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Finite-size scaling analysis of isotropic-nematic phase transitions in an anisometric
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By means of Monte Carlo simulations in the isothermal-isobaric ensemble, we perform a finite-size scaling
analysis of the isotropic-nematic (IN) phase transition. Our model consists of egg-shaped anisometric Lennard-
Jones molecules. We employ the cumulant intersection method to locate the pressure P ∗ at which the IN phase
transition occurs at a given temperature T . In particular, we focus on second-order cumulants of the largest
and middle eigenvalues of the alignment tensor. At fixed T , cumulants for various system sizes intersect at a
unique pressure P ∗. Various known scaling relations for these cumulants are verified numerically. At P ∗, the
isobaric heat capacity passes through a maximum value cm

P , which depends on the number of molecules N . This
dependency can accurately be described by a power law such that limN→∞ cm

P (N ) → ∞. For sufficiently large N ,
the pressure at which cm

P is located shifts only very slightly in agreement with the apparent insensitivity of the
cumulant intersection to N . In addition, we analyze our data in terms of Landau’s theory of phase transitions.
Our results are consistent with a weakly discontinuous entropy-driven phase transition.
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I. INTRODUCTION

In the theory of thermal many-particle systems, today it
is almost commonplace that any transition between different
phases in these systems is affected by the actual size of
the system under study. In fact, quite some time ago, it
has been realized that thermodynamics, as the fundamental
theory to treat thermal systems quantitatively, is significantly
altered if it deals with small systems of finite size [1]. In
statistical physics, on the other hand, conclusions are usually
drawn on the basis of the explicit or implicit assumption that
the so-called thermodynamic limit N/V = const, N,V → ∞
(N number of molecules, V volume) exists and that it can
be reached. In particular, our treatment of transformations
between different phases of thermal systems often invokes
the assumption of the thermodynamic limit. This poses
a serious problem to the study of such phase transitions
in computer simulations where one is inevitably restricted
to finite systems, which typically contain less than ∼106

particles in most practical state-of-the-art applications. In the
context of discontinuous phase transitions, perhaps the most
prominent signature of finite system size is the rounding
of such transitions [2]. Rounding refers to the phenomenon
that, in any finite system, the variation of the equilibrium-
order parameter with the thermodynamic field across a phase
transition can be described by a continuous curve, whereas, in
an infinite system, the order parameter would change discon-
tinuously at the onset of the phase transition (see Fig. 4.6 of
Ref. [3]).

The importance of system size or, more generally, the
presence of specific length scales in studies of phase transitions
inspired the development of finite-size scaling concepts quite
some time ago [4,5]. Generally speaking, finite-size scaling
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aims at a fundamental and quantitative understanding of
how certain quantities computed for a finite system will
change as one approaches the thermodynamic limit. Finite-size
scaling, first applied to continuous phase transitions and
critical phenomena, was inspired largely by renormalization
group theory [6,7], a theoretical concept that first came into
being in quantum electrodynamics [8]. In the meantime,
overwhelming literature on the topic exists that can hardly
be reviewed and summarized comprehensively in a research
paper, such as the present one. Instead, for more information,
the interested reader is referred to a—likely incomplete and
certainly personal—selection of textbooks and review papers
that have been published over the years [3,9–17].

However, to illustrate the power of finite-size scaling as a
theoretical concept, it seems worthwhile to give examples of
physical systems to which it has been applied successfully.
Among these systems lattice models such as the Ising [4,5,18]
or Potts model [19–21] rank prominently. As far as continuous
model systems are concerned, finite-size scaling has been
employed to investigate the gas-liquid phase transition in two-
[22,23] and three-dimensional Lennard-Jones fluids [24,25].
In addition, Potoff and Panagiotopoulos also considered binary
Lennard-Jones mixtures [25]. Even quantum fluids, such
as the three-dimensional weakly interacting Bose gas, have
been discussed within the framework of finite-size scaling
[26].

