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Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model
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Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major
changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration
([K+

o ]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an
“injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the
metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium
channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac
death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias
may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity
by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human
ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.
291, H1088 (2006)] as a function of three ischemia-relevant parameters [K+

o ], IS , and IKatp. In this single-cell
model, we found that automatic activity was possible only in the presence of an injury current. Changes in
[K+

o ] and IKatp significantly altered the bifurcation structure of IS , including the occurrence of early-after
depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an
ischemic heart.
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I. INTRODUCTION

Even though death rates from cardiovascular disease have
declined in recent years, it is estimated that 935 000 Americans
will suffer from myocardial infarction (MI) in 2010 [1].
As a result of the blockade of a coronary artery, MI is
characterized by a lack of blood flow creating an ischemic zone
where myocytes have impaired excitability. Acute ischemia,
corresponding to the first phase (∼15 minutes) following the
perfusion default, involves multiple changes in the electrical
or ionic characteristics of the cells (see Ref. [2] for review),
which can lead to ventricular tachycardia, arrhythmia, or
fibrillation. It remains the most common cause of sudden
cardiac death.

ST segment elevation, a hallmark of MI, has been used
as a diagnostic tool for decades. One theory explaining
ST elevation is that the increase in membrane potential
(V), resulting notably from the accumulation of potassium
ions in the extracellular space, leads to a decrease of the
diastolic baseline of electrocardiogram (ECG) [3] and would
be observed as ST segment elevation in an AC-coupled ECG.
Another hypothesis is that it is produced by the flow of injury
current following from the difference in membrane potential
between healthy and ischemic tissue [4]. It was also found, in a
knockout animal model, that the absence of an ATP-sensitive
potassium channel (IKatp) leads to a marked decrease in ST
elevation [5]. Mathematical modeling of ischemia [6] has
also suggested IKatp to be the main ion channel responsible
for the shortening of action potential duration observed
experimentally.

The injury current is pro-arrhythmic and could be respon-
sible for automatic or ectopic activity in the border zone of
the infarct, where it is maximal. Ectopic activation, believed
to be a key factor leading to arrhythmia [7], may happen if
a group of myocytes switches from normal excitable cells

to oscillators. This could activate adjacent cells and start the
arrhythmia.

As an initial step toward investigating ectopic activity in
tissue embedding an ischemic zone, we studied the effect
of three ischemia-related parameters on the quiescent and
oscillatory states of the ten Tusscher, Noble, Noble, and
Panfilov model of isolated human ventricular cardiac myocytes
(TNNP) [8,9]. First, the effect of hyperkalemia (i.e., increased
extracellular potassium, [K+

o ]) was studied. From a normal
value of 5.4mM, it may increase to 15mM within the first
minutes of the ischemic injury [10,11]. The difference in
extracellular potassium concentration between the ischemic
and healthy zone also imposes a gradient of diastolic potential
[12], resulting in an injury current. It was modeled by
adding an inward K+ bias current (IS). Finally, an ATP-
inactivated potassium channel was added to the model, whose
maximum conductance was varied to represent the effect
of anoxia [13–15]. In several modeling works, the ischemic
zone has been represented by a spatial profile of [K+

o ] and/or
GKatp [12,16,17]. Herein, we rather provide a comprehensive
description of the effect of these parameters on the autonomous
solutions of a single cell.

II. METHODS

A. Ventricular cell model

The epicardial variant of the 2006 TNNP model [9] was
used because the epicardium is the region most directly
affected by ischemia [2,18,19]. It is a second-generation
cardiac ionic model that includes the dynamics of the cyto-
plasmic concentrations [Na+]i , [K+]i , and [Ca++]i and the
calcium concentration in intracellular compartments repre-
senting the sarcoplasmic reticulum (SR), [Ca++]sr, and the
dyadic compartment (subspace/SS), [Ca++]ss. The evolution
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of the concentrations is governed by ionic currents through the
cell membrane and fluxes between the compartments, namely:

d[Ca++]i
dt

= Ct

2VcF
(2INaCa − IbCa − IpCa)

+Vsr

Vc

(Ileak − Iup) + Ixfer,

d[Ca++]sr

dt
= Iup − Irel − Ileak,

d[Ca++]ss

dt
= Vsr

Vss
Irel − Ct

2VssF
ICaL − Vc

Vss
Ixfer,

d[Na+]i
dt

= − Ct

VcF
(INa + IbNa + 3INaK + 3INaCa),

d[K+]i
dt

= − Ct

VcF
(IK1 + Ito + IKr + IKs − 2INaK

+IpK + IS + IKatp), (1)

where Ct is the membrane capacitance, F is Faraday’s
constant, and VC,Vsr, and Vss are the volume of the cytoplasm,
sarcoplasmic reticulum, and subspace, respectively.

