching solution conditions yield similar
correlations). Besides this scaling factor, there is no other
adjustable parameter in our calculations. For the BPTI case,
the hard core contribution is about 38 500Å3 and thus there is a
substantial contribution to overall B2 from the soft interactions.

The variations of the calculated B2 from observed values
are relatively large at high concentrations of NaCl solution.
This is because the calculated B2 data above 1M of NaCl
concentration are overestimated by our model. This is an
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FIG. 11. (Color online) The NaCl concentration dependence of
the osmotic second virial coefficients of BPTI. The solid line with
circles is the experimental B2 from Farnum and Zukoski and the
dashed line with diamonds is our calculated result. The error bars for
the experimental data are taken from [5].

indication of the limitation of our model as the Debye-Hückel
theory will break down at high salt concentrations.

The second virial coefficients of lysozyme are also
calculated in a similar manner. When compared with
experimental data, the second virial coefficient is scaled
as B2(ml · mol/g2) = B2(m3)NA/Mw

2 which is used in
reporting the experimental data [6], where NA is the Avogadro
constant and Mw is the molar mass of the protein. Again
averaged B2 is calculated by using Eq. (6) with six different
pair configurations based on the crystal space group operations
of P212121. Figure 12 shows the comparisons between the
experimental data and calculated results from various solution
conditions.

In Fig. 12(a), the experimental and the calculated B2

are given as a function of the concentration of the NaCl
solution and other conditions remain constant at pH = 4.2 and
25◦C. In general the correlation between the experimental and
calculated results are good, but we also can see the limitation
of our model for high concentrations of electrolyte solutions,
at 7%(w/v) of NaCl solution just as the same behavior of
BPTI.

The B2 as a function of the pH of solution in NaCl solution
in Fig. 12(b) shows a reasonable agreement between the
experimental and calculated data even though experiments
show a slight increase at pH = 5.2. The experiments and
calculations are performed at 25◦C and 2.0% NaCl
concentration. The temperature dependence of B2 clearly
shows that the calculated result has good correlation
with the experimental data. This dependence also has an
exception point for the low temperature 5◦C. According to the
correlation between observed B2 values and the solubilities
of the lysozyme in solutions [44], the solubility of lysozyme
shows clearly decrease as the calculated B2 decreases with
temperature as the other solution conditions remain constant
at pH = 4.2 and the concentration of NaCl being 2.0%.

The temperature of a solution affects the second virial
coefficients of protein solutions either via the inverse Debye
screening length κ or the integrand in Eq. (4). Furthermore,
temperature effect is represented by the change of the dielectric
constant of water which enters our calculations via the Debye
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FIG. 12. (Color online) Comparisons between the experimental B2 [6] and the calculated B2 of lysozyme at various solution conditions. The
dependence of B2 on NaCl concentration is shown in (a). The pH dependence is in (b). The temperature dependence is in (c). The dependence
upon ammonium chloride concentration is shown in (d). The solid lines with circles indicate the experimental data and the dashed lines with
diamonds indicate our calculated results. For the first three panels a single solution condition (2% NaCl, pH = 4.2 and temperature is 25◦C)
is used to determine the scaling parameter for the electrostatic contribution. For the (d), the solution condition (0.5M ammonium chloride,
pH = 4.5 and temperature 25◦C) is used to determine the scaling parameter, which is essential the same as the NaCl solutions since our model
cannot differentiate the nature of the salt except the ionic strength. The experimental data error bars from the literature [6] are also shown.

screening length and direct dielectric screening. From 25◦C to
0◦C, the dielectric constant increases from 80 to 88 [45] and
according to Harvey and Lemmon this increase also gives
a decreasing effect on the second virial coefficients under
low temperatures, T < 350 K [46]. The predicted B2 from
our calculations shows the correct correlation with observed
data [6] of lysozyme solutions. But the observed second virial
coefficient shows unusual effect at the temperature 5◦C.

From the structural study of the lysozyme crystal, the un-
usual effect of temperature was seen at the 280 K structure [47].
The number of water molecules under 4Å, the cutoff distance
between the lysozyme surface, and the water molecules in
the 280K structure, are smaller than in either the higher
temperature(T > 295K) or the lower temperature (T < 250)
K structures. The lower number of waters may cause the
smaller interactions between water molecules and atoms on the
protein surface. This could be a possible reason that the second
virial coefficient at 5◦C is observed to have an abnormal behav-
ior considering the overall trend with the temperature changes.