In the context of this paper, finite-size scaling will
be applied to the isotropic-nematic (IN) phase transition
in liquid-crystalline materials. Here, finite-size scaling has
been employed to obtain the critical temperature as well
as various critical exponents of the planar Lebwohl-Lasher
model [27]. Jayasri et al. used concepts of finite-size scaling
within Wang-Landau Monte Carlo simulations of the three-
dimensional Lebwohl-Lasher model [28]. Focusing on the
IN phase transition, these authors considered the system-size
dependence of the nematic order parameter S. With increasing
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lattice size, S turns out to have lower values in the isotropic
phase and a steeper increase with temperature T in the
immediate vicinity of the transition point. The transition itself
is located via Binder’s fourth-order cumulant from which it
is inferred that the IN phase transition is a discontinuous
one. Finite-size effects at the IN phase transition have also
been investigated by Fish and Vink [29] again within the
Lebwohl-Lasher model. They employ Wang-Landau Monte
Carlo simulations and demonstrate that, at discontinuous IN
phase transitions, the scaling is approximately that expected for
a q-state Potts model. In a later publication, the same authors
investigated the crossover from discontinuous to continuous
IN phase transitions in confinement [30]. A careful and very
detailed finite-size scaling study of the IN phase transition in
nanoconfinement has been published very recently by Almarza
et al. who based their work on the Maier-Saupe hard-sphere
fluid [31]. López et al. used Monte Carlo simulations to study
a two-dimensional lattice model of monomers that polymerize
reversibly into chains [32]. Employing Binder’s fourth-order
cumulant, it is observed that the IN phase transition for
monodisperse rods without self-assembly is of the same
universality class as that of the two-dimensional Ising model;
on the contrary, the model pertains to the universality class of
the q = 1 Potts model if self-assembly is taken into account.
Vink and Schilling consider the interface between isotropic and
nematic phases in a system of soft spherocylinders [33]. They
apply finite-size scaling concepts to obtain accurate values
for the interfacial tension. However, of particular relevance to
the present paper is a paper by Weber et al. who studied the
IN phase transition in a three-dimensional bond-fluctuation
lattice model of semiflexible polymers [34]. This work is of
central importance for our own study because Weber et al.
discussed, very carefully, how the IN phase transition can be
located through Binder’s cumulant intersection technique and,
more importantly, which cumulant was most suitable for this
purpose. Moreover, as we will emphasize later, their lattice
model behaves qualitatively very similarly to the continuous
model on which our paper is based.

In our paper, we focus on a simple model of a liquid crystal
suggested originally by Hess and Su [35]. It consists of a
Lennard-Jones potential in which the attractive contribution
has been modified to represent the orientation-dependent
interaction between slightly elongated molecules. The charm
of the Hess-Su model is its simplicity. Thus, in a computer
simulation, it is relatively easy to implement this model in a
numerically efficient way. Despite this simplicity, the model
exhibits isotropic, nematic, and smectic phases characteristic
of a typical liquid crystal [36,37]. Also, the model has recently
been used successfully to investigate the impact of certain
anchoring scenarios at solid surfaces on the IN phase transition
in nanoconfined liquid crystals [38,39]. Unfortunately, the
nature of this transition is still unknown for the Hess-Su
model even in the bulk. For example, the variation of the
nematic-order parameter around the IN phase transition turned
out to be smooth and free of hysteresis for relatively large
systems of 1000–2000 molecules [36–38]. This prompted us
to speculate [38] that, for this particular model, the IN phase
transition may perhaps be continuous. In fact, continuous IN
phase transitions are observed in two dimensions [40–42].
However, as we also emphasize in Ref. [38], a finite-size

scaling analysis would be required to prove or disprove
this speculation. Therefore, and in view of the usefulness
of the Hess-Su model in computer simulations of both bulk
and confined liquid crystals [36–39], a careful study of the
mechanism of the IN phase transition seems both worthwhile
and a bit overdue. Thus, the present paper is devoted to a
finite-size scaling analysis of the IN phase transition in the
Hess-Su model.

