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Pattern-induced thermal unbinding of filaments
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Substrate patterning is shown to be a convenient method to control the adhesion of filaments. The pattern
not only permits a control of adhesion, it also leads to an unbinding transition at finite temperatures. The
dimensionality of transverse fluctuations controls the continuity of the transition, and in some cases, re-entrant
binding is observed as temperature is increased. Unbinding on patterns is found to be easier to observe than
unbinding on flat substrates. Finally, experimental conditions under which unbinding could be observable are
discussed.
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I. INTRODUCTION

Recent progress in surface topographical patterning now
allows one to design patterns with periodicities around 100 nm.
Novel techniques based on self-organization may allow one
to reach even smaller length scales [1,2]. This mastering of
surface patterning opens novel possibilities for controlling
adhesion of various objects, such as liquid drops [3], solid
clusters [4], membranes [5], and biological cells [6]. In the
following, the consequences of surface patterning on filament
adhesion are discussed.

In the past decades, the adhesion of polymers and filaments
on flat substrates has given rise to a considerable literature.
Among pioneering theoretical studies, the works of Rubin
[7], de Gennes [8], and Wiegel [9] have pointed out the
existence of an unbinding transition for flexible polymers on
flat substrates at a temperature Tf . Below Tf the polymer sticks
to the substrate, while above Tf it unbinds. Following these
early works, several improvements of these models have been
performed, such as better treatment of overhangs [10,11].

Recently, nanophysics and biophysics have brought atten-
tion to the so-called semiflexible filaments, such as carbon
nanotubes or actin filaments, which exhibit a large bending
rigidity. Semiflexible filaments also exhibit an unbinding
transition on flat substrates, which may be continuous or
discontinuous depending on the dimensionality of transverse
fluctuations [12–14].

Although there has been some work considering the role
of the corrugation of the potential in the literature [15,16],
there is, to our knowledge, no study showing an unbinding
transition induced by the pattern. In the following, it is shown
that filament adhesion can be controlled by surface patterning.
A suitable choice of patterns may not only tune the adhesion
strength, it may also completely forbid adhesion by inducing
an unbinding transition which differs qualitatively from the
transition on flat substrates.

First, we shall recall the nontrivial zero-temperature limit
experienced by filaments on patterns [17]. A formulation will
then be established in the presence of a nonzero temperature.
The resulting model will be solved for a sinusoidal substrate
profile with a combination of numerical and analytical tools. A
single transition line is shown to emerge at finite temperatures,
which accounts for a pattern-induced unbinding transition.
Finally, the relevance of this transition for actin adhesion on
parallel grooves, and for DNA adhesion along atomic steps
[18,19] will be discussed.

II. ZERO-TEMPERATURE LIMIT

Before including the consequences of thermal fluctuations,
let us consider the zero-temperature limit, where the filament
configurations would be those which minimize the energy E0

of the filament. For a filament along the x axis, with transverse
displacements h(x) and a substrate of height hs(x), one has in
the small slope limit

E0 =
∫

dx
C

2
[∂xxh(x)]2 −

∫
dx γ0�s[h(x)], (1)

where C is the bending modulus and γ0 is the adhesion energy
per unit length. The interaction between the filament and the
substrate is a δ-function attraction at the surface of the sub-
strate, plus the repulsive hard core of the substrate. Integrating
this energy over the possible transverse displacements, we
obtain the second term of Eq. (1). The function �s[h(x)]
vanishes for h(x) > hs(x), is equal to 1 when h(x) = hs(x),
and diverges for h(x) < hs(x) to forbid the penetration of the
filament inside the solid.