Finally, in Fig. 12(d), the experimental and calculated B2

are given as a function of the concentration of the ammonium
chloride solution. We also can see the limitation of this model
for the high concentration above 1M of NH4Cl solution, which
will be further discussed in the next section.

IV. LIMITATION OF THE MODEL: BEYOND
DEBYE-HÜCKEL THEORY

In Figs. 11, 12(a) and 12(d), the calculated B2 at high
concentrations of both sodium chloride and ammonium chlo-
ride are overestimated and the linear fit correlations to the
experimental values deteriorate. According to our calculations
this overestimation occurs at the high concentration of an
ionic solution whose ionic strength is greater than 1M and
the inverse Debye-Hückel screening length κ is large (>0.1).
At such high concentrations, the Debye-Hückel theory fails,
which affects our electrostatic and the van der Waals
calculations.

This limitation leads to qualitative wrong correlations
for divalent ion solutions such as magnesium bromide.
Figure 13 shows the failure of our model which is based on the
Debye-Hückel theory. The observed second virial coefficients
of lysozyme show a minimum at the concentration of MgBr2 ∼
0.3M , and start increasing as the ionic strength increases. Both
experimental results from the Static Light Scattering (SLS) [6]
and the Self-Interaction Chromatography(SIC) [9] show the
same behavior. The calculations predict decrease of B2 as the
concentration increases and agree with the experimental data
only up to the minimum point from the experiments. But at
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FIG. 13. (Color online) The MgBr2 concentration dependence of
the osmotic second virial coefficients of lysozyme solution at pH 7.8
is shown above. The solid line with filled circles are measured by the
Static Light Scattering (SLS) [6], and the solid line with open circles
are from the Self-Interaction Chromatography (SIC) [9]. The solid
lines with diamonds are our calculations. Both observed results of
B2 become more positive at higher ionic strength. But the calculated
results do not show the increase of the second virial coefficients at
high ionic strength of magnesium bromide solutions. In this figure
the scaling factor for the electrostatic contribution is determined at
the following solution condition: 0.1M MgBr, pH = 7.8, and 25◦C.

high concentration of MgBr2, the calculations only predict the
second virial coefficients decrease to large negative values and
at this point the inverse Debye-Hückel screening length κ is
already greater than 0.1.

Recently, a molecular Debye-Hückel theory was developed
[48,49] to address such a limitation of the traditional
Debye-Hückel theory. The new theory is not only formulated
for the static case, but also for the dynamical case. Therefore,
using the new theory may improve the calculation of the
electrostatic contribution to the interaction energy and at the
same time can also improve the calculation of the van der
Waals energies. The frequency dependent dielectric function is
already applied to the dynamical Poisson-Boltzmann equation
in Eqs. (30), (31), (32), and (33) for the van der Waals
interaction. It will be interesting to see how the results from
the new theory correlate with the experimental ones.

At the molecular level, the binding affinity of Mg2+ ions
to the surface of lysozyme increases as the concentration of
MgCl2 increases [50,51]. The extent of Mg2+ ion binding
increases as the pH of the solution increases to the isoelectric
point of the protein (for lysozyme, 9.2) because the net positive
charge on the protein surface approaches zero at this point. The
open active site residues of lysozyme are glutamic acid (E53)
and aspartic acid (D70) and both are negatively charged at this
pH condition and the overall net charge of lysozyme decreases
from 13.3 at pH = 4.0 to 7.65 at pH = 7.8 under 23◦C which is
the condition used in the experiments and our calculations. Due
to the binding of Mg2+ divalent cations to the acidic residues
of lysozyme, the repulsive interactions between lysozyme
molecules increase, hence, cause more positive second virial
coefficients observed in both SLS and SIC experiments.

