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Correlation times in stochastic equations with delayed feedback and multiplicative noise
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We obtain the characteristic correlation time associated with a model stochastic differential equation that
includes the normal form of a pitchfork bifurcation and delayed feedback. In particular, the validity of the
common assumption of statistical independence between the state at time t and that at t − τ , where τ is the delay
time, is examined. We find that the correlation time diverges at the model’s bifurcation line, thus signaling a sharp
bifurcation threshold, and the failure of statistical independence near threshold. We determine the correlation time
both by numerical integration of the governing equation, and analytically in the limit of small τ . The correlation
time T diverges as T ∼ a−1, where a is the control parameter so that a = 0 is the bifurcation threshold. The
small-τ expansion correctly predicts the location of the bifurcation threshold, but there are systematic deviations
in the magnitude of the correlation time.
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I. INTRODUCTION

The correlation time of a nonlinear stochastic differential
equation that includes delayed feedback and multiplicative
noise is studied near its bifurcation line away from the
trivial state. We focus on a nonlinear model of a stochastic
differential equation that models a feedback loop motif of
gene regulation network. We show that the correlation time
diverges at threshold, consistent with a sharp bifurcation. An
approximate expression for the correlation time valid for small
time delay is provided that correctly predicts the location of
the bifurcation threshold. However, the value of the analytical
prediction of the correlation time does not agree with our
numerical determination for finite τ .

Analytic results describing stochastic differential delay
equations are rare due to their non-Markovian nature. The
assumption of independence between the state variable at time
t and its value at time t − τ , where τ is the delay, is thus an
often used approximation. For example, this decomposition
is used to obtain an analytic solution to a master equation
modeling protein degradation in [1]. This assumption of
independence is valid in a region of parameter space in which
the correlation time of the dynamical variables is smaller
than other time scales in the system arising from the delay.
Indeed, for sufficiently large values of the delay, one can
safely assume that the state variable has lost memory of its
past value and any delay term might act simply as another
source of noise. We note, however, that close to a bifurcation
the correlation time may diverge. The resulting non-Markovian
nature of the model must be taken into account for any analysis
thereafter as the state at time t is correlated with the state at
time t − τ .

We focus in this paper on the normal form for a pitchfork
bifurcation augmented with multiplicative or parametric noise
and delay as described in [2]. The dynamical variable x(t)
obeys

ẋ(t) = ax(t) + bx(t − τ ) − x3(t) + x(t)ξ (t), (1)

where the constant a plays the role of a control parameter, b

is the intensity of a feedback loop of delay τ > 0, and ξ (t) is
a white, Gaussian noise with mean 〈ξ (t)〉 = 0 and correlation

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). The initial condition is a function
φ(t) specified on t = [−τ,0]. Equation (1) is understood
under the Stratonovich interpretation of stochastic calculus [3].
This interpretation is appropriate when white noise can be
considered as the limiting case of the colored noise actually
existing in the system [4]. This observation has been confirmed
experimentally [5].

The bifurcation diagram of Eq. (1) has been determined
numerically in [2]. Two bifurcation lines were obtained: a
pitchfork bifurcation and a Hopf bifurcation. It was shown
that the location of the bifurcation threshold depends on the
intensity of the parametric noise. Analytical approximations
for the bifurcation lines have been given in [6] under
the assumption that the delay time is small compared to
other characteristic time scales of the system. The pitchfork
bifurcation line separates exponentially decaying and growing
solutions when bτ > −1. On the other hand, delayed feedback
induces oscillations and the bifurcation is of the Hopf type
when bτ < −1. The two bifurcation lines intersect at (a,b) =
(1/τ − D, − 1/τ ). We found that for small time delay the
solution x = 0 is stable when

a < −b[1 + τ (b + D)](1 + bτ )−1 (2)

for the pitchfork branch (bτ > −1), and

τ
√

b2 − (a + D)2 < cos−1[−(a + D)/b] (3)

for the Hopf branch (bτ < −1). Exponential growth saturates
due to nonlinearities.

The bifurcation diagram of Eq. (1) without delay (b = 0) is
known [7–9]. The stochastic threshold is located at ac = 0, at
which point the stationary distribution function changes from a
delta function at the origin to a power law with an exponential
cutoff at large x. The correlation function of the linear
counterpart of Eq. (1) but with additive noise is known [10,11].
The correlation function and correlation time of Eq. (1) without
delayed feedback were first studied by Stratonovich [3] by
decoupling the correlation and approximating the higher-order
correlation functions Cn(t ′) = 〈xn−1(t + t ′)x(t)〉 − 〈xn−1〉〈x〉
in terms of the usual correlation function C2(t ′). The corre-
lation function and correlation time were further investigated
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numerically in [12–14]. The analytical limit of the correlation
time at small and large control parameter a are known [15–17].
Furthermore, an analytical expression for the correlation
function and correlation time is provided in [17] by using
a continued matrix method. This is the method that we have
employed in our study and we refer to it as the Jung-Risken
theory. The latter has been generalized in [18] for stochastic
differential equations with colored noise. The derivation is
summarized next in an attempt to use this theory by assuming
that the time delay is small in Eq. (1).

