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Feigenbaum cascade of discrete breathers in a model of DNA
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We demonstrate that period-doubled discrete breathers appear from the anticontinuum limit of the driven
Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between
subharmonic solutions of the driven Morse oscillator. Subharmonic breathers exist whenever a stability overlap
is present within the Feigenbaum cascade to chaos and therefore an entire cascade of such breathers exists. This
phenomenon is present in any driven lattice where the on-site potential admits subharmonic solutions. In DNA
these breathers may have ramifications for cellular gene expression.
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I. INTRODUCTION

Discrete breathers are spatially localized, temporally pe-
riodic excitations in nonlinear lattices [1]. While discrete
breathers share many traits with solitons, they stand out
because of their localization brought about by a delicate
sensitivity to lattice discreteness. Discrete breathers have
been ubiquitously studied in a wide variety of physical
systems and have been the subject of intense theoretical and
numerical scrutiny [1–5]. Although dissipation and driving are
typically key experimental features, most of the theoretical
and numerical studies have excluded such effects. Only
quite recently have the effects of dissipation and driving
been explicitly considered in numerical studies of discrete
breathers [6].

Biomolecules represent a striking example of systems
where the localization of discrete breathers has long been
considered important, and where dissipation and driving
cannot be ignored. DNA represents a specific biomolecular
system where localization of energy in terms of strand-
separation dynamics is emerging as a governing regulatory
factor [7]. The Peyrard-Bishop-Dauxois (PBD) model of
double-stranded DNA [8,9] is arguably the most successful
model for describing this local pairing-unpairing (breathing)
dynamics, since it reproduces a wide variety of experiments
related to strand-separation dynamics [10]. Of particular
importance is the role this model has played in demonstrating
strong correlations between regulatory activity, such as protein
binding and transcription, and the equilibrium propensity of
double-stranded DNA for local strand separation [11–14].
Recently, this model was augmented to include a monochro-
matic drive in the THz frequency range, and was suggested
to represent a simplified model for DNA dynamics in the
presence of THz radiation [15]. In this recent work [15] the
existence of discrete breathers oscillating at half the frequency
of the drive was numerically observed, and it was argued that
the existence and spontaneous generation of such breathing
states may have significant ramifications for cellular gene
expression. This argument has received some experimental
support [16,17].

Here, we investigate these period-doubled breather exci-
tations further, and show that they appear naturally from the
anticontinuum limit [18] in systems of nonlinear oscillators
where multistability occurs between various stages of the

Feigenbaum period-doubling cascade. Although our study
focuses on the PDB model, the observed phenomena are rather
general and not limited to this specific system of nonlinear
oscillators.

II. DNA MODEL

We consider the PBD model in the following form [15]:

mÿn = − U ′(yn) − W ′(yn+1,yn) − W ′(yn,yn−1)

− mγ ẏn + F0 cos �t, (1)

where the Morse potential

U (yn) = D[exp(−ayn) − 1]2

represents the hydrogen bonding of the complementary bases.
Similarly,

W (yn,yn−1) = k

2
(1 + ρe−β(yn+yn−1)) (yn − yn−1)2

represents the stacking energy between consecutive base pairs.
The parameters D, a, and k in principle depend on the type of
the base pair (A-T or G-C), but for simplicity we will consider
homogeneous DNA in this study. The term mγ ẏn is the drag
caused by the solvent, while F0 cos �t is the (THz) drive [19].
In this system, Eq. (1), the linear resonance frequency is given
as �2

0 = 2Da2/m.
In order to understand how period-doubled breathers

oscillating at half the frequency, �/2, of the drive can
appear at the anticontinuum limit, we first study the nonlinear
response of a single (k = 0) oscillator. For periodic driving
the single oscillator supports periodic solutions with the period
(T = 2π/�) of the drive, and, due to the softness of the Morse
potential, this oscillator also supports solutions with period nT ,
where n is any positive integer. These solutions are most simply
studied at zero dissipation (γ = 0); we will then examine the
modifications resulting when γ �= 0. A Newton method [2]
was used to track the solutions with periods T and 2T .
The Newton procedure was initiated for a very small driving
amplitude (F0 � 0). The response of the system, namely the
amplitude of the period T and 2T solutions, was followed as
|F0| was increased.
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FIG. 1. (Color online) Nonlinear response manifold of a single
oscillator driven at � = 7.0 rad/ps (<�0). The NLRM for the
period-T solutions (solid black line) and the period-doubled solutions
(dashed red line) are shown together with parts of the NLRM for the
period-4T (solid blue line segments connected to BP4) solutions. The
stability of the various solutions is indicated by the letters placed
in the vicinity of the lines (“s” for stable and “u” for unstable).
Important turning points (TPs), bifurcation points (BPs), and crossing
points (CPs) are shown by circles. Finally, the gray areas represent
the chaotic regions that result from the Feigenbaum period-doubling
cascades. The inset shows the behavior near CP1 in the presence of
dissipation. γ = 0 (dashed red line), γ = 0.001 ps−1, γ = 0.01 ps−1,
and γ = 0.1 ps−1.