V. CONCLUDING REMARKS

The extended Fast Multipole Method for two bodies are
implemented to solve the system of linear equations from
the linearized Poisson-Boltzmann equation to calculate the
effective interaction energy of both electrostatic and van
der Waals contributions. The traditional Boundary Element
Method [32] implementation following Juffer et al. [31]
requires the computational cost both in term of memory and
time with the order of O[(2N )2] if the number of surface
elements is N . This computational cost is the bottleneck
for comprehensive studies on the interactions between large
proteins. The extended FMM algorithm circumvents this
computational bottleneck to reduce the cost to order of
O(N ) for the double-tree FMM with additional outer iteration
method and the order of O(2N ) for the single-tree FMM. The
double-tree FMM is suitable at the relatively large distance
and the single-tree method is good at shorter distance, where
the transition point is roughly twice the size of protein
molecule. The accuracy and performance of both methods
can be controlled by adjusting the depth of trees, the number
of expansion terms and the tolerance factor of iteration [52].

The osmotic second virial coefficients B2 calculations of
bovine pancreatic trypsin inhibitor and lysozyme solutions
are used to validate our protein-protein interaction model. To
reduce the computational cost the orientational dependence of
the interaction energy in the integral of Eq. (6) is simplified by
using the pair configurations from the crystal structure, which
is a reasonable way to sample the most probable configurations
in orientational space. The calculated B2 generally agrees well
with observed values from various solution conditions such as
salt concentrations, pH, and temperature.

The model breaks down at high concentrations of
monovalent salts and moderate concentration of multivalent
salts such as Mg2+. Our results show the overestimation of B2

when the ionic strength is greater than 0.1M in general and
do not show the repulsive effect of the magnesium ion upon
binding to the negatively charged amino acid residues, which
causes the positive increase of B2 even if the ionic salt concen-
tration increases. This clearly indicates the limitation of the
Debye-Hückel theory used in our model. Possible improve-
ments using the newly developed molecular Debye-Hückel
theory [48,49] are under way.

Overall, the calculated B2 are well correlated with the
experimental observations for various solution conditions. In
combination with our previous work on the binding affinity
calculations [29] it is reasonable to expect that our residue
level model can be used as a reliable model to describe
protein-protein interactions in solutions. Naturally there are
several immediate ways to improve the model, such as
bettering the nuclear polarizability model of amino acids
and improving treatment of the electrolyte solution modeling
beyond Debye-Hückel theory. Given the simplicity of the
model, the overall agreements between our calculations and
experimental measurements are worth exploring so that a
reliable model of protein-protein interactions in electrolyte
solutions can be developed.

Since our approach needs the approximate structure of
a protein at the residue level as initial input we will
briefly discuss possible ways to obtain this information.
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Experimentally there are other ways to provide partial struc-
tural information, which can also be used as the starting point
of our model. Even though a reliable and accurate structure
prediction from sequence is not yet available, approximate
structures (resolution 6 to 8 Å, which corresponds to the
residue level resolution) from such predictions [53] could
offer a reasonable starting point for our approach, naturally
an iterative process in collaboration with crystallographers is
essential. For example, using the initial approximate structure
a comparison of the second virial coefficient between the
model calculation as shown in the current contribution and
the light scattering experiments will lead to some insights into
the geometric shape of the approximation structure and the
result over all interactions between protein molecules. Thus,
a combination of our strategy and the structure prediction
from primary sequence may be exploited for the search of
optimal crystallization condition. The predicted crystallization
conditions can then be used to guide experimental design for
the search of optimal conditions.
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APPENDIX: ELECTROSTATIC INTERACTION FREE
ENERGY BETWEEN TWO CHARGED SPHERICAL

PARTICLES

In order to validate our boundary element solvers either
based on the direct solver or the fast multipole method,
we derived the analytic solution for a simple model, two
identically charged spheres in an electrolyte solution. We
follow the approach described in [54] for linearized Poisson-
Boltzmann equations by adding a charge at the center of
each sphere. In the linearized Poisson-Boltzmann model, the
electrostatic potential ψ outside the spheres and ϕi inside the
sphere i satisfy the following equations:

∇2ψ = κ2ψ outside the spheres,

∇2ϕi = −qiδ(r − ri)

ε1
inside the sphere i = 1 or 2, (A1)

FIG. 14. Schematic diagram of the coordinate system of two
sphere problem. a is the radius of sphere, R is the center-to-center
distance, and r1, θ1, r2 and θ2 are the coordinate system from spheres
1 and 2, respectively [54]. The charge q is located at the center of
each sphere.

