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Distribution of interspike intervals estimated from multiple spike trains observed
in a short time window
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Several nonparametric estimators of the probability distribution of interspike intervals are introduced. The
methods are suitable for simultaneous spike trains observed in a time window of length comparable with the
mean interspike interval. This reflects the situation in which a high number of input spike trains converge to a
single cortical neuron that has to react in a relatively short time. The simulation study is performed to compare the
estimators. For that purpose, several types of stationary point processes are considered as the models of neuronal
activity. The methods permit one to estimate the distribution of interspike intervals even if practically none of
them are observed. The Kaplan-Meier estimator seems to be the most flexible and reliable among all studied
methods, but no direct conclusions as to how real neurons work can be deduced from it.
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I. INTRODUCTION

Neurons generate action potentials (also called spikes
or firings) in the process of information transmission. The
statistical properties of the spikes, as they appear in time,
have been intensively studied for more than 50 years using
experimental as well as theoretical approaches. The reason is
an endless effort to understand the code used in the neuronal
information transmission. Many candidates of the code have
been proposed, and nowadays the widely accepted concept
is that there is not a unique code but many of them in
coexistence [1-3]. The most common and most investigated
one is the rate code [4]. It presumes that the information is
encrypted in the frequency of the spikes. All the remaining
codes are classified as the temporal codes [1,2,5-8] despite
that this classification is rather vague. On one hand, there are
codes based on exact timing of the spikes (e.g., latency or
coincidence detectors), and on the other hand there are those
that employ statistical features of spiking (e.g., variability or
randomness), as it seems to be a certain fact that stochastic
principles are behind the neuronal firing.

The firing rate is uniquely related (inversely proportional)
to the mean interspike interval (ISI). Therefore, the next
candidate for the rate code is that based on the variability
of ISIs. It can be documented by the effort to characterize the
neural data by the coefficient of variation (CV, the standard
deviation divided by mean) of ISIs in the experimental as
well as the modeling studies [9-12]. However, despite that
the mean and variance tell us most of the information about
a random variable, there are still some additional properties
for which the complete probability distribution is required, for
example, the higher moments of the distribution or its entropy
[13,14]. The importance of the ISI probability distribution
is thoroughly discussed and experimentally illustrated in
Ref. [15]. Higher moments have been commonly calculated in
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aneuronal context, and histogramming of ISIs to estimate their
distribution has been the basic tool since when the ISIs started
to be recorded [16-18]. To evaluate all these quantities (CV,
higher moments, entropy, ISI distribution) usually requires
long, single-trial data.

We have to stress that the character of information obtained
in experiments in which the spikes are recorded, usually from
a single neuron or from only a few ones, is fundamentally
different from that which a neuron receives from the network
of interconnected neurons. In experiments, a spike train is
recorded for a relatively long period of time, and the properties
of the firing are deduced. If the type of the investigated firing
is transient, like in the stimulated activity, then the length of
the record is replaced by repetitions assuming that these are
statistically identical copies of the same firing behavior. In
in vivo conditions, the neuron receives a large number of spike
trains, up to several thousand, and the received information
has to be extracted in short time intervals. This creates a
discrepancy between what can be read from the experiments
and how real neurons perform. The situation is well described
in Ref. [3] from the rate code point of view. Three situations
are distinguished there:

(1) Rate as a spike count (average over time)

(2) Rate as a spike density (average over several trials)