We have organized the remainder of this paper as follows. In
Sec. II, we introduce our model system. Some basic concepts
of its statistical mechanical treatment and a summary of key
quantities, on which our work is based, are introduced in
Sec. III. Our results are presented in Sec. IV and will be
discussed further in the concluding Sec. V.

II. THE MODEL SYSTEM

We consider a bulk liquid crystal composed of N molecules
interacting with each other in a pairwise additive fashion such
that the configurational potential energy is given by

U (R,Û) = 1

2

N∑
i=1

N∑
j �=i

u(r ij ,̂ui ,̂uj ), (2.1)

where r ij ≡ r i − rj is the distance vector between the centers
of mass of particles i and j . In Eq. (2.1), R ≡ {r1,r2, . . . ,rN }
and Û ≡ {̂u1 ,̂u2, . . . ,̂uN } are shorthand notations for the sets
of center-of-mass coordinates and unit vectors specifying the
orientations of the liquid-crystalline molecules, respectively.
Following earlier work [35–38], we adopt the intermolecular
interaction potential,

u(r ij ,̂ui ,̂uj )

= 4ε

[(
σ

rij

)12

−
(

σ

rij

)6

{1 + � (̂r ij ,̂ui ,̂uj )}
]
, (2.2)

where r = |r| and r̂ = r/r . Hence, u is a Lennard-Jones po-
tential where the attractive contribution is modified to account
for different relative orientations of a pair of molecules. In
Eq. (2.2), σ denotes the diameter of a spherical reference
molecule, and ε is the depth of the attractive well in that
reference model. The anisotropy of the fluid-fluid interaction
is accounted for by the function,

� (̂r ij ,̂ui ,̂uj )

= 5ε1P2(̂ui · ûj ) + 5ε2[P2(̂ui · r̂ ij ) + P2(̂uj · r̂ ij )], (2.3)

which one obtains from a summation of certain Wigner
matrices selected to preserve the head-tail symmetry of the
molecules [35]. In other words, � remains unaltered if ûi

and/or ûj are replaced by −ûi and/or −ûj . As in our previous
paper, we take ε1 = 0.04 and ε2 = −0.08 for the anisotropy
parameters such that the aspect ratio of each molecule is ∼1.26
(see Fig. 1) [38]. In Eq. (2.3),

P2(x) = 1
2 (3x2 − 1) (2.4)

is the second Legendre polynomial.
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FIG. 1. (Color online) Plots of u(r12 ,̂u1 ,̂u2) for a pair of
molecules located in the x-y plane such that r12 = (x12,y12,0) and
û1 · û2 = 1. The white area at the center of the plot is defined by the
condition uff (r12 ,̂u1 ,̂u2) � 0 such that it approximately represents
the shape of the molecule at the center of the coordinate system true
to scale. In colored parts of the figure, uff (r12 ,̂u1 ,̂u2) < 0 where the
color (see attached color bar) indicates the local value uff of in units
of ε.

III. THEORETICAL BACKGROUND

A. Statistical thermodynamics

For reasons to be explained later (see Sec. IV A), we choose
to describe the thermodynamic state of the liquid crystal in
terms of N , temperature T , and pressure P as natural variables.
This immediately suggests the Gibbs potential G as the
relevant thermodynamic potential, which assumes a minimum
at equilibrium. One of the quantities we are interested in is the
isobaric heat capacity, which can be derived from the exact
differential of G via

c′
P

T
≡

(
∂S
∂T

)
{·}\T

= −
(

∂2G
∂T 2

)
{·}\T

, (3.1)

where S denotes entropy and {·}\x is a shorthand notation to
indicate that, upon differentiation, the set of natural variables
of G is to be held constant except for variable x. In this paper,
we consider the specific heat capacity cP = c′

P/N .
The connection to a molecular level of description is pro-

vided through another textbook expression (see, for example,
Chap. 3.29 of Ref. [43]), namely,

G = −kBT ln χ (N,P,T ) , (3.2)

where kB is the Boltzmann constant,

χ =
∑
V

exp (−βPV )Q (N,V,T ) (3.3)

is the partition function in the isothermal-isobaric ensemble,
V denotes volume, and β ≡ 1/kBT . In Eq. (3.3), Q is the
canonical ensemble partition function in the classical limit.
As explained for arbitrary molecular symmetry in the book by
Gray and Gubbins [44] and later for the special case of linear
molecules by Gruhn and Schoen [45], one may express Q as

Q = 1

�5N

(
I

m

)N

Z, (3.4)

where

Z = 1

2NN !