A. Soft period-doubled breathers: � < �0

In the above fashion we constructed the nonlinear response
manifolds (NLRMs) [20] depicted for � = 7 rad/ps in
Fig. 1. The NLRM for the oscillations with period T is shown
by the solid black line, while the dashed red line represents the
NLRM for the period-doubled (2T ) solutions. Finally, the blue
line segments (connected to BP4) represent parts of the NLRM
for the period 4T solutions. The stability of the solutions can
be obtained by Floquet stability analysis [2] and is indicated
by the letters “s” (stable) and “u” (unstable) placed adjacent
to the respective NLRMs. The stability of a given solution
changes at the turning points (TPs), bifurcation points (BPs),
or at the crossing points (CPs) of the NLRM. Since the Morse
potential is asymmetric with respect to y = 0, the NLRMs lack
symmetry with respect to a π -phase shift (±F0) of the drive.
However, an equivalence between the NLRM branches for F0

and −F0 remains, as is indicated by our labeling of the TPs,
BPs, and CPs.

From Fig. 1 it can be noticed that, for a region of small
positive force amplitudes F0, the period-T solution is stable
up to TP1 (F0 � ±14 pN) and so is the period-doubled solution
between CP2 (F0 = 0) and BP3 (F0 � 21.5 pN). This means
that in the region 0 < F0 < 14 pN both solutions are stable. A
similar stability overlap can be observed for the regions F0 = 0
to TP1 (period T , F0 < 0) and BP4 to BP1 (period doubled)
when � < 5.5 rad/ps (not shown in Fig. 1). The ramifications
of these stability overlaps for the construction of discrete
breathers is now clear. In the anticontinuum limit (k = 0) of
N driven oscillators, we can construct solutions where N − 1
of the oscillators perform stable period-T oscillations, while
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FIG. 2. (Color online) Illustration of period-doubled breathers.
Shown are the central site y0 of the breather (solid red lines)
together with the closest neighbor sites y1 (dashed blue lines) and
y2 (dashed-dotted green lines). For clarity, panel (a) shows 10y1

and 10y2, respectively. Panel (a) shows the period-doubled breather
corresponding to the stability overlap shown in Fig. 1 (� = 7 rad/ps
and γ = 0) for F0 = 7.06 pN and k = 0.02 eV Å

−2
. Similarly,

panel (b) shows a period-doubled breather for � = 5.35 rad/ps,
γ = 1 ps−1, F0 = 115.6 pN, and k = 0.0065 eV Å

−2
. The insets

shows the full spatiotemporal evolution of the period-doubled
breathers.

the remaining oscillator resides stably in the period-doubled
state. Performing standard numerical continuation [21] of this
state to finite values of the coupling k will retain the stability
of the solution and lead to a stable period-doubled discrete
breather solution. Examples of such period-doubled breathers
arising in each of the two described stability overlap regions
are shown in Fig. 2. Figure 2(a) shows the period-doubled
breather in the stability overlap region for F0 > 0. It is clearly
seen that the breather, which extends over five lattice sites,
performs oscillations at exactly half the frequency of the
background. The background is frequency locked to the drive
at frequency �. Similarly, Fig. 2(b) shows the period-doubled
breather that exists in the stability overlap region for F0 < 0.
The breather is more localized and its dynamical behavior is
more complex. This breather roughly follows the background
period-T oscillations and the period doubling occurs as a
modulation of the breathing amplitude. For weak driving the
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dynamics must be very similar to the undriven case, as is
seen in Fig. 2(a). At stronger driving the dynamics is more
dominated by the drive and becomes more intricate, as in the
case of Fig. 2(b).

It should be noted that, in the absence of a stability
overlap, unstable period-doubled breathers can of course still
be constructed. An interesting example of this occurs for F0 <

23.3 nN, where Fig. 1 shows that the period-doubled solution
is stable while the period-T solution is unstable. Close to BP2

the period-T solution is very weakly unstable (the Floquet
exponent is ∼1.04), so that a weakly unstable “dark” breather
can be constructed in this region by positioning N − 1 of the
oscillators in the period-doubled states while the remaining
oscillator is in the period-T state. We have found that numerical
continuation of this state produces a weakly unstable “dark”
breather that can be sustained for tens of periods.

The scenario described above generally holds also when
dissipation is taken into account. The modifications to the
NLRM caused by dissipation is thoroughly discussed for a
different system of nonlinear equations in Ref. [6]. The main
effect of dissipation occurs at the crossing points CP1 and
CP2. For γ = 0 the period-T solutions are in phase with the
drive when the response amplitude y0 is below CP1, but it is in
antiphase (π -phase shifted) when y0 is above CP1. Similarly,
the period-doubled solutions experience a π -phase shift at CP2.
The introduction of dissipation creates an additional phase
shift between the drive and the response everywhere along
the NLRM. This additional phase shift is largest close to the
crossing points and causes the solution to disappear close to
the crossing points (small |F0|). This effect is illustrated in
the inset of Fig. 1 for the CP2 crossing point. It is clear that
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FIG. 3. (Color online) Nonlinear response manifold of a single
oscillator driven at � = 13.194 rad/ps (>�0). The NLRM for the
period-T solution (solid black line) and the period-doubled solutions
(dashed red line) are shown together with parts of the NLRM for
the period-4T (blue line segments) solutions. The stability of the
solutions is indicated by the letters placed in the vicinity of the
lines (“s” for stable and “u” for unstable). Important turning points,
bifurcation points, and crossing points are shown by circles. Finally,
the gray areas represent the chaotic regions that result from the
Feigenbaum period-doubling cascades. A stability overlap can be
observed in the vicinity of F0 = 0. The inset shows a magnified
version of the area between the chaotic regions.

for weak dissipation the described stability scenario persists.
However, as the dissipation increases, the stability overlap
region is eventually lost and with it the stable period-doubled
breathers.

B. Hard period-doubled breathers: � > �0

Figure 3 shows the NLRM when the frequency of the
drive (� = 13.194 rad/ps) is larger than the linear resonance
frequency of the on-site potential. In this case only a single,
but larger, stability overlap between the period-T solution and
the period-doubled solution exists in the vicinity of F0 = 0.
Again, the period-doubled breathers can be generated in this
overlap region. It is noteworthy that for soft potentials, such
as the Morse potential, ordinary period-T breathers cannot
exist above the linear �0 resonance frequency: This frequency
region can only be accessed for hard potentials.
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FIG. 4. (Color online) Illustration of period-doubled breathers.
Shown are the central site y0 of the breather (solid red lines)
together with the closest neighbor sites y1 (dashed blue lines), and
y2 (dashed-dotted green lines). Panel (a) shows the period-doubled
breather corresponding to the stability overlap shown in Fig. 1 (� =
13.194 rad/ps and γ = 0) for F0 = 160 pN and k = 0.025 eV Å

−2
.

Panel (b) demonstrates the effects of dissipation � = 13.194 rad/ps,
γ = 1 ps−1, F0 = 209 pN, and k = 0.025 eV Å

−2
. The insets show

the full spatiotemporal evolution of the period-doubled breathers.
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Two examples of the period-doubled breathers for � =
13.194 rad/ps are given in Fig. 4. Figure 4(a) shows a period-
doubled breather in a dissipationless (γ = 0) system, and it is
clear that the breather sites oscillate at half the frequency of the
background, which is frequency locked to the drive. Similarly,
Fig. 4(b) shows a period-doubled breather at strong dissipation
γ = 1 ps−1. The phase shift introduced by the dissipation is
apparent.

III. DISCUSSION AND CONCLUSIONS

We have demonstrated the existence of a new kind of
subharmonic discrete breather in driven lattices of coupled
nonlinear oscillators. The phenomenon was illustrated within
the driven PBD model, which consists of a lattice of coupled
Morse oscillators. Specifically, we have shown that these
breathers appear naturally from the anticontinuum limit in a
fashion similar to familiar discrete breathers. We show that the
subharmonic breathers arise from a stability overlap between
subharmonic solutions of the single oscillator. This new kind of
breather exists even when the frequency of the drive is above
the linear resonance frequency of the soft on-site potential.
Ordinary breather solutions do not exist in such cases for soft
potentials.

Although we focused here on the stability overlap between
the frequency locked solution and the period-doubled solution,
it is clear that in the presence of a stability overlap the

phenomena can occur between any of the subharmonic
solutions in the Feigenbaum cascade. We have explicitly
verified this by constructing stable periodic-nT (n = 3,4,5,
and 6) breathers for small F0 and k, in the case where � > �0.
In this fashion a cascade of subharmonic discrete breathers
exists. The phenomenon is not specific to the system we
have studied: It is present in any driven lattice of nonlinear
oscillators where the on-site potential admits subharmonic
solutions. The subharmonic breathers also exist in the presence
of dissipation; it is, however, important to note that in this case
the cascade is truncated.

The existence of the subharmonic breathers in DNA is
potentially very important because this suggests that electro-
magnetic THz radiation can lead to the spontaneous generation
of stable local strand separation in double-stranded DNA, and
thereby could lead to modification in cellular gene expression
by affecting transcription and other processes. Such effects
have recently been experimentally observed [16,17]. Future
extensions of our approach will include effects of gene
sequence and other disorder, as well as temperature.
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