The minimization of E0 on periodic substrate patterns with
sinusoidal and fakir carpet profiles was reported in Ref. [17].
The ground state, i.e., the state of lowest energy, depends on a
single parameter,

α = (κeq/κg)1/2, (2)

where κeq = (2γ0/C)1/2 is the equilibrium local curvature at
contact points where the filament reaches the substrate, and
κg = 4π2ε/λ2 is the typical substrate curvature for a pattern
with wavelength λ, and amplitude ε � λ. When α is large,
e.g., for flat substrates, the ground state is full adhesion. Upon
a decrease in α, the bending energy cost for the filament to
adapt to patterns in the full adhesion state increases. When this
cost becomes comparable with the adhesion energy gain, i.e.,
when α ∼ 1, it is more favorable for the filament to detach from
the undulated substrate. A detailed analysis [17] reveals that,
decreasing α, the ground state changes from the full adhesion
state to a periodic state with detachment zones passing over
one, then two, three, etc., pattern periods. Finally, the period of
the ground state diverges when α → α∞. The ground state is
the unbound state for α < α∞. Hence there is an infinite series
of ground-state transitions at zero temperature ended with an
unbinding point.

It is usually expected that in one-dimensional systems with
local interactions, zero-temperature transitions do not survive
at finite temperature [20]. A well known example is that of the
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Frenkel-Kontorova model, which exhibits an infinite series of
zero-temperature ground-state transitions (forming a devil’s
staircase) becoming crossovers at any finite temperature [21].
In the case of filaments on patterned surfaces, this statement
holds for the transitions from one periodic state to the other
in the series of zero-temperature transitions. But it does not
hold for the final zero-temperature unbinding transition at α∞,
which involves diverging length scales. In the following, these
issues are addressed within a low-temperature approach.

III. LOW-TEMPERATURE FORMULATION

Let us start with the low-temperature formulation. The
free parts are defined as parts of the filament not in contact
with the substrate. The ends of these parts are in contact
with the substrate at x1 and x2, where the bending energy
enforces tangential matching [17]. Following Benetatos and
Frey [14], the partition function of a free part at x1 < x < x2

reads Z[x1,x2] = P [x1,x2]Zfe[x2 − x1], where Zfe[x2 − x1] is
the partition function of a filament of length x2 − x1 with
free ends. The precise expression of Zfe depends on the
specific properties of the filament, and is actually irrelevant
in the following. In the limit where x2 − x1 is smaller than
the persistence length Lp = 2C/kBT , the Green’s function
formalism of Ref. [14] provides

P [x1,x2] =
(

31/2CB

πkBT

)d
e
−(C/2kBT )

∫ x2
x1

dx[∂xx h̄(x)]2

(x2 − x1)2d
, (3)

where d is the dimension of transverse fluctuations: d = 1
when fluctuations along z are allowed, and d = 2 when the
filament can also fluctuate in the third direction y (see Fig. 1).
The length scale B = 4δhδθ is built from a combination of
allowance for microscopic transverse displacements δh and
rotation angles δθ at the contact point. Note that instead
of h(x), the average filament position h̄(x), which obeys
∂xxxxh̄(x) = 0, enters in Eq. (3).

Furthermore, the partition function of a part of the filament
in adhesion running from x1 to x2 may be written as
Za[x1,x2] = Pa[x1,x2]Zfe[x2 − x1], where

Pa[x1,x2] = e
−{(C/2)

∫ x2
x1

dx[∂xxhs (x)]2−γT (x2−x1)}/kBT
, (4)

where γT is the adhesion free energy per unit length on a flat
substrate at temperature T , so that γT → γ0 as T → 0. The
adhesion energy γT vanishes at a finite temperature Tf [12–14].
Here, temperatures well below this transition are considered,
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FIG. 1. Model schematics. A filament in adhesion on a periodi-
cally patterned substrate exhibits local metastable features, denoted
as bridges, where the filament is not in adhesion. The global filament
configuration is mapped to a lattice model with blocks of arbitrary
length.

so that γT > 0, and the length of thermal bubbles (detachment
zones induced by thermal fluctuations on flat substrates) are
typically smaller than the pattern wavelength λ.