∫
d RdÛ exp(−βU ) (3.5)

is the configuration integral. In Eq. (3.4), � ≡ h/
√

2πmkBT

is the thermal de Broglie wavelength (h is the Planck constant),
and m and I denote molecular mass and moment of inertia,
respectively. The factor 1/2N in Eq. (3.5) corrects for double
counting equivalent configurations characterized by ûi and
−ûi (head-tail symmetry).

B. Properties

From quantities introduced in Sec. III A, we can derive
molecular expressions for cP. Details of this derivation can be
found elsewhere [38]. After considerable but straightforward
algebra, one eventually obtains

cP = 5

2
kB + 〈H2〉 − 〈H〉2

NkBT 2
, (3.6)

where 〈· · ·〉 denotes an ensemble average in the isothermal-
isobaric ensemble. In Eq. (3.6), the energy function H ≡
U (R,Û) + PV such that 5

2kBT + 〈H〉 can be interpreted as
the enthalpy of the liquid crystal. At a phase transition, cP

undergoes a characteristic change [46] and, therefore, is a
useful quantity in the context of this paper.

Moreover, the IN phase transition is characterized by a
change in orientational order. To determine the degree of
orientational order, we follow Maier and Saupe and introduce
the nematic-order parameter S [47,48] (see also Refs. [49,50]).
This order parameter is defined such that S = 0 in an infinitely
large isotropic phase, whereas S � 1 if the symmetry axes of
all molecules point in the direction of the unit vector n̂ usually
referred to as the director. Because n̂ is a priori unknown, a
derivation of a molecular expression for S conveniently departs
from the so-called alignment tensor [51],

Q ≡ 1

2N

N∑
i=1

(3ûi ⊗ ûi − 1) , (3.7)

where ⊗ denotes the direct (i.e., dyadic) product and 1 is
the unit tensor. The alignment tensor can be represented by
a real symmetric traceless 3 × 3 matrix that can be diago-
nalized numerically using Jacobi’s method (see, for example,
Chap. 11.1 of Ref. [52]). This procedure allows one to compute
the three eigenvalues λ− < λ0 < λ+ of Q and the associated
eigenvectors. Following previous workers [34,38,53,54], we
define the nematic-order parameter through the expression S ≡
〈λ+〉 and take, as n̂, the eigenvector associated with the largest
instantaneous eigenvalue λ+. Hence, n̂ may vary during the
course of the simulation. Moreover, a basic theorem of linear
algebra establishes the trace of a tensor as one of its scalar
invariants (see, for example, Chap. 4.2 of Ref. [55]). Therefore,
Tr Q = Tr (diag Q) = 0 where the operator Tr represents the
trace and

diag Q ≡

⎛
⎜⎝

−λ+/2 − ζ 0 0

0 −λ+/2 + ζ 0

0 0 λ+

⎞
⎟⎠ , (3.8)
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in the basis of eigenvectors of Q. In Eq. (3.8), ζ may be
taken as a measure of apparent biaxiality. This expression
was derived by Low who uses an expansion in terms of
Wigner matrices [56]. As already pointed out by Eppenga and
Frenkel [54], ζ is nonzero in any finite system even in the
isotropic phase (see also Sec. IV B). Because such finite-size
effects are the focus of the present paper, it is useful to
introduce the ostensible biaxiality-order parameter ξ ≡ 〈ζ 〉
in accord with the definition of S introduced before.