II. CORRELATION TIME

The correlation time of a stochastic process in its stationary
state can be defined as the area under the correlation function
normalized by the variance [19],

T = 1

C(0)

∫ ∞

0
C(t ′) dt ′, (4)

where C(t ′) is the correlation function,

C(t ′) = 〈�x(t + t ′)�x(t)〉, (5)

and where �x = x − 〈x〉. The Jung-Risken theory demon-
strates that, given the Markovian process,

ẋ(t) = h(x) + g(x)ξ (t), (6)

the correlation time of x can equivalently be written as [17]

T = 1

C(0)

∫ ∞

0

f 2(x ′)
g2(x ′)ps(x ′)

dx ′, (7)

where

f (x) = −
∫ x

0
�x ′ps(x

′) dx ′, (8)

g(x) is the coefficient of the noise of Eq. (6), and
ps(x) is its corresponding stationary probability distribution
function.

To apply the Jung-Risken theory to Eq. (1), we need to
find the stationary probability distribution function from the
Fokker-Planck equation associated with Eq. (1) [2],

∂

∂t
p(x,t) = − ∂

∂x
{[(a + D)x + b〈xτ |x〉 − x3]p(x,t)}

+D
∂2

∂x2
[x2p(x,t)]. (9)

Equation (9) includes a non-Markovian term, the so-called
conditional drift,

〈xτ |x〉 =
∫ ∞

0
xτp(xτ |x) dxτ . (10)

To our knowledge, no analytical methods are known to solve
this integral. An approximate expression has been given in [6]
in the limit of small delay. We directly integrate Eq. (1)
on the time interval t ′ ∈ [t − τ,t] by using the Stratonovich
interpretation of stochastic calculus. The same expression has
been obtained from a Taylor expansion of the conditional
probability distribution function p(xτ ,t − τ |x,t) in [2], based
on methods introduced in [20,21] under the Ito interpretation
of stochastic differential equation. It can also be obtained
from a Taylor expansion of the stochastic process defined by

ẋ(t,t − τ ) [22,23]. All methods assume that the time delay is
small and lead to, under stationary conditions,

〈xτ |x〉 = [1 + τ (a + b + D)]x − τx3. (11)

Equation (11) together with Eq. (9) gives a closed equation for
p(x,t),

∂

∂t
p(x,t) = − ∂

∂x
{[(σ + D)x − γ x3]p(x,t)}

+D
∂2

∂x2
[x2p(x,t)], (12)

where σ = a + b[1 + τ (a + b + D)] and γ = (1 + bτ ). The
approximate Fokker-Planck equation [Eq. (12)] is thus Marko-
vian and known results of the Jung-Risken theory can be
applied. In particular, the stationary probability distribution
function of x ∈ [0,∞] satisfies ṗs(x) = 0 and is found to be

ps(x) = 2(βγ )βσ�−1(βσ )|x|2βσ−1e−βγ x2
, (13)

where β = (2D)−1, and where � is the gamma function. In
those terms, the stochastic threshold is located at σc = 0.
Furthermore, the nth moment of the state variable is

〈xn〉 = (βγ )−n/2�−1(βσ )�(βσ + n/2). (14)

Substitute Eq. (13) into Eq. (8) so that

f (x) = 〈x〉[P (βσ,βγ x2) − P (βσ + 1/2,βγ x2)], (15)

where P (η,ω) is the incomplete gamma function defined by

P (η,ω) = �−1(η)
∫ ω

0
qη−1e−qdq. (16)

Using the n = 1 and n = 2 moments of Eq. (14), together with
g(x) = D1/2x and Eq. (15), the correlation time corresponding
to the random process described by Eq. (12) is

T = β(βγ )−βσ �(βσ + 1)�2(βσ + 1/2)

�2(βσ + 1) − (βσ )�2(βσ + 1/2)

×
∫ ∞

0

[P (βσ,βγ x2) − P (βσ + 1/2,βγ x2)]2

|x|2βσ+1e−βγ x2 dx.