Combining Eqs. (3) and (4), one obtains the probability of a
given configuration with m free parts starting at x+

i and ending
at x−

i with x+
i < x−

i < x+
i+1 as

P =
m∏

i=1

P [x−
i ,x+

i ]Pa[x+
i ,x−

i+1]. (5)

Upon the variation of the positions x±
i , the probability P

exhibits local maxima for some special values of x±
i . These

local maxima of P are local minima of the free energy, and
correspond to metastable states.

Let us now specialize the discussion to the case of a
sinusoidal pattern,

hs(x) = −ε cos[2πx/λ], (6)

for which α∞ ≈ 0.791 [17]. The metastable states are then
composed of “bridges” of arbitrary length, as shown in Fig. 1.
Bridges exhibit the x → −x symmetry. Using normal mode
variables for dilatation

ξ = [n − (x+ − x−)/λ]/2 (7)

and translation

δ = [n − (x+ + x−)/λ]/2, (8)

the maxima of P obey δ = δ∗
n = 0 and ξ = ξ ∗

n , where

α2

(
1 + ζd

(n − 2ξ ∗
n )

)
= − cos 2πξ ∗

n − sin 2πξ ∗
n

π (n − 2ξ ∗
n )

. (9)

These metastable states are the only ones which exist in the
transition region, where α < 1. The opposite regime α > 1 is
trivial because there is essentially no metastable state and the
filament is always in full adhesion.

Within a low-temperature approach, the main contributions
to the partition function will result from configurations which
are in the vicinity of the local maxima of P . Performing a
saddle point expansion, the probability of a block of length nλ

with n � 2, consisting of a bridge and of the adhesion parts up
to the nearest minima of the surface pattern (see Fig. 1), reads

Pn ≈ 2r

(n − 2ξ ∗
n )2d

2πζe−en[ξ∗
n ,0]/ζ

(∂ξξ en[ξ ∗
n ,0]∂δδen[ξ ∗

n ,0])1/2
, (10)

with the dimensionless parameters

ζ = kBT /λγ,
(11)

r = (31/2CB/πkBT )dλ2d−2L−2
m .

We have also defined Lm as the microscopic distance between
two possible positions of the contact points along x. Since
B → 0, one expects r � 1 [14]. Finally, the energy reads

en[ξ,δ] = ξ

(
1

α4
− 2

)
+ c2δs2ξ

4πα4
+ c2

δ s
2
ξ

π2α4(n − 2ξ )

+ 3s2
δ [π (n − 2ξ )cξ + sξ ]2

π4α4(n − 2ξ )3
, (12)

where cx = cos 2πx and sx = sin 2πx. As shown in Fig. 1,
one may also define a block of length λ consisting of a
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FIG. 2. (Color online) Phase diagram in the (α,ζ ) plane. Solid
lines represent the transition lines. From left to right, these lines
correspond to increasing values of r (or R). Dotted lines represent
the limit of existence of bridges, Eq. (13). (a) d = 1 with r = 10−n,
n = 1, . . . 5. Inset: same plot at fixed R = ζ rα4 for R = 10−n, n =
1, . . . 6. (b) d = 2, and r = 10−1, 10−3, 10−5.

filament in full adhesion. The probability of this block is
P1 = e−[1/(2α4)−1]/ζ .

As shown in the following, the decomposition of the system
into blocks allows one to calculate the partition function of
the filament using well known methods which have been
developed for the helix-coil transition, or the filament adhesion
on flat substrates [12–14]. Nevertheless, one must keep in mind
a major difference: Here detachment zones are metastable
states, and not thermal bubbles such as those of the above
mentioned models. This is the reason why filaments on patterns
exhibit a nontrivial zero-temperature limit, whereas filaments
on flat substrates are always bound at T → 0. Another
difference comes from restrictions on the domain of existence
of a given bridge which arise from the request that the filament
should not penetrate the solid. This restriction imposes

α + ζd/2(n − 1) < 1. (13)

These conditions are represented by the dotted lines in the
(α,ζ ) plane in Fig. 2. One should set Pn = 0 when they are
not satisfied.