In the study of finite-size effects at phase transitions,
order-parameter distributions and their moments have been
established as powerful tools [3]. In particular, suitably defined
ratios of these moments known as cumulants are particularly
useful [4,5]. For a nonvanishing order parameter 〈O〉, the
nth-order cumulant may be defined as

gn ≡ 〈On〉
〈O〉n , (3.9)

where

〈On〉 =
∫ 1

0
dÕÕnP(Õ), (3.10)

and P(O) is the order-parameter distribution, which can be
computed as a histogram of O in a computer simulation. In
many applications, g4 has been considered (see, for example,
Refs. [3,12]). However, from the definition of gn in Eq. (3.9)
and the expression in Eq. (3.10), it is apparent that the wings
of P(O) are probed more the larger n becomes. Unfortunately,
the accuracy of numerically determined histograms P(O)
decreases rapidly as one moves into these wings where
P(Õ) → 0. To circumvent this problem, Weber et al. proposed
to employ lower-order cumulants, such as g2 [34]. We follow
this proposition in Sec. IV C and, in particular, investigate g2

for O = −λ0 = −λ+/2 + ζ and O = λ+ as the relevant order
parameters.

It has also been argued by Weber et al. [34] that, at a
continuous phase transition,

〈On(·,L)〉 = Lnβ/νX (·,L/�), (3.11)

where L is the linear dimension of the system, β is the
order-parameter critical exponent, ν is the critical exponent
governing the divergence of the correlation length � at the
critical point, and X is a scaling function depending on the
thermodynamic field driving the phase transition (represented
by ·) and on the ratio L/�. Directly at the critical point, � → ∞.
Hence, in computing gn directly at the critical point causes
curves for different L to intersect in a single nonuniversal (i.e.,
model-dependent) point [3,20]. If, on the other hand, the phase
transition is discontinuous but rounded on account of the finite
size of the system under study, gn for different L do not have
to intersect in a single point. Specifically, a pair of curves for
different L may intersect such that the relative magnitude of gn

for any two system sizes reverses at the location of the phase
transition. The intersection may still be system-size dependent
and may then scale as L−d (N−d/3) where d is the dimension
of the system as shown by Vollmayr et al. for the q-state Potts
model [20]. This prediction was confirmed later by Weber et al.
for their lattice model of flexible polymers [34]. However, it
seems worthwhile to note at this point that the shift of the
cumulant intersection may already be very weak over a range

of (sufficiently large) system sizes and, therefore, hard, if not
impossible, to detect, although the phase transition is truly
discontinuous.

For a discussion of the nature of the IN transition (i.e.,
whether it constitutes a continuous or a discontinuous phase
transition for the present model), it will turn out to be prudent to
determine the correlation length � of orientational correlations.
To that end, it is useful to introduce the orientation correlation
function,

G2(r) = 〈P2[cos α(r)]〉, (3.12)

where cos α(r) = û1(r1) · û2(r2) is the cosine of the angle
α(r) formed between the molecular directors û1 and û2 of
a pair of molecules separated by a distance r = |r1 − r2|
(see, for example, Ref. [57]). The subsequent discussion will
particularly benefit from introducing the so-called connected
correlation function,

Gc
2(r) ≡ G2(r) − S2 r→∞−−−→ 0. (3.13)

Assuming an exponential decay of G2(r) in a sufficiently large
system [27,58], one may obtain a quantitative estimate of � by
fitting f (r) = a exp(−r/�) to Gc

2(r) in the limit of sufficiently
large r taking a and � as fit parameters.

IV. RESULTS

A. Numerical aspects

To compute the quantities introduced in Sec. III B, we
employ Monte Carlo simulations in the isothermal-isobaric
ensemble in which a fluid composed of a fixed number of
molecules N is exposed to a pressure P that remains constant
during the course of an individual simulation. Consequently,
the volume V of the simulation cell may fluctuate. We employ
periodic boundary conditions in all three spatial directions. To
generate a Markov chain of configurations in this ensemble,
we utilize the algorithm described in Sec. 4.1 of Ref. [59].
As part of this algorithm attempts to change the volume of
the simulation, cells have to be incorporated properly. In