(17)

Equation (17) has to be evaluated numerically. Because of
the singularity at x = 0, we perform the change of variable
x = exp(z) prior to integration. The calculation has been
verified by using several lower bound zmin and upper bound
zmax; no significant change was observed. The incomplete
gamma function is calculated by using an ordinary continued
fraction representation [24]. The limits of Eq. (17) are known
[15–17]. At large σ or small D, the correlation time can be
expanded in a power series,

T (σ,D) = 1

2σ
+ 7D

16σ 2
+ 9D2

64σ 3
+ O

[
D3

σ 4

]
, (18)

whereas for small σ or large D,

T (σ,D) = π

2σ
− A

D
+ O

[
σ

D2

]
, (19)
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FIG. 1. Correlation time T (σ ) as a function of the parameter
σ = a + b[1 + τ (a + b + D)] as calculated from Eq. (17) at fixed
b = 0 and D = 1 (symbols). The dotted curve is the large-σ limit
[Eq. (18)] and the dashed curve is the limit for small σ [Eq. (19)].
The solid curve is the Padé approximation [Eq. (20)].

where A = 1.5421 . . .. A Padé approximation to Eq. (17) has
also been proposed in [17]. The expression is

T (σ,D) = 1

2σ
+ 0.6037Dσ + 1.0708D2

1.38σ 3 + 2.004Dσ 2 + D2σ
. (20)

The correlation time T obtained from the numerical integration
of Eq. (17) is shown in Fig. 1, together with its asymptotic
limits of small and large σ . We also show the Padé interpolant.
Equation (20) is expected to be valid in the limit of small time
delay. We will compare this result with the correlation time
computed from a direct numerical solution of Eq. (1) in the
next section.

III. NUMERICAL EVALUATION OF
THE CORRELATION TIME

The correlation function and correlation time are deter-
mined numerically with finite feedback, and compared to
the approximation that leads to a Jung-Risken determination.
Equation (1) is numerically integrated by using a second-
order integration algorithm that includes delayed feedback as
derived in [2]. The initial condition is a constant function
in [−τ,0] for each trajectory, with the constant being drawn
from a Gaussian distribution of zero mean and variance 1. The
time step used in the numerical integration is �t = 0.01. The
correlation function of the dynamical variable x,

C(t ′) = 〈x(t + t ′)x(t)〉 − 〈x〉2, (21)

is computed in the time interval t ∈ [tmin,tmax], with tmin = 300
and tmax = 1400. Trajectories have reached a stationary state in
this time interval. Note that the lower bound tmin is larger than
the largest correlation time that we have calculated. For a given
trajectory, the correlation function is averaged over N = 104

values of x(ti), with ti = {tmin, . . . ,tmin + N�t}, at fixed time
lag t ′. The correlation function is constructed for a time lag
t ′ ∈ [0,L], where L is the maximum time displacement. The
ensemble average is further constructed by considering 106

independent trajectories. The first moment of the state variable
x in Eq. (21) is calculated in the time interval t ∈ [tmin,tmin +
L + N�t]. The correlation time is the area under the curve of
the normalized correlation function. It is calculated according
to Eq. (4) by using an integration time step of �t ′ = 0.01.

Close to threshold, the correlation time is expected to
diverge. However, due to the finite integration time window
involved in the numerical integration, a true divergence cannot
occur. In order to characterize the divergence given the finite
size of the integration domain, we repeat the calculation of the
correlation function for several values of the maximum time
lag L = {20,50,100,200,500}. The procedure is repeated for
different values of the control parameter a close to threshold.
In what follows, we present the results with delayed feedback
and compare them to the known case of no delay (b = 0). The
calculations are also repeated at different values of the time
delay τ . In this paper, we limit our analysis to the pitchfork
branch of Eq. (1) (bτ > −1).

A. No delay (b = 0)

The correlation time without delay (b = 0) as calculated
from the normalized correlation function is shown in Fig. 2.
Away from the bifurcation threshold (σ � σc = 0), the nor-
malized correlation function decays rapidly to zero. For large
values of the control parameter, trajectories quickly saturate
and fluctuate around their equilibrium value. The correlation
time is small for this range of parameters and agrees well
with the analytical prediction [Eq. (17)]. The decay of the
normalized correlation function slows down as the bifurcation
threshold is approached (σ ∼ σc). In this range, one would
have to integrate the normalized correlation function over
a very long time lag window to approach the analytical
prediction. We use instead scaling theory to overcome this
limitation and to characterize the divergence of the correlation
time.
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FIG. 2. Correlation time T (σ ) as a function of the parameter σ

without delayed feedback (b = 0) at fixed D = 0.3. The symbols are
the numerically determined correlation times for several maximum
time lags L while the solid line is the Padé approximation [Eq. (20)].
The stochastic bifurcation is located at σc = 0.
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FIG. 3. Correlation time scaled by a power law of the maximum
time lag T (σ )L−μ as a function of the parameter σ also scaled by a
power law of the maximum time lag σLμ without delayed feedback
(b = 0) at fixed D = 0.3. The inset shows the correlation time T (L)
evaluated at threshold (σc = 0) as a function of the maximum time
lag L for the same set of parameters. The solid curve is T (L) =
2.69L0.443. We use this linear regression to scale the correlation time,
which is evaluated at μ = 0.44, the best estimate for the exponent in
the limit L → ∞.