where κ is the inverse Debye screening length of the electrolyte
solution and qi is the charge located at the center of each sphere
i and ε1 is the dielectric constant inside the sphere. The solution
of Eq. (A1) in an electrolyte solution (outside of the spheres)
can be written as [55] (and the coordinate system of the two
spheres are shown in Fig. 14)

ψ(r1,θ1,R) =
∞∑

n=0

an

{
kn(κr1)Pn(cos θ1)

+
∞∑

m=0

(2m + 1)Bnmim(κr1)Pn(cos θ1)

}
, (A2)

where

Bnm =
∞∑

ν=0

Aν
nmkn+m−2ν(κR) (A3)

Aν
nm =

�(n − ν + 1/2)�(m − ν + 1/2)�(ν + 1/2)

×(n + m − ν)!(n + m − 2ν + 1/2)

π�(m + n − ν + 3/2)(n − ν)!(m − ν)!ν!
, (A4)

in(x) and kn(x) are the modified spherical Bessel functions of
the first and third kind, respectively [56], �(z) is the γ function.
The solution of Eq. (A1) inside the spheres has the following
general form:

ϕi(ri,θi) =
∞∑

n=0

bnri
nPn(cos θi) + qi

ri

. (A5)

The unknown coefficients an and bn can be determined by
applying the boundary conditions of the potential on the
surface of the sphere at r1 = a,

ψ |r1=a = ϕ1|r1=a
(A6)

ε2
∂ψ

∂r

∣∣∣∣
r1=a

= ε1
∂ϕ1

∂r

∣∣∣∣
r1=a

,

where ε2 is the dielectric constant of the solution, and ε =
ε2/ε1 will be used for further derivation. Applying boundary
conditions Eq. (A6) on Eqs. (A2) and (A5) the coefficients
bn and the potential function inside sphere 1 is (the subscript
to denote spheres are dropped due to the symmetry of the
problem as ϕ1 = ϕ2)

ϕ(r,θ ) =
∞∑

n=0

[( r

a

)n

an

{
kn(κa)

+
∞∑

m=0

(2m + 1)Bnmim(κa)

}
Pn(cosθ ) − q

a

( r

a

)n

]

+ q

r
. (A7)

In order to evaluate the electrostatic solvation energy at the
charge position r = 0, r → 0 limit means that only n = 0 term
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survives,

ϕ(r = 0) = a0

{
k0(κa) +

∞∑
m=0

(2m + 1)B0mim(κa)

}
− q

a
.

(A8)

To find another unknown coefficient a0, we only need the
m = 0 term after applying the second boundary condition
in Eq. (A6) using the n = 0 term in the solvation energy
calculation,

a0 = −q

a

1

εκa

1

k′
0(κa) + B00i ′0(κa)

. (A9)

So the potential at the charge position can be written as

ϕ(r = 0) = −q

a

1

εκa

k0(κa) + B00i0(κa)

k′
0(κa) + B00i ′0(κa)

− q

a
, (A10)

where B00 = ∑∞
ν=0 Aν

00k−2ν(κR) = k0(κR).
The exact analytic expression of the solvation energy of

a single sphere with a charge at the center of the sphere is
reproduced by taking the R → ∞ limit and using

B00(R → ∞) = lim
R→∞

k0(κR) = lim
R→∞

π

2

e−κR

κR
= 0,

(A11)

thus, the solvation energy W of a single sphere,

W (R → ∞) = 1

2
qϕ(r = 0)

= 1

2

{
−q2

a

1

εκa

k0(κa)

k′
0(κa)

− q2

a

}

= 1

2

q2

a

1 − (1 + κa)ε

(1 + κa)ε
. (A12)

To calculate the electrostatic interaction free energy of
the two identical spheres, we need to subtract the interaction
potential of the infinitely separated spheres from the potential
between two spheres at a finite distance, that is, ϕ12 =
ϕ(R) − ϕ(R → ∞),

ϕ12 = ϕ(R) − ϕ(R → ∞)

= −q

a

1

εκa

{
k0(κa) + k0(κR)i0(κa)

k′
0(κa) + k0(κR)i ′0(κa)

− k0(κa)

k′
0(κa)

}
.

(A13)

This expression is used to validate our solution based on
the fast multipole method.
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