IV. TRANSITION LINE

We shall now analyze the consequences of the model. The
reduced partition function ZN of a filament of length Nλ is
defined as the total partition function divided by Zfe[Nλ]. For
definiteness, the filament is maintained at the surface at both
ends. Considering all possible lengths n = 1, . . . ,N for the
first block in a system of size N , one obtains the recursion
relation

ZN =
N∑

n=1

PnZN−n, (14)

where Z0 = 1. Using standard analysis (see Appendix A), this
relation leads to

ZN = 1

2iπ

∮
dφ φ−N−1 Aφ

1 − Aφ

, (15)

where the complex variable φ is analogous to a fugacity, and

Aφ =
∞∑

n=1

Pnφ
n. (16)

The integration contour in Eq. (15) encircles the origin [9]. In
the φ plane, the argument of the integral in Eq. (15) exhibits a
branch cut on the real axis for φ > 1 and a simple (real positive)
pole φ0, solution of Aφ0 = 1. Note that following Ref. [14], the
suitable thermodynamic limit consists of keeping the filament
length constant and smaller than Lp = 2C/kBT , while N →
∞ (i.e., λ → 0). When N → ∞, the partition function ZN is
dominated by the singularity which is the closest to the origin.
When φ0 < 1, one has ZN ∼ φ−N

0 , and the fraction χ of the
filament which is in adhesion is finite. As φ0 → 1, a transition
occurs where χ → 0.

The numerical solution of the transition equation φ0 = 1,

presented in Fig. 2, shows that a transition line emerges
at finite temperatures. The transition occurs at finite α,
corresponding to γT > 0, and thus to T < Tf . This proves
the self-consistency of the model, which assumes a priori
T < Tf .

As r → 0, the transition line tends to a well defined limit
composed of a segment of the ζ = 0 axis for α∞ < α < α̃ =
2−1/4, and of the line α = α̃. For nonvanishing r , two main
changes appear. First, at small ζ , the transition occurs at αc,
with αc − α∞ ∼ −ζ ln rζ . Second, at large ζ , the transition
line deviates toward smaller α, with αc ∼ ζ−1/3r−1/6. This
feature is observed only for d = 1 with r > 10−4. For d = 2, it
appears for unreasonably large values of r or ζ . Since r ∼ 1/T

depends on T , the consequences of a variation of T is difficult
to infer from the plots at fixed r in Fig. 2(a). However, the
inset of Fig. 2(a) shows the transition lines for fixed values of
the temperature-independent parameter,

R = rζα4 = 31/2Bλ3
/(

8π4L2
mε2

)
. (17)

One still finds a decrease of α as ζ is increased when d = 1 and
R > 10−4. As T → 0, one has γT → γ0, so that an increase
of T corresponds to a vertical trajectory from the ζ = 0 axis at
fixed R. One may therefore conclude from the inset of Fig. 2(a)
that binding can be obtained by increasing temperature for
filaments that are unbound at zero temperature when α < α∞,
d = 1, and R > 10−4.

In addition, the transition lines exhibit kinks when they
cross the lines given by the inequalities (13). However, these
kinks are too small to be seen in Fig. 2, and probably cannot
be observed in experiments.