The model incorporates a representation of calcium-
induced calcium release (CICR) [20,21]. The release depends
on the free calcium concentration in both the SR ([Ca++]sr)
and the dyadic compartment ([Ca++]ss). The calcium entering
the SS from both the SR (Irel) and the membrane calcium
channels (ICaL) flows to the cytoplasm (Ixfer), from which it
can be taken up again by the SR (Iup). There is also a leaking
current (Ileak) between the cytoplasm and the SR, proportional
to the difference between [Ca++]i and [Ca++]sr.

The membrane currents are voltage dependent. Their
channel conductance is modulated by gating variables y

satisfying equations of the form [22]

dy

dt
= y∞ − y

τy

, (2)

where y∞ and τy are voltage-dependent (or concentration-
dependent for some calcium currents) functions. In the range
of membrane potentials (V ) investigated in the present study,
cytoplasmic concentrations are mainly regulated by IK1, IKr ,
IKs , and ICaL, as well as the sodium-calcium and sodium-
potassium exchangers (INaCa, INaK).

Since it is known to shorten significantly the action potential
during ischemia, a potassium ATP-inactivated current (IKatp)
was added to the original TNNP model. Because IKatp density
and conductivity in human myocytes are not well known,
we used a simplifed formulation of the model of Michailova
et al. [15], which they adjusted to reproduce action potential
shortening in pig myocytes:

IKatp = GKatpGmaxKatp([K+
o ]/[K+

onormal])
0.24(V −Ek), (3)

where [K+
onormal] = 5.4mM and GmaxKatp = 0.05 mS/μF ,

which is the maximum conductance of the current in their
model. The extracellular potassium concentration [K+

o ] and
the normalized ATP-dependent conductance GKatp are fixed
parameters.

During ischemia, there is an accumulation of [K+
o ] in

the ischemic zone, leading to an increase of the membrane
potential. This creates a flow of current between the injured

and healthy zone. In this study, this effect was modeled as a
time- and voltage-independent bias potassium current IS(K+).

The evolution of the membrane potential V is determined
by the membrane currents:

Ct

dV

dt
= INa + IK1 + Ito + IKr + IKs + ICaL + INaCa

+ INaK + IpCa + IpK + IbCa + IbNa + IS + IKatp.

(4)

With the addition of this equation, the Jacobian matrix of the
full system becomes singular [23]. Indeed, if the membrane
potential is set to

V = Vc

CtF
([Na+]i + 2[Ca++]i + [K+]i) + Vsr

CtF
2[Ca++]sr

+ Vss

CtF
2[Ca++]ss + V0, (5)

Eq. (4) can be derived from the concentration equations (1).
The constant V0 can be computed using the initial condition
from Ref. [9]. Note that this algebraic formulation for the
membrane potential requires stimulation and bias currents to
be attributed to specific ionic species. The complete set of
equations and parameters of the model are available as an
online supplement [24].

B. Bifurcation analysis

The TNNP model consists of an 18-dimensional system of
autonomous ordinary differential equations [5 concentrations
and 13 gating variables, the membrane potential being com-
puted using the algebraic relation (5)]. This system can be
formally written as

dX
dt

= d

dt

⎡
⎢⎣

x1
...

x18

⎤
⎥⎦ = F(X) =

⎡
⎢⎣

f1(X)
...

f18(X)

⎤
⎥⎦ . (6)

The fixed points Xf of the system, fulfilling the relation
F(Xf) = 0, are stable or unstable depending on whether the
trajectory returns or departs from Xf after a perturbation.
Following any infinitesimal perturbation Y around Xf , the
dynamics can be described by the linear system

dY
dt

= J Y, (7)

where J is the Jacobian matrix containing the partial derivatives
of the functions evaluated at Xf , i.e, Ji,j = (∂fi/∂xj )|Xf . The
local stability is controlled by the real part of the eigenvalues
of J. Xf is unstable if there is at least one eigenvalue with
positive real part. Removing from J the line and the column
associated with a variable (i.e., Ji,j and Jj,i for all j ) amounts
to assuming that it adjusts instantaneously to fulfill the relation
fi(X) = 0, such that its own dynamics is no longer involved
in the stability of the fixed point.

Periodic solutions of the system can also be stable or
unstable. The local stability of a periodic orbit can be assessed
by tracking the dynamics after a perturbation Y relative to a
reference point Xr on the cycle. The positions of the successive
returns Yi relative to Xr in a plane normal to the orbit define
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an iterative 17-dimensional system:

Yi+1 = A Yi . (8)

The amplitude of Yi wanes if the modulus of the eigenvalues
of A, referred to as Floquet’s multipliers, is less than one.
(See Refs. [25–27] for introductory or advanced textbooks on
stability theory.)

The aim of this paper is to study the evolution of the
fixed points and cycles of the system as a function of three
parameters relevant to ischemic conditions: the potassium in-
jury current I S(K+), the extracellular potassium concentration
[K+

o ], and the conductance of the potassium ATP-inactivated
current GKatp. Bifurcations occur at parameter values where
either the number or the stability of the solutions changes.

The set of fixed points as a function of the parameters P can
be obtained by solving the equation F [Xf(P )] = 0. Starting
from an initial condition Xf(P0) (which in our case was a
stable fixed point provided by simulation of the ODE system
using the stiff MATLAB solver ode15s [28,29]), it becomes a
continuation problem for which different numerical methods
and freeware packages are available (see Ref. [30] for review).
We have used the continuation software AUTO-07P [31] to
prolong both the stable fixed points and cycles obtained by
numerical simulations and diagnose their stability.

The pseudo-arc continuation method used by AUTO required
the ODE system to be continuous. One inactivation gate
variable (h) of sodium current (INa) has a discontinuity of
the form:

h∞(V ),τh(V ) =
{
f1(V ) if V � −40 mV
f2(V ) if V > −40 mV.

(9)

The functions h∞ and τh were made continuous by connecting
them by a sigmoid function centered at −40 mV:

f (V ) = [1 − �(V )] f2(V ) + �(V ) f1(V ), (10)

�(V ) = 1

(1 + e(V +40))
. (11)

The resulting continuous system displayed the same response
as the original formulation upon current pulse stimulations.

C. Reduced models

Simplified versions of the TNNP model were also used to
elucidate the processes responsible for the changes in stability
of the fixed points and cycles:

(i) Model MnoSR: suppressing the SR dynamics by
removing Ileak, Iup, Irel, and [Ca++]sr. Sixteen variables:
12 gating variables, 4 ionic concentrations (1), and algebraic
V (5).

(ii) Model MonlyCA: to study the dynamics of the intra-
cellular calcium by suppressing all membrane currents. Four
variables: [Ca++]sr, [Ca++]ss, [Ca++]i (1), and one gating
variable associated with the CICR. Everything else fixed at
steady-state values of the complete TNNP model obtained for
different sets of parameters.

(iii) Model MonlyV1: All concentrations frozen at their
resting values for IS = 0; Ileak, Iup, and Irel removed, and V

reinstated as a variable. Twelve variables: 11 gating variables
and a differential equation for V (4).

(iv) Model MonlyV2: same as MonlyV1, but suppressing
the voltage dependence of the potassium and calcium pumps.

III. RESULTS

A. Effect of IS

1. Fixed points

The z-shaped diagram displaying the membrane potential
(V ) of the fixed points as a function of IS(K+) [Fig. 1(a)]
has three branches. This was also observed in simpler first-
generation ventricular myocyte models subjected to a constant
bias current [32,33]. Since the fixed points of TNNP model
correspond to a Donnan equilibrium [34], the total flux of each
ionic species must be zero, and IS must be compensated by
the outflow of [K+]. IK1, IKr , and IKs [Fig. 1(b)] are the main
[K+] ionic currents involved in setting the equilibrium. IK1

and IKr have a bell-shaped steady-state current peaking around
−50 and −20 mV, respectively, while IKs is an exponentially
increasing current that dominates from ∼−30 mV. As a
result, IK1 is the main supplier on the lower branch while
IKs dominates on the far part of the upper branch. The
middle and upper branches, in the interval where they coexist,
are defined by two different mixtures of the three currents.
The total outward K+ flow provided by these currents is
everywhere greater than IS , and the resulting loss of K+ is
offset by the NaK exchanger. The latter also produces an
outflow of Na+ from the cell. Na+ removal by INaK is chiefly
balanced by the NaCa exchanger [Fig. 1(c)]. Since the NaCa
exchanger removes one Ca++ for every three Na+ that enters
the cell, it produces a leak of Ca that is mostly balanced by the
Ca++ injected in the dyadic space by ICaL [Fig. 1(d)].

The membrane potential V of the resting points is set
by the weighted sum of intracellular ionic concentrations
[Fig. 1(e)]. Although the variation of the cytoplasmic [Ca++]
appears minimal compared with the changes of [Na+

i ] and
[K+

i ], it plays an important role in setting the equilibrium
because of the high sensitivity of INaCa to [Ca++

i ]. It can be
seen that the change of [Na+

i ] and [K+
i ] follows the curve

of ICaL. The inflow of [Na+] associated with the balance of
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FIG. 1. (Color online) Fixed points of the TNNP model as a
function of IS(K+) (Ko = 10mM, GKatp = 0). (a) V as a function
of IS(K+). The dot and the diamond, which are reproduced in each
panel, locate the limits of the middle branch. As a function of V of the
fixed points, (b) IK1, IKr , and IKs ; (c) 3INaK and 3INaCa; (d) −2INaCa

and ICaL; (e) [Na+
i ], [K+

i ], and 50[Ca++
i ], the last multiplied by 50

such that its variation could be seen; (f) the SR currents Ileak, Iup, and
Irel.
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FIG. 2. (Color online) Fixed points of the TNNP model as a
function of IS(Na+) (Ko = 10mM, GKatp = 0). (a) V (the thin line
shows a zoom of the marked area), (b) 3INaK and 3INaCa, (c) [Na+

i ],
[K+

i ], and 50[Ca++
i ].

ICaL by INaCa requires an increase in INaK. INaK is a function
only of V and [Na+

i ], being much more sensitive to the latter.
Hence, [Na+

i ] increases and induces an outward flow of K+,
which reduces its concentration. The dynamics of the Ca++
also involve the SR and SS, the dyadic space. Figure 1(f)
shows the evolution of the currents flowing in and out of the
SR, which are involved in the stability of the fixed points, as
it will be seen in the next section.

In a model of paced atrial cell, assigning the stimulation
current to a specific ion has been shown to alter the transient
and stable response of the system [23]. It also deeply modifies
the location of the fixed points of the TNNP model, as shown
in Fig. 2, for which IS was allocated to Na+. Na+ is essentially
removed by the NaK exchanger, which also eliminates the Na+
pumped in by the NaCa exchanger in the interval where ICaL

is activated [Fig. 2(b)]. The resulting profiles of cytoplasmic
concentrations [Fig. 2(c)] are very different from that obtained
with IS(K+). Since [K+

i ] is usually elected as the carrier
of intracellular current flow because of its high intracellular
concentration [35], we have chosen to restrict the detailed
analysis to IS(K+).

2. Stability

Figure 3(a) portrays the stability of the fixed points as
a function of IS(K+) for the case presented in Fig. 1. The
diagram shows the location of the bifurcation points as well
as the change in the number of positive real part eigenvalues.
The lower branch loses stability through a Hopf bifurcation
(Hb1). Close to Hb1, a saddle-node bifurcation (SNb1) leads
to the second branch of the diagram. It remains unstable with
one real positive eigenvalue until a second Hopf bifurcation
(Hb2), which adds a pair of unstable eigenvalues. The upper
branch also appears via a saddle-node bifurcation (SNb2),
which brings an additional real positive eigenvalue. Hb3,
the third Hopf bifurcation, reduces the number of unstable
eigenvalues from four to two, and the system finally regains
stability through the last Hopf bifurcation Hb4.

Removing the SR (see the earlier presentation of model
MnoSR) preserves the z shape of the fixed points but changes
the bifurcation structure by eliminating both Hb2 and Hb4

[Fig. 3(b)]. The dynamics of the SR enhances the instability of
the system by adding a pair of positive eigenvalues persisting
from Hb2 to Hb4. For all fixed points between Hb2 and Hb4,
the calcium subsystem (see the earlier presentation of model
MonlyCA) is unstable and produces oscillations coming from
the lag between the spontaneous calcium release from the SR
to the SS and its reuptake from the cytoplasmic compartment.
In the complete model, the variations of cytoplasmic and SS
[Ca++] act on the pump, exchanger, and ionic currents to
induce (between Hb3 and Hb4) or participate (from Hb2 to
Hb3) to the destabilization of the fixed points. Hb2 and the
oscillation of the MonlyCA model begin when the SR and
SS [Ca++] are such that the buffering capacities of the two
compartments are close to saturation. Perturbations of [Ca++]
and [Ca++

ss ] are then amplified by their direct effect on Irel. A
similar oscillation of the calcium subsystem has been found
in a pacemaker cell model [36], where it is believed to act for
initiating and maintaining the heart rhythm [37].

The bifurcation structure of the MnoSR model is identical to
that obtained with more simplified versions of the model where
all concentrations were frozen to their IS = 0 resting values
[models MonlyV1 and MonlyV2; Fig. 3(b)]. Hence, it can
be explained by the dynamics of the voltage-gated membrane
ionic currents. In the MonlyV2 model, the instability of the
middle branch is spawned by the ICaL conductance. The branch
has only one unstable eigenvalue. On one hand, removing
or adding any set of gate variables from the Jacobian does
not change the stability. On the other hand, stability is
regained by removing the contribution of ICaL to the membrane
conductance.

Still in the MonlyV2 model, the situation is more complex
for the unstable section of upper branch where the stability is
controlled by gate variables. The activation gate variable of
ICaL (d) is dominant. For most fixed points, it is the only gate
variable whose removal stabilizes the Jacobian, whereas the
Jacobian containing only the variables V and d is unstable.
However, in the latter case, the reduced two-dimensional
Jacobian has only one positive eigenvalue, whereas there are
two for the complete MonlyV2 model. Doing a forward search
for the minimum number of gate variables to include to get two
positive eigenvalues, we found that two or three gate variables
were necessary. In each case, there were multiple doublets or
triplets mostly involving, besides d, the slow inactivation gate
variables of the ICaL (f ) and/or the activation gate variables
of IKr and IKs . Hence the instability of the upper branch
results from interaction between the activation of ICaL, its
much slower inactivation, as well as the slow activation of IKr

and/or IKs .

3. Cycles

The upper trace of Fig. 3(a) shows the amplitude of the
TNNP stable cycles existing around the top branch of fixed
points. The stable cycles appear close to Hb4 through a cycle
saddle-node bifurcation. The associated branch of unstable
cycles (not shown) connects with Hb4, which is a subcritical
Hopf bifurcation. The stable cycles persist a little beyond
SNb1, where they disappear through an homoclinic bifurcation
by hitting the middle branch of unstable fixed points between
IS(SNb1) and IS(Hb1). There are two regimes of oscillation:
low-amplitude cycles, starting at Hb4 and finishing a little
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FIG. 3. (a, b) Fixed points and amplitude of the stable cycles as a function of IS(K+) ([K+
o ] = 10mM, GKatp = 0) for the TNNP (a) and

MonlyV2 (b) model. The MonlyV2 bifurcation structure is similar to that of the MnoSR model. In each panel, the lower continuous curve
gives V of the fixed points. The positions of the Hopf (Hb) and saddle-node (SNb) bifurcations are indicated, as well as the number of unstable
eigenvalues shown by the thickness and color of the curve. The upper thick black line gives the amplitude of the stable cycles. Note that the
scale of the ordinate is not uniform. The box, labeled PD, indicates the interval where successive period doubling of the cycles is observed.
(c–e) Stable cycles of the TNNP model for the IS values indicated by the corresponding letters in (a).

beyond Hb3 [e.g., Figs. 3(c) and 3(d)], followed by high-
amplitude cycles ending at the homoclinic bifurcation [Fig.
3(e)]. There is an abrupt transition between the two oscillatory
regimes. Before Hb3, the low-amplitude cycles go through
a sequence of period doubling before losing stability. On the
other hand, the high-amplitude cycle appears near Hb3 through
a cycle saddle-node bifurcation. Although AUTO was not able
to completely track the unstable low-amplitude cycles and the
branch of unstable high-amplitude cycles created at the cycle
saddle-node bifurcation, the result suggests that these two sets
of unstable solutions are connected.

As we have discussed, removing the SR stabilizes the
system for IS < IS(Hb3), and the instability of the fixed point
between Hb3 and SNb2 then depends on the interaction of
the gate variables of ICaL, IKr , and/or IKs . The upper trace
of Fig. 3(b) shows the evolution of the amplitude of the
stable cycles of the reduced MonlyV2 model. Low-amplitude
cycles start at Hb3, which has become a supercritical Hopf
bifurcation. However, the behavior for increasing IS is very
similar to that of the complete model. The low-amplitude
cycles disappear after a sequence of period doubling, to
be replaced by high-amplitude cycles that appear through a
cycle saddle-node bifurcation and vanish by a homoclinic
bifurcation. Hence, even if the SR is responsible for the
oscillations occurring between Hb3 and Hb4, the complex
cycle bifurcations sequence occurring beyond Hb3 is driven
by the membrane Ca++ and K+ currents. To identify the
process responsible for the low- and high-amplitude cycles,
we studied the effect of GKs and GKr , the conductivity of
the IKr and IKs currents, on the evolution of the cycles in the

MonlyV2 model. Decreasing GKr did not change the nature
of the oscillations. However, lowering GKs by 50% or more
led to the disappearance of both the period-doubling sequence
and the the abrupt jump from low- to large-amplitude os-
cillations. The amplitude of the cycle, still created by the
supercritical Hb3, was rather slowly growing until vanishing
through a homoclinic bifurcation.

In summary, for [K+
o ] = 10mM and GKatp = 0, increasing

the potassium injury current induces an interesting sequence
of stable states: stable-point, large-amplitude cycles, and
complex and then simple low-amplitude oscillations.

B. Effect of Ko

As for the Luo-Rudy model [38], the sole augmentation of
Ko depolarizes the resting state without altering its stability.
However, it can change the bifurcation structure as a function
of IS(K+).

Comparison of Figs. 4(a), 3(a), and 4(b) ([K+
o ] = 5.4, 10,

and 18mM, respectively) shows a depolarization of the fixed
points, as well as a reduction of the extent of the middle branch.
The evolution of the two saddle-node bifurcations (SNb1,
SNb2) fixing the limits of the middle branch can be followed in
Fig. 4(c). As [K+

o ] increases, their separation diminishes until
they merge at [K+

o ] = 22mM. Beyond this value, the V (IS)
curve of the fixed points becomes monotonic decreasing.

A second important transformation is the evolution of
the respective positions of Hb1, Hb2, and SNb1. Hb2, the
SR-driven Hopf bifurcation, always remains around V �
−41 mV. As [K+

o ] increases, SNb1, Hb1, and Hb2 come

011911-5



SYLVAIN BOUCHARD, VINCENT JACQUEMET, AND ALAIN VINET PHYSICAL REVIEW E 83, 011911 (2011)

−8 −6 −4 −2 0
−80

−60

−40

−20

  0

100

Hb2

Hb1

Hb3
Hb4

SNb1

SNb2V
 (

m
v)

I
S
 (pA/pF)

(a)

0
1
2
3
4

−6 −4 −2 0

−40

−20

  0

100

Hb2

Hb5

Hb1'

Hb3
Hb4

SNb1
SNb2

V
 (

m
v)

I
S
 (pA/pF)

(b)

0
2
3
4
5

4 6 8 10 12 14 16 18 20 22 24
−10

−8

−6

−4

−2

0
Hb2

Hb1'

Hb3
Hb4

SNb2SNb1 Hb1

K
o
 (mM)

I S
  (

p
A

/p
F

)

(c)

FIG. 4. (a, b) Fixed points and amplitude of the stable cycles as a function of IS(K+) for GKatp = 0 (a) [K+
o ] = 5.4mM, (b) [K+

o ] = 18mM.
In each panel, the lower continuous curve gives V of the fixed points. The position of the Hopf (Hb) and of the saddle-node (SNb) bifurcations
are indicated, as well as the number of unstable eigenvalues, shown by the thickness and color of the curve. The upper thick black line gives the
amplitude of the stable cycles. Note that the scale of the ordinate is not uniform. (c) Codimension-2 bifurcation diagram, showing the evolution
of the main bifurcations as a function of IS(K+) and [K+

o ].

closer to one another until Hb1 disappears at [K+
o ] = 15mM.

Beyond this value, Hb2 becomes the first bifurcation appearing
on the lower branch of fixed points [e.g., Fig. 4(b)]. Below
[K+

o ] = 15mM, the interval of automaticity extends from Hb4
to ∼Hb1, but from Hb4 to Hb2 for [K+

o ] > 15mM [gray area
in Fig. 4(c)]. From [K+

o ] = 11 to 22mM, multiple secondary
Hopf bifurcations also exist between SNb1 and Hb1 (until
it disappears at [K+

o ] = 15mM) or SNb2 and Hb2 [[K+
o ] >

15mM, e.g., Fig. 4(b)]. All these bifurcations vanish between
[K+

o ] = 16 and 22mM, except for the one labeled HB1′ in
Figs. 4(b) and 4(c).

For all values of [K+
o ], stable small-amplitude oscillations

exist from Hb4 to Hb3. They lose stability through a sequence
of period-doubling bifurcations just beyond Hb3 to be replaced
by large-amplitude cycles. These persist until ∼Hb1, for
[K+

o ] < 15mM, or Hb2, for [K+
o ] > 15mM. Below [K+

o ] =

0 500 1000 1500
−50

0

50

V
 (

m
V

)

t (ms)

FIG. 5. Action potential displaying early-after-depolarization
(EAD)-type reactivation, [K+

o ] = 18mM, Is = 2.2 pA/pF, GKatp = 0.

15mM, the large-amplitude oscillations disappear through a
homoclinic bifurcation, hitting the middle branch of fixed
points between IS(SNb1) and IS(Hb1). Beyond [K+

o ] =
15mM, they rather disappear by hitting the unstable cycles
produced by the subcritical Hb2 bifurcation, which means
that they are created by a cycle saddle-node bifurcation. This
change of scenario is also associated to a transformation
of the large-amplitude cycles, which, close to Hb2, display
waveform with secondary depolarization similar to EAD
(Fig. 5). Increasing [K+

o ] enlarges the width of IS interval
between Hb3 and SNb1 as well as Hb3 and Hb2. As seen
in Figs. 4(a), 3(a), and 4(b), this enlargement comes with an
increase of the jump in amplitude from stable small to large
oscillations and with an extension of the IS interval over which
large oscillations exist.

C. Effect of IKatp

IKatp is a repolarizing current, removing K+ ions from
the cell. Therefore, its opening should protect against injury
current-related ectopic activity. However, unlike IS , IKatp has
a dependency on both V and the potassium Nernst potential,
Ek [Eq. (3)].

Figure 6(d) shows the evolution of the main bifurcations
as a function of GKatp. Figures 4(a) and 6(a)–6(c) (GKatp =
0, 1.2, 1.8, and 2, [K+

o ] = 5.4mM) show a slight gradual
hyperpolarization of the fixed points. However, increasing
GKatp has a similar effect on the middle branch than raising
[K+

o ]: a higher conductance leads to the disappearance of
the branch. Furthermore, both Hb1 and Hb3 disappear such
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FIG. 6. (a, b, and c) Fixed points and amplitude of the stable cycles as a function of IS(K+) for [K+
o ] = 5.4mM and GKatp = 1.2, 1.8, and

2.0. Same representation as that in Figs. 3 and 4(c). (d) Codimension-2 bifurcation diagram, showing the evolution of the main bifurcations as
a function of IS(K+) and GKatp for [K+

o ] = 5.4mM.

that the system finally ends up only with Hb2 and Hb4,
which set the limits between the unstable fixed points and the
stable oscillations. The disappearance of Hb1 and then Hb3 is
preceded by the occurrence of multiple Hopf bifurcations in
tiny [IS,GKatp] intervals of the parameter spaces.