The correlation time is expected to diverge at threshold
(σ ∼ σc) for L → ∞. We therefore write for finite L,

T (σ,L) = LμT̃ (σLν). (22)

For finite σ and taking the limit L → ∞, we have that
T ∼ σ−μ/ν if the scaling function is regular. Close to threshold,
Eq. (19) predicts that the correlation time diverges with
exponent μ/ν = 1. We show in Fig. 3 the scaled correlation
time assuming only one unknown exponent for L ∈ [50,900].
Furthermore, the value of the exponent μ is determined from
the dependence of the correlation time on the maximum
time lag evaluated at threshold (σc = 0). The extrapolation
is shown in the inset of Fig. 3. The correlation time appears
to follow a power law with the maximum time lag. Our best
estimate for the exponent is μ = ν = 0.44. It is this value
of the exponent that has been used to scale the correlation
time according to Eq. (22), shown in Fig. 3. With this
exponent, the curves of the correlation time calculated at
different maximum time lag collapse to each other close to
the bifurcation threshold. We conclude that the correlation
time follows a power law divergence close to threshold, with
exponent T ∼ σ−1. Therefore, the stochastic bifurcation in the
absence of delay is sharp.

B. Delayed feedback

A similar analysis to that presented above is repeated for
the case with delay (b 
= 0). Delayed feedback induces the
presence of additional peaks in the normalized correlation
function of the dynamical variable x as shown in Fig. 4. These
peaks are a direct consequence of the correlation between the
state of x at times t and t − τ introduced by the delay. The
correlation time with delayed feedback is calculated from a
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FIG. 4. Correlation function C(t ′) normalized by the variance
C(0) of the dynamical variable x in its stationary state as a function
of the time lag t ′ at fixed b = 2, D = 0.3, and τ = 1, as the control
parameter a is varied. The bifurcation threshold is located at ac =
−2.2 for this set of parameters. Time delay induces peaks in the
correlation function because the state of the dynamical variable x at
time t is correlated with its value at time t − τ .

direct numerical integration of the governing equations and is
shown in Fig. 5 for different values of L together with the Padé
approximation given in Eq. (20). The analytical determination
of the threshold agrees well with the location of the maximum
of T in the figure. As was the case for no delay (b = 0),
the maximum of the numerically determined correlation time
increases with L. The scaling form [Eq. (22)] is tested again
with the same condition μ = ν that follows from our analytic
results for small τ . We show our scaling results with σc = 0 or
ac = −2.2 in Fig. 6. We further estimate μ ≈ 0.53 by fitting
the correlation time as a function of L ∈ [50,900] (inset in the
figure). This value of the exponent is quite close to the case of
no delay. The correlation time curves calculated for different
values of L collapse close to the bifurcation threshold as shown
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FIG. 5. Correlation time T (a) as a function of the control param-
eter a with b = 2, τ = 1, and D = 0.3. Results for several maximum
time lags L are shown. The solid line is the Padé approximation
[Eq. (20)]. For those parameters, the bifurcation threshold is located
at ac = −2.2, in agreement with the maximum of the correlation time
and the divergence of the Padé approximation.
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FIG. 6. Correlation time scaled by a power law of the maximum
time lag T (σ )L−μ as a function of the parameter σ also scaled by a
power law of the maximum time lag σLμ with b = 2, τ = 1, D = 0.3,
and with exponent μ = 0.53. The stochastic bifurcation threshold is
located at σc = 0. The inset shows the correlation time T (L) evaluated
at threshold as a function of the maximum time lag L for the same
set of parameters. The solid curve is T (L) = 3.60L0.534.

in Fig. 6. We therefore conclude that the correlation time
diverges as T ∼ σ−1. Interestingly, time delay does not change
the nature of the bifurcation or the value of the exponents. The
bifurcation remains sharp as was suggested in [2].

We finally note that the value of the correlation time
predicted from Eq. (17) does not agree with our numerical
determination, only the location of the threshold. According
to our analytic prediction, the correlation time depends on
delay τ through σ . This is not the case for our numerical
results as T has a separate dependence on τ as shown in
Fig. 7. Delayed feedback induces correlations between the
state of the dynamical variable x at times t and t − τ and
those correlations affect the value of the normalized correlation
function. Those additional correlations are not included in the
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FIG. 7. Correlation time T (σ ) as a function of σ = a + b[1 +
τ (a + b + D)] with b = 2 and D = 0.3 for different values of the
time delay τ . The solid curve is the Padé approximation [Eq. (20)].
The magnitude of the numerically determined correlation time at
τ 
= 0 disagrees with the Padé approximation at the same parameters
due to the non-Markovian nature of the delay stochastic differential
equation under study.

Jung-Risken theory applied to small delay because it assumes
that the transition probabilities are Markovian.
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