V. ADHESION FRACTION

The fraction χN of filament in contact with the substrate
can also be calculated numerically from the recursion relation
(see Appendix B),

χN = 1 −
N∑

n=1

Zn′

NZN

[N − 2ξ ∗
n − n′χn′ ]Pn, (18)

where n′ = N − n and χ0 = 0. Figures 3(a) and 3(b) indicate
that the transition is continuous for d = 1 and discontinuous
for d = 2, as already noticed by several authors for the
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FIG. 3. (Color online) Fraction χN of filament in adhesion with
the substrate obtained from a numerical evaluation of Eq. (18). The
unbinding transitions are indicated by a dotted line. (a) Continuous
transition for d = 1, r = 10−4, ζ = 0.01, and N = 100 × 2n, with
n = 2, . . . ,8. (b) Discontinuous transition for d = 2, r = 0.1, ζ =
0.02, and N = 100 × 2n, with n = 3, . . . ,8. The insets show data
collapse for Nχ with different values of N when α < αc. (c) Low-
temperature behavior for r = 10−2, N = 200, and d = 1. The period
nG of the ground state at zero temperature is indicated at the bottom
of the graph. The zero-temperature transitions from one periodic
ground state to the other are blurred as the temperature increases,
ζ = 10−5, 3 × 10−5, 10−4, 3 × 10−4, 10−3.

transition on flat substrates [13,14]. Since we artificially
force the filament ends to be in contact with the substrate,
χN does not vanish in the detached phase, but χN ∼ N−1,
as shown in the insets of Figs. 3(a) and 3(b). At zero
temperature, the ground state consists of the repetition of a
given block of size nG when α > α∞ [17]. Each value of nG

corresponds to a well defined value of χN , leading to a series
of steps at zero temperature in Fig. 3(c). As announced earlier,
these transitions become smooth crossovers at any nonzero
temperature. Note that additional small steps in χN appear at
low temperatures as a consequence of finite size effects.

VI. EFFECTIVE ADHESION FREE ENERGY

Patterns do not only induce an unbinding transition, they
are also a convenient way to control the adhesion energy of
filaments. The strength of the adhesion between the filament
and substrate is measured by the effective adhesion energy per
unit length γeff , which is defined as the difference between the
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FIG. 4. (Color online) Effective adhesion energy. Model para-
meters: N = 200, ζ = 0.01, d = 1, and r = 10−3. Black solid line:
effective adhesion energy γeff/γT . Red dashed line: adhesion fraction
χ . Blue dashed-dotted line: adhesion energy in the full adhesion state.

full free energy minus the free energy of a filament in absence
of contact with the substrate. We have

γeff = kBT

Nλ
ln ZN. (19)

The value of γeff , shown in Fig. 4, is obtained from a numerical
integration of the recurrence relation (14) for a system of size
N = 200. Above the transition, when χ → 1, the effective
adhesion energy γeff tends to the adhesion energy in the full
adhesion state,

γfa = γT

(
1 − 1

2α4

)
. (20)

Below the transition, γeff → 0. The small negative value of
γeff observed in Fig. 4 below the transition is due to finite size
effects, and vanishes as N → ∞.

VII. DISCUSSION

A. Actin filament maintained perpendicularly
to parallel grooves

Let us now turn to specific examples, and consider an
actin filament with C ∼ 6 × 10−26 J m [22], attached to a
functionalized substrate with a line of binding molecules
having a binding energy J ∼ kBT . The spacing between the
binders is chosen to be 5 nm. Following Ref. [14], the transition
on flat substrates should be observed for

(J/kBTf )2(eJ/kBTf − 1) ≈ 2
(
L2

mJ 2/CB
)2

, (21)

leading to T ≈ 2000 K, which is too large to be observable.
However, unbinding can be observed at room temperature
via a suitable variation of the pattern geometry. Indeed,
let us consider a sinusoidal pattern, with parallel grooves
perpendicular to the line of binders, and ε ∼ 50 nm. Upon
the variation of λ, unbinding occurs for λ ∼ 700 nm at room
temperature.