As long as SNb1 exists (GKatp � 1.6), the large stable
oscillations disappear through a homoclinic bifurcation by
hitting the middle branch close to IS(SNb1). When SNb1
and SNb2 disappear, the oscillation rather ends by connecting
with the unstable cycle created at Hb2, which has become a
subcritical Hopf bifurcation, as described for high [K+

o ] in the
previous section. We have also observed that the jump from
small to large oscillation was always occurring close to Hb3,
and that the magnitude of this jump was linked to the extent of
the IS interval between Hb3 and the end of the high-amplitude
oscillation. A similar phenomenon is observed with GKatp.
Since increasing GKatp initially reduces the distance between
Hb3 and the upper limit of automaticity and finally suppresses
Hb3, it decreases and then eliminates the discontinuous
transition between the two modes of oscillations.

D. Volume of automaticity

Globally, hyperkalemia (Fig. 4) decreases the width of the
interval of automaticity, mainly by shifting upward IS(Hb4),
the lower bound of the interval. By decreasing IS(Hb3), it
also enlarges the interval with high-amplitude cycles. On the
other hand, increasing GKatp (Fig. 6) enlarges the interval of
automaticity, but through a linear decrease of both the IS upper
and lower bounds. The same transition from a homoclinic to a
cycle saddle-node bifurcation occurs when the middle branch
of fixed points disappears. However, as Hb3 comes closer to

the upper bound, the interval with a strictly high-amplitude
solution is reduced and disappears with Hb3.

Figure 7 presents the volume of automaticity in the [I S ,
[K+

o ], KKatp] three-dimensional (3D) parameter space. The IS

versus [K+
o ] parabolic upper bound is maintained but is shifted

negatively as GKatp increases. The lower bound is also shifted
negatively, such that the volume of automaticity enlarges.
Since the region is wider at normal [K+

o ] and closed IKatp,
it suggests that the border zone, where [K+

o ] goes from normal
to hyperkalemia and IS(K+) reaches its maximum would be
the more susceptible to generate ectopic activity. The thick
dashed line surrounds the region of the parameter space where

FIG. 7. Volume of automaticity; the thick dashed line encloses
the region where the cycle is created by a homoclinic bifurcation.
Beyond, it appears through a cycle saddle-node bifurcation.
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the cycles appears through a homoclinic bifurcation. It extends
over a smaller [K+

o ] interval as GKatp increases.

IV. DISCUSSION

With parameters at their nominal values, (normal [K+
o ]

and closed IKatp) the TNNP model exhibits stable automatic
activity for IS � −2 pA/pF. Such current amplitude can
be attained in acute ischemia since experimental [39] and
modeling [12] studies have suggested that injury current could
reach a level beyond −3 pA/pF. As seen in Fig. 7, the
increase of [K+

o ], which is known to reach a plateau value of
∼15mM [2,10,11] during the first stage of ischemia, does not
have an important effect on the upper IS boundary of the zone
of automaticity. Similarly, in Figs. 6 and 7, even a three-fold
increase of the IKatp maximum conductivity shifts only the
upper bound of the automatic region by ∼−4 pA/pF for all
[K+

o ] values. Since the time course of [ATP] is much slower
than [K+

o ] and its effect on IKatp is partially counteracted by
[Mg++] accumulation, it is unlikely for the increase of IKatp to
have much effect on the limits of the zone of automaticity,
although it was demonstrated that even a modest increase
can induce an important shortening of the action potential
duration and an increase of the inward current needed to sustain
propagation. [13,14].

The curves giving the voltage of the fixed points as a
function of IS (Figs. 3, 4, and 6) can also be regarded as single-
value functions IS(V ), which incidentally were well fitted
by third-order polynomials. Considering only [K+

o ], bringing
together the curves obtained for the different [K+

o ] provides a
two-dimensional function IS = f(V,[K+

o ]). In a one-, two-, or
three-dimensional monodomain tissue model, IS is the current
injected by the neighbors, corresponding to S−1

v ∇·(D∇V ),
in which D is the tensor of intracellular conductivity and Sv

the cytoplasmic surface to volume ratio. Hence, it is possible
to obtain the stationary voltage distribution associated to any
spatial profile of [K+

o ] by solving the system:

1

Sv

∇· (D∇V ) = f (V,[K+
o (x)]) (12)

with some specified boundary condition on V or its spatial
derivative. The profile of [K+

o ] could be fixed empirically or
based on models of the extracellular medium such as Refs. [10]
or [12].

Alternatively, [K+
o ] can also be expressed as a function of V

and IS to compute the spatial profile of [K+
o ] leading to a given

stationary profile of V . However, there is no simple method to
assess the stability of nonconstant stationary V profiles in the
full reaction-diffusion system including the TNNP model (e.g.,
for review, Ref. [40]). It is possible to somewhat get around
the problem by discretizing the spatial derivatives, obtaining a
high-dimensional ODE system that can be linearized around
any stationary solution to study its stability.

The results of the single-cell stability analysis offer a fast
way to build stationary solutions that can be used either
for further analysis or as initial conditions for numerical
simulations. Stationary profiles lying partially in the region
of isolated cell automaticity would be particularly interest-
ing. Numerous studies have investigated the dynamics of
pacemaker cells surrounded by excitable tissue, particularly

regarding sinus node models (e.g., Refs. [41–45]). The general
conclusion was that coupling conductance, relative pacemaker
size, and oscillation amplitude were all critical for propagation.
Oscillations have also been observed in models of coupled
depolarized and normal cells [38,46] if the flow of axial current
was large enough. In all cases, the single-cell bifurcation
diagrams may also help to understand the stability of the
stationary solutions. Figure 7 shows that any spatial profile
crossing the volume of automaticity will enter and exit in a
region where the isolated cells start to oscillate through either
a homoclinic or a cycle saddle-node bifurcation. This will fix
the gradient of autonomous frequency of the oscillators in the
medium. The trajectory inside the automaticity volume may
either stay in the region with high-amplitude cycles, which
always exists close to the boundary, or transit through the area
with complex or simple low-amplitude autonomous cycles.
These factors, as well as the length of the trajectory inside
the automaticity volume, will also impact the capacity of the
oscillators to synchronize and drive the entire tissue.

Another interesting aspect is the possibility for transient or
bursting-like reactivation [47], caused by current flow during
repolarization. A gradient of action potential durations exists
at the border between the normal and ischemic tissue, which in
repolarization produces currents acting as the injury current.
It may then occur that some cells will transiently cross the
region of automaticity. Since high-amplitude cycles exist near
the border, activation and repolarization could then be seen as
moving the system between a stable fixed point and a stable
cycle, a typical scenario for early-after-depolarization (EAD)
and EAD-like bursting, which could lead to reactivation of
the tissue. After-depolarizations induced by the injury current
have been previously observed both experimentally [48,49]
and in modeling [50].

The present work is far from a comprehensive model of
ischemia even at the single-cell level. Ischemia leads to a
depletion of the metabolism of the cell, which precedes the
interruption of the electron transport chain. This is associated
with a shift to anaerobic glycolysis, producing lactic acid.
In addition, aerobic respiration normally spends some of the
protons that are liberated by the use of ATP. These changes
yield to an acidification that alters the conductivity of different
ion channels. (For a detailed review of ion channels and
cardiac ischemia, see Refs. [2,51]). The TNNP model lacks
a representation of the energy metabolism and PH regulation.
Chen et al. [52] have presented a model including these
mechanisms, which was followed by the work of Michailova
et al. [15]. The latter suggested that the foremost implication
for the action potential was from the IKatp channels, which is
why their formulation of the current was added to the TNNP
model.

The TNNP model is a deterministic lumped compartment
model that ignores the stochasticity of both the gate-controlled
ionic currents and the calcium-release mechanism. Experi-
mental works have highlighted the localized nature of the
ryanodin receptors (RyRs) and CICR (see Refs. [53,54] for
review). RyRs are assembled into arrays of calcium release
units (CRUs) that display stochastic quantized Ca++ release
or calcium sparks. Restrepo et al. [55] have developed a model
of stochastic and spatially distributed CRUs coupled with a
deterministic model of rabbit ventricular cells. This model
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shows how the nature of CRUs can lead to complex dynamics
within the cell [56] and can drive the formation of delay after
repolarization [57]. Rovetti et al. [58], working on alternative
stochastic model of intracellular calcium, have studied how
Ca++ diffusion allows a CRU’s calcium spark to propagate.

The stochasticity of gate-controlled ionic currents has also
been studied. In the 1970s, Lecar et al. [59,60] showed the
implication of the stochastic nature of ion channels for the
depolarization threshold. This led to different representations
of the neuron stochastic processes (for review, see Refs. [61,
62]). Models of cardiac myocytes have also demonstrated that
ion-channel stochasticity might be involved in the generation
of after-depolarization and arrhythmia [63–65].

Further work is needed to build a realistic tissue model
that includes a representation of the perfusion of the external
medium by the blood flow coupled to a mono- or bidomain

description of the tissue, or even a more detailed electro-
diffusive [66,67] or discrete approach [68]. The incorporation
of stochastic localized CRUs within the volume of the cell
requires very fine subcellular discretization. The simulation
of a 3D ischemic tissue at that spatial scale remains beyond
the capability of available computing facilities. Despite these
limitations, this paper shows the complexity of single-cell
dynamics in a deterministic lumped compartment model and
forms a basis for investigating the dynamics of more realistic
structures.

ACKNOWLEDGMENTS

This work was supported by funding from the Natural
Sciences and Engineering Research Council of Canada,
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