(3) Rate as a population activity (average over several
neurons)
and it is shown that the rate code can be alternatively
investigated by all three strategies. However, we are not
aware of any systematic comparison of these approaches
for higher statistical characteristics. Masuda and Aihara in
Ref. [19] investigated when trial averaging can be used
as a representative of the network activity. The authors
called the consistency between trial averaging and population
averaging a physiological ergodicity. Nawrot et al. in Ref. [20]
considered the relationship between single neuron spike
train variability (measured by the CV) and variability across
repeated trials (measured by the Fano factor of spike counts).
In our recent paper [21] we showed how to treat the variability
coding (CV estimation) under the population scenario.
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The aim of the present paper is to compare several nonpara-
metric estimators of the cumulative distribution function (cdf)
of ISIs in the population activity. As mentioned, the estimation
of the ISI distribution (density) is one of the most common
tools in the statistical treatment of ISI data. However, we prefer
to estimate the cdf rather than the probability density function
(pdf). Both cdf and pdf carry the same information about the
distribution. The histograms are perhaps so popular because
it is easier to compare them visually with different pdfs than
using the empirical cumulative distribution function (ecdf) for
that purpose. However, the disadvantage of the histogram is
the requirement of fixing the bins or the kernel properties. This
results in the loss of some information that is not lost in the
ecdf. Moreover, in our setting the estimation of the cdf seems
to be more straightforward.

Most of the statistical procedures are based on assumptions
idealizing the reality. The main simplifying assumption of
the population rate code is the independence of spike trains
generated by different neurons. Although this is hardly fully
satisfied, it is generally accepted (see Ref. [5]), and we also
have to take it into account. On the other hand, the population
activity may vary rapidly and reflect changes in the external
conditions nearly instantaneously [22,23]. Therefore, this
population of neurons is observed for a relatively short period
with length of the order of magnitude of the mean ISI, and
consequently the assumption of stationarity is not restrictive.

The scenario with relatively short time observation win-
dows was also considered in Ref. [24], where the effect
on the time-rescaling method was investigated. The author
speaks about short-trial spike train data. In such a situation,
it is possible to derive a truncated version of the true ISI
distribution, and Nawrot er al. in Ref. [20] propose its
estimator. The main difficulty of this setting is the presence
of length bias in the estimators because no ISIs are longer
than the length of the window. Thus, we cannot construct
the estimates for values exceeding the length of the window
without further specific assumptions for the model. We have
to deal with the censored data problem, and some solutions
are offered in this paper.

Currently, it is technically impossible to record simulta-
neously all the incoming spike trains to a target neuron.
Therefore, any illustration of the presented methods with
experimental data is not possible, and only simulations are
available. We investigated several parametric models for ISI
generation, the Poisson process, renewal process, and mixed
Poisson process and verified the methods using them. The
Poisson process is usually considered as too simple of a charac-
terization of neuronal activity, and thus several extensions and
generalizations are used. One of them assumes that the ISIs are
generated by a renewal process [25] with a specific distribution
of ISIs, for example, a gamma distribution [26-30] or an
inverse Gaussian distribution [31-41]. These distributions
reproduce features of real neurons (nonconstant failure rate,
refractoriness) not reflected by the Poisson process. Extension
in another direction retains the complete random character,
but the homogeneity of the firing rate is not satisfied. This
assumption leads to a doubly stochastic Poisson process (Cox
process), which was studied theoretically in Refs. [42,43], and
in the context of computational neuroscience it was used, for
example, in Refs. [44-46].
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II. METHODS AND RESULTS

A. Models

We define a point process N = {X;,i € Z} as a random
locally finite sequence of points (spikes) on the real line
R, assuming --- < X_; < X0 <0< X; < X, <--+;i.e,no
multiple points are allowed (only simple point processes are
considered). The ISIs are denoted by 7; = X;4) — X;, i € Z,
and N(z) is used for the number of spikes in the time interval
[0,2]. Only stationary point processes are investigated; i.e., the
distribution of N is always invariant under translation, and the
mean number of points in a time interval is proportional to its
length, i.e., E[N(t) — N(s)] = A(t — s), s < t. The constant
A > 0 is called the intensity of the point process N. The
stationarity means that the time origin, r = 0, is unrelated to
the ongoing activity. We would like to emphasize that there is
almost surely no event at time 0. More details on the theory of
point processes can be found, e.g., in Refs. [42,47,48].

Our aim is to find an estimator of the ISI distribution. For
stationary renewal processes, ISIs are identically distributed,
and we are interested in their common distribution. In the
nonrenewal case we have to clarify what is meant by the ISI
distribution. For this reason, it is convenient to introduce a
marked point process N,, = {(X;,T;)}. The marks 7; depend
on the point process N = {X;}. In fact, we are in the situation
when a point process is controlled by random marks (see
Ref. [47], p. 133). It follows from stationarity that there
exists a probability distribution Q (called a mark distribution)
such that the mean number of points in the time interval
(s,t] that have marks in a Borel set B is A(t — s)Q(B).
In this context, our main interest is obtaining an estimate
of the mark distribution Q or its corresponding cdf F(¢) =
Q((—o00,1]). Forarandom variable T with cdf F,let u = E(T)
and y = CV(T) = /Var(T)/E(T) denote its mean and CV,
respectively.

The methods introduced here are nonparametric and thus
independent of the model. However, to check their perfor-
mance, a model on which they are tested has to be selected.
For such a purpose we choose the three following models:
the Poisson process, renewal process, and mixed Poisson
process. The first two correspond to the case of homogenous
neuronal population, whereas the last one is a model of the
nonhomogenous neuronal population. In all three cases it is
clear how the cdf F(¢) is defined.

1. Homogenous neuronal population

Poisson point process: This is the simplest point process.
The events occur completely at random with intensity A > 0,
and the ISIs T;, i € Z, are independent copies of a positive
random variable T that has an exponential distribution with
mean 1/A;ie., itscdfis F@) =P(T <t)=1—e,t > 0.
For the Poisson process u = 1/A and y = 1.

The Poisson point process can be generalized in several
directions. One of them leads to renewal processes that
form an important class of point processes. The ISIs 7; are
independent copies of a positive random variable 7" with cdf
F(t). In contrast to the Poisson process, T is not necessarily
exponentially distributed, and the interval to the first spike,
X1, has a different distribution from 7. It is well known
that X; (the so-called forward recurrence time) has a pdf
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fi®) =[1 — F()]/E(T) (see Ref. [25]). We use two specific
distributions for ISIs in this paper.

Renewal process with ISIs following a I'(a,b) distribution:
A gamma distribution forms a flexible and relatively simple
class of distributions that is frequently used in neural modeling
[26-30]. It has two parameters: a shape parameter a > 0 and
rate parameter b > 0. The pdf is

a

_b_—btu—l
f(t)—r(a)e 7,

the mean ISl is u = a/b, and the CVis y = 1/4/a.
Renewal process with ISIs having an inverse Gaussian
distribution IG(m,1/s): The pdf is

N2
exp[—w}, t >0,

2m2st

t >0,

1
@)=
27 st3
the mean ISI is w =m, and the CV is y = . /ms. The
popularity of inverse Gaussian distribution follows from the
fact that it is related to the simplest neuronal model: the perfect
integrate-and-fire neuron [31-41].

2. Nonhomogenous neuronal population

A different generalization of the Poisson process is a doubly
stochastic Poisson process. The simplest type of the doubly
stochastic Poisson process is obtained by considering arandom
variable A (called the driving intensity) such that conditionally
on A = A, N is a Poisson process with intensity A. Such
a point process is referred to as a mixed Poisson process.
The random driving intensity A cannot be observed. From
a single realization, the mixed Poisson process cannot be
distinguished from the Poisson process. For a population of
neurons, this model means that the spike train of its kth neuron
is the Poisson process with intensity A*), which is a realization
of A. Then the ISIs, T® = T | A®), conditionally in the kth
neuron have an exponential distribution with parameter A%,
The unconditional IST for the whole population has the cdf

F@t) =E[P(T <t M)

=E(l—-e?)=1-E( ™), t>0. (D)

It is the mean cdf with respect to the distribution of the driving
intensities.

Mixed Poisson process with driving intensity A distributed
according to the gamma distribution I'(a,b): The cdf is

b a
Ft)y=1- (b_—H>

(a generalized Pareto distribution), the mean ISTis u = b/(a —
1), and the CV is y = /a/(a —2). We selected gamma
for the distribution of the firing rates because it resembles
experimentally obtained histograms of spike counts recorded
from different types of neurons under different conditions,
and, in addition, this choice results in a relatively simple
form of F(t).

The mixed Poisson process is a completely different type
of model compared to the previous ones. It is a step toward
modeling a neural population. The first three models consider
the neural population as totally homogeneous, and spike trains
are statistical copies of the same law. Here, despite that
the individual spike trains are simple, there is an additional
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assumption about the distribution of the spike rates A in the
population.

B. Estimation from a single neuron

We assume that the spikes form a realization of a stationary
point process N observed in a time window [0,A] of length
A > 0. The task corresponds to the situation when a single
spike train is observed for a sufficiently long time to deduce
the ISI distribution. The case of a single spike train is
presented mainly as preparation for the situation when several
spike trains are observed for a relatively short time (see the
next subsection). We suppose that N(A) > 0; otherwise no
reasonable estimator of cdf can be constructed.

A natural candidate for estimating F(¢) is an empirical
cumulative distribution function

N(A)—1

iE _ 1 —T.
F“”‘NEVZ'Z;H“ T) )

for t < A, provided that N(A) > 2. Here H is the Heaviside
step function; i.e., H(x) =1 for x > 0 and H(x) =0 for
x < 0. However, not all information contained in the data is
used in estimator (2), because the interval [Xy(a),A] is not
taken into account, although it gives additional information
about TN(A) = XN(AH—I - XN(A)- We know that TN(A) > A —
Xn(n) = Ba (the backward recurrence time). Therefore, we
define the modified estimator (if N(A) > 2) as

N(A)-1 7
FEM(I) — I(V(—L)FE(I‘)’ < Ba, (3)
FE@), t > Ba

(see also Ref. [48], p. 313). If N(A) = 1, we set FEM(r) = 0
for t < Bp and F EM() = 1 otherwise. Alternatively to Ba,
we can consider time X; to the first spike (the forward
recurrence time). This also gives us additional information
about 7y = X — X since we know that Ty > X;. We have
to stress that it is not appropriate to use both backward and
forward recurrence times simultaneously because it would
introduce distinctive bias into the estimation due to the
strong dependence of these variables. The knowledge of
Xy and ISIs 7;, i = 1,...,N(A) — 1, uniquely determines
Br=A—(X;+ Z,N:(f)_l T;), and, conversely, X; can be
written as the function of Bx and {7;}. As also noted in
Ref. [48], the shortcoming of estimators (2) and (3) is the
length bias. Shorter intervals have a greater chance to be taken
into account, and the intervals larger than A are not observed
at all.

The next possibility for estimation of F(¢) is to use the
so-called reduced sample estimate. In order not to have the
problem with a bounded window we restrict our attention to
the points in the interval [0,A — ¢]. We define

Ry = IS 11X €(0.8 - 1) @
- N(A — 1)

for + < A — X;. Estimators of this type are often used in spa-
tial statistics to eliminate edge effects caused by the bounded
observation window [49]. Estimator (4) is not necessarily
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monotone. Therefore, in order to get a monotone function,
it can be modified:

F™M(1) = sup FR(s),

s<t

t>0. (®)]

Finally, the estimation can also be viewed as a censored data
problem. Among ISIs T, ...,Tn)—1 there are M distinct
values that can be sorted, yielding T(yy < Tip) < - -+ < Tiwy).
In analogy with the classical theory of survival analysis, we
propose the Kaplan-Meier estimator [if N(A) > 2]:

FEM(5) =1 — ]—[ 1—&), (6)

. Si
lIT(,)Sf

where D; = #{j =1,...,N(A) — 1|T; = Tj;)} is the number
of observed ISIs equal to T;, and §; = Zi\’(A) g (T, -
Tiiy) + H(BA — T(;)) is the number of ISIs including a back-
ward recurrence time greater or equal to T(;). If observed ISIs
are all distinct, then M = N(A) — 1 and D; = 1 foralli. Since
the censoring variables are not independent and depend on the
survival times, the optimality of the Kaplan-Meier estimator
is not preserved, but we may hope that it can compete with
estimator (3). The Kaplan-Meier estimator is nondecreasing
and piecewise constant but may not reach 1 (it is always less
or equal to 1). In contrast to estimator (3), it does not have a
jump at Bx.

C. Estimation from multiple neurons

We consider the situation when n independent copies
Ny, ...,N, of a stationary point process N are observed over
the time interval [0, A]. The points of N; are denoted by X fk)
and the ISIs by Ti(k). An example is shown in Fig. 1, where 50
independent realizations of Poisson point process are shown.
The time window of observation is equal to the mean ISI.

The first approach to the estimation from n parallel trains
is to take the average of the separate estimators for each of the
spike trains. In particular, we use

n

FM@) = % DB, @)

k=1

Q) ©)
0 Xg‘l) T1 Xg‘) BA A
time

FIG. 1. Schematic illustration of the problem: 50 independent
Poisson spike trains are observed in a time window of length A = 1.
Mean ISI is u = 1. The maximum number of spikes in one train is
four (neuron no. 5), for 20 neurons there are no observed spikes in the
interval [0,A], and for 18 neurons only one spike is observed. The
firing times for kth neuron are denoted by X; ®and the first completely
observed ISI is T(k) The time elapsed from the last observed spike to
A is denoted as B(Ak).
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where N; means that estimator (3) is applied to the process
Ny. Analogously, we also consider an estimator based on (2)
and given by the formula

_ 1 n .
Fry = -3 Fyo, ®)

k=1

corresponding to the estimator given by (2).

The second possibility is to pool the information from all
parallel observations together. The pooled reduced sample es-
timator and Kaplan-Meier estimator are obtained by analogues
of (4) and (6) in which the numerators and denominators are
replaced by the sums over all N,

TP <n1x® e 0,4 —11)

FR@t) =
" > k1 Ni(A —1)
(k)
fort < A —ming—,_, X, and
n (k)
ERM o\ _ 2 =1 Di
I (t)-l—]"[(l—n—sgk)>, ©)
Ti<t Zk:l i
where Ty < Tp) < -+ < Tyyy are the distinct ISIs from
all replicated observations, D(k)—#{j =1,....,Ne(A) —
T =T} and S = YO HI® - 1) + HBY —

Tiy). Again, we also consider a monotone version of the
reduced sample estimator:

ERM (1) = sup ER(s). (10)

s<t

Despite the fact that there is no suitable pooled counterpart
for the modified ecdf, it is possible to define the pooled
version of the classical ecdf. Figure 2 shows the estimates
of cdf of ISIs from the data presented in Fig. 1. We can see
that neglecting the backward recurrence time deteriorates the
estimate dramatically.

For a mixed Poisson process, it seems natural, as follows
from (1), to estimate the distribution of spike rate A and
insert it into the formula for F(¢). However, such an approach
introduces bias into the estimation. Actually, we do not need
to know the distribution of A in order to estimate E(e™*")
directly. The quantity E(e~%") is closely related to the Laplace
functional; for details about Laplace functionals of point

FIG. 2. The estimates of F(t) for the simulated data shown in
Fig. 1. The estimators given by (7), (9), and (10) are compared with
a true cdf (bold line). Moreover, we also show estimator (8), which
does not use information given by backward recurrence times.
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processes, see Refs. [42,48]. The Laplace functional of a point
process N = {X;,i € Z} is defined as

Ly(g) = E{ exp [ - Zg(x,a“,

where g is a nonnegative measurable function. The Laplace
functional for a stationary Poisson process with intensity A is

Ln(g) =exp |:—A/oo(1 _ eg(x))dxi| )

For a mixed Poisson process we have

Ly(g) = E{ exp |:—A /(] — e—g(x)) dx] }

In particular, for g(x) = —log(l —t/A), x < A,

Ly(g) = E@™™).

Then the distribution function of ISI for the mixed Poisson
process has the form

F(t)=1-E( ™) =1- Ly(g),

and we may estimate Ly(g) by using the empirical Laplace
functional

. 1 Ni (D)
La(g)= - exp [— >, g(Xf’”)} :
k=1

i=l

Itis the maximum likelihood estimator of L y(g); see Ref. [48].
Therefore, we define

. 1 Ni(A) P
F,ILVIP(I) =1- p Zexp Z log (1 — Z)
k=1 i=1
1 ¢ Ni(A)
=1-- 1—— . 11
-2 ( A) (1)

k=1

Since E[Ly(g)] = Ly(g), the estimator EMP (1) is unbiased.
Note that in (11) we do not need the information about firing
times, but the cdf of ISIs is estimated just from observed spike
counts.

D. Estimation of tails

All estimators proposed in the previous section are defined
only for t < A, and now the aim is to extend them for r > A.
Since no information about the ISIs longer than A is available,
we estimate F(¢) on the interval (A,00) by extrapolating with
the exponential tail. The exponential distribution is chosen
because it resembles commonly used distributions of ISIs.

The mean ISI and the cdf of ISI are related by the identity

E(T) = /00[1 — F(t)]dt. (12)
0
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10 1.5 2.0 25 30
t

FIG. 3. The estimators FFM, FXM_ fRM and FE based on the

data shown in Fig. 1, extended to the interval [A,00) using Eq. (15).
The true cdf is depicted by the bold line.

The rate is reciprocal to [E(T') for renewal processes; thus we
can estimate the mean ISI from the data by
— nA
ET)= ————.
Zi:l Ni(A)

We construct our estimator of the cdf so that the relation (12)
holds also for the corresponding estimators:

E(T) = / [1— E,t)]dt. (13)
0
If T has an exponential distribution with intensity A, then
F(t)— F(A
P(T<t|T>A)=M
1— F(A)
=1—e ™D > A (14

i.e., the distribution of T — A conditional on 7 > A is
also exponential with intensity A (memoryless property of
exponential distribution). Using (14), we extend an estimate
ﬁ,,(t) defined for ¢ € [0,A] to the interval (A,00) as

E)=1—[1—EA)]e ™D > A (15

where A is the estimator of A, determined so that condition (13)
holds true. If E(T) < f;'[1 — £,(1)]dt, condition (13) does
not hold true, and therefore we define F,(r) = 1 for t > A.
It is demonstrated in Fig. 3 how the method works for the
situation with the simulated data given in Fig. 1.

III. NUMERICAL RESULTS

The integrated square error is commonly used to judge
the estimation efficiency. We normalize it to eliminate the
influence of the limited observation window, and for the
comparison of the estimators we use the relative inte-
grated square error (RISE). It is defined on the interval
(0,8), 0 <8 < 0o, as the integrated square error divided
by F(8)*:

1
F(5)?

Another possible way to measure the distance between the
estimated and theoretical cdf is the maximum distance,
sup,~q |F(t) — F(t)|, which is used in the Kolmogorov-
Smirnov goodness-of-fit test. Since this quantity considers the
maximal deviation only, it does not appear to be as good as
those distances involving integration over the whole interval.

R(%) =

b
/ [F(t) — F(1)]* dt.
0
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0.02-

R(8)

FIG. 4. The errors R(8) as the function of § for the estimators (7),
(9), and (10), illustrated in Figs. 2 and 3 and evaluated from the data
shown in Fig. 1. The values of R(co) are 0.0029, 0.0088, and 0.0103,
respectively. We do not show R(§) for the ecdf given by (8) because
the values are one order higher, R(co) = 0.0723.

The behavior of R(§) in dependency on § is demonstrated
in Fig. 4 for the case of our simulated data (n = 50, Fig. 1).
The errors R(8) are computed for the estimators (7), (9), and
(10); see Figs. 2 and 3. Because of the fact that the data are
from exponential distribution and the tail is estimated using the
exponential distribution, the error remains practically constant
for § larger than A = 1.

For an illustration of how the estimates depend on the length
of observation in the single-trial experiment, we consider a
spike train observed in a window of length A = 1. To see
the reliability of the methods, we simulated 500 independent
Poisson processes with intensity A. Average RISEs (over 500
repetitions) of the estimators (3), (5), and (6) are shown in
Fig. 5. Starting from 15 mean ISIs within the observation
period (A = 15), there are no visible differences among the
estimators. Obviously, below 10 mean ISIs the estimation
errors dramatically increase.

In the remainder of this paper, we focus on the estima-
tion from multiple spike trains and evaluate the estimators
introduced in Sec. II C. The number of spike trains is always
n = 400. For the simulation study we choose five different
sets of parameters so that u is 0.25, 0.5, 1, 2, or 3. This
choice determines how many complete ISIs fit the sampling
window on average. The CV is y = 1 for the Poisson process.
The value of y has the substantial influence on the shape
of the ISI densities. Thus, we choose y = 0.5 and y = 1.5
for renewal and non-Poisson processes. Note that the mixed
Poisson process is a model for overdispersion, and therefore
y = 11in this case. We choose y = 1.5 for the mixed Poisson
process.

0.05+ :\ 5 EM
\s o KM
= 0.0251 § S
i !sis
gigzizszg;kg
0_ r i -l-l-‘-‘-?-‘-l-.-‘-‘l

5 10 15 20 25
A

FIG. 5. The average R(1) (over 500 simulations) for the estima-
tion of the cdf from a single time window of length A = 1 in the case
of the Poisson process with intensity A. Three different estimators are
compared: FEM (triangles), F*M (circles), and F’M (squares). The
errors decrease with increasing intensity A.
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FIG. 6. The average RISEs R(1) (left column) and R(oc0) (right
column) for four different estimators of the cdf computed from 500
realizations of 400 point processes observed in a window of length 1.
Five different values of wu are considered: 0.25, 0.5, 1, 2, and 3.
For each p the average error is shown for the following estimators:
FPM (triangles), FXM (circles) FRM (squares), and £MP (bullets).
The results are depicted for (a)—(b) the Poisson process, (c)—(d) the
renewal process with gamma distributed ISIs and y = 1.5, (e)—(f) the
renewal process with inverse Gaussian distributed ISIs and y = 1.5,
and (g)—(h) the mixed Poisson processes with y = 1.5.

We have generated n = 400 independent realizations of
the selected point processes in the time window [0,1]. From
simulated data we estimate F(¢) and compute RISEs with
8 =1 and & = oco. This procedure is repeated 500 times
for each choice of model parameters. The sample means of
the computed errors are shown in Fig. 6 for the Poisson
process (y = 1) and three different models with y = 1.5. In
Fig. 7 there are analogous results for two different models
with y = 0.5. The simulations and computations were carried
out in R [50].

Independently of the estimation method, the errors increase
with increasing mean ISI (causing fewer observations in the
window). This result has been expected. The only exception
can be seen in Fig. 6(e). This counterintuitive effect appears
due to a larger bias of estimators F¥™ and FMP in the case of
renewal processes. Furthermore, we can see that the errors are
larger for smaller values of coefficient of variation. This seems
to be a more complex phenomenon. The mean and CV are the
two most common characteristics of the spiking activity. Thus,
it is natural that the quality of the estimators depends on both
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FIG. 7. The average RISEs R(1) (left column) and R(oc0) (right
column) for four different estimators of the cdf computed from 500
realizations of 400 point processes observed in a window of length 1.
Five different values of u are considered: 0.25, 0.5, 1, 2, and 3.
For each p the average error is shown for the following estimators:
FEM (triangles), EXM (circles) FRM (squares), and £MP (bullets).
The results are depicted for (a)—(b) the renewal process with gamma
distributed ISIs and y = 0.5, (c¢)—(d) the renewal process with inverse
Gaussian distributed ISIs and y = 0.5.

of them simultaneously, and finally both the shape and position
of the ISI distribution determine how well it can be estimated
from observations obtained in the limited size window. An
alternative characteristic of the data, probably closely related
to the estimators’ performance, would depend on the value of
F(t) at A, F(A), which is not investigated in this paper.

For the case E(T) =3 and CV(T) = 0.5 there are no
spikes or just one observed in majority of trials because
F(1) = 0.0465 for gamma-distributed ISIsand F (1) = 0.0162
for inverse Gaussian-distributed ISIs. These small values of
F(1) entail large errors R(1), in particular for #"™ and FMP;
see Fig. 7. While R(1) tells us how precisely we estimate
F(t)fort € [0,A], R(c0) contains information about the error
caused by estimating the tail using methods from Sec. IID.
Since we are using exponential distribution to estimate the tail,
the differences between R(1) and R(co) are less pronounced
in the case of the Poisson process and more apparent for other
processes, in particular for estimators 7™ and FMP.

In the case of a Poisson or mixed Poisson process [Fig. 6(a)—
6(b) and 6(g)-6(h)], FMP as well as FFM have the best
performance. However, they are much worse when applied
to the data formed by the renewal process [Figs. 6(c)-6(f) and
7]. In this case the estimators £XM and £RM are preferable. The
Kaplan-Meier estimator is more efficient and has the smallest
deviation from the true cdf. Moreover, the Kaplan-Meier
estimator is quite reliable also for the case of the Poisson
process. Therefore, it seems that the Kaplan-Meier estimator
offers a good compromise.

Finally, let us shortly show the role of the number of spike
trains. Figure 8 illustrates the results of a simulation study for n
Poisson processes with A = 1 observed in a window of length
A = 1. Since the Poisson process is a special case of mixed
Poisson process, the estimator FMP gives the best results. As
expected, the errors of the estimates are decreasing with an
increasing number of spike trains.
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FIG. 8. The errors R(0c0) as the function of the number of records
in the case of the Poisson process with intensity A = 1 observed
in a window of length A = 1. The errors are obtained as averages
over 500 simulations. For better visualization, a log-log plot is used.
Four estimators of F(t) are compared: F™M (triangles), I:”,FM (circles),
EFRM (squares), and £MP (bullets).

IV. CONCLUDING REMARKS

We have considered several nonparametric estimators of
the cdf for ISIs. At first, we introduced the estimators for data
obtained in a single spike train experiment. The methods were
remarkably different only if just a few ISIs were available.
These methods were introduced in order to proceed to the case
of multiple spike trains. In that situation, two basic approaches
were applied: averaging the individual estimators for each
spike train and pooling the information from all spike trains
to evaluate the estimators. The simulations indicated that the
estimators based on the pooled data were better than those
calculated as the means of the separate estimators.

The estimator £M” was constructed under the assumption
of a mixed Poisson process, and it has much lower quality
if this assumption is violated. Other estimators were more
robust. They worked reasonably even if there were no or very
few ISIs observed, provided that the number of spike trains
was sufficiently large. A reduced sample estimator discarded
a lot of information given by the data when estimating F(¢)
for larger . A modified ecdf had poor quality for non-Poisson
renewal processes. In conclusion, in regard to the accuracy,
among all the tested estimators we recommend the Kaplan-
Meier estimator ﬁfM, which gave satisfactory results for all
considered models.

Another important point is the biological plausibility of
the estimators. It was not our aim to speculate how real
neurons could evaluate the distribution of interspike intervals.
However, we can conclude that for a postsynaptic neuron it
would be easier to implement I:”}lvIP because it requires only
the spike counts, and the exact firing times are not needed. In
order to evaluate all other estimators, a neuron would have to
use the exact timing of spikes.
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