B. DNA along atomic steps

Another system of interest is DNA along atomic steps,
where a continuous transition is expected (d = 1). Although
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experiments are available on vicinal Si(111) substrates [18]
and on sapphire steps [19], no systematic experimental study
has been reported, to our knowledge. Steps may exhibit thermal
roughness or nonequilibrium periodic meandering patterns [2].
Using ε ∼ 1 nm, λ ∼ 10 nm, with Lp = 2C/kBT ∼ 50 nm,
one finds that the adhesion transition occurs for γ ∼ kBT

per nm, which is the typical adhesion energy expected along
a step from van der Waals interactions.1 However, strictly
speaking, the length of the filament should not be much larger
than Lp, and our results only apply to short DNA.

VIII. CONCLUSION

In conclusion, filaments on patterned surfaces exhibit a
pattern-induced unbinding transition at finite temperature,
which is distinct from the unbinding transition on flat sub-
strates. The results are not specific to sinusoidal patterns, and
other profiles, such as fakir carpet [17] and sawtooth [23],
which exhibit similar series of transitions at zero temperature,
should also experience an unbinding transition at finite
temperature. In addition, this transition could be observable for
actin filaments on parallel grooves, or for DNA along atomic
steps.
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APPENDIX A: THE PARTITION FUNCTION ZN

The recurrence equation

ZN =
N∑

n=1

PnZN−n (A1)

was obtained in the main text. The generating function is
defined as [9]

Zφ =
N∑

n=1

φNZN. (A2)

Combining Eqs. (A1) and (A2), one finds

Zφ =
∞∑

N=1

φN

N∑
n=1

PnZN−n

=
∞∑

N=1

N∑
n=1

Pnφ
nZN−nφ

N−n

1Choosing van der Waals potential U = A/r6, where r is the
distance between a small substrate volume and a small DNA volume,
one finds γ ∼ (3π 2/32)Aa0�0/r4

0 , where r0 is the DNA-step distance,
a0 is the step height, and �0 is the DNA section radius. Choosing
a0 = 0.6 nm [18], �0 = d0 ≈ 1.2 nm, and A ∼ 10−20 J (in water),
one finds γ ∼ kBT per nm.

=
∞∑

m=0

∞∑
n=1

Pnφ
nZmφm

=
∞∑

n=1

Pnφ
n(Zφ + 1), (A3)

where in the third line we have used the new summation
variable m = N − n, with 0 � m � ∞. We now have

Zφ = Aφ

1 − Aφ

, (A4)

where

Aφ =
∞∑

n=1

Pnφ
n. (A5)

Finally one obtains Eq. (15) of the main text,

ZN = 1

N !
∂N
φ Zφ|φ=0 = 1

2iπ

∮
φ−N−1Zφ, (A6)

where the integration contour encircles the origin.

APPENDIX B: RECURRENCE RELATION FOR THE
ADHESION FRACTION χN

The length of a bridge in a block divided by λ reads

xn = n − 2ξ ∗
n . (B1)

The expectation value of the sum of the lengths of the bridges
in a system of length Nλ is

�n = 1

ZN

∑
{ni }∈R[N]

(∑
i

xni

)
�iPni

, (B2)

where R[N ] denotes the ensemble of the ordered lists {ni} of
integers which obey

∑
i ni = N . Hence R[N ] represents all

the different ways to cover the system of size N with blocks
of length ni . A recursion equation is then obtained as follows:

�NZN =
∑

{ni }∈R[N]

(∑
i

xni

)
�iPni

= P1

∑
{ni }∈R[N−1]

(
x1 +

∑
i

xni

)
�iPni

+P2

∑
{ni }∈R[N−2]

(
x1 +

∑
i

xni

)
�iPni

+ · · · + PNxN

= P1(x1ZN−1 + �N−1ZN−1)

+P2(x1ZN−2 + �N−2ZN−2) + · · ·
+PN (xNZ0 + �0Z0)

=
N∑

n=1

(xn + �N−n)ZN−n, (B3)

where we have defined �0 = 0. Finally, using Eq. (B1) and
the relation

�N = N (1 − χN ), (B4)

one obtains Eq. (18) of the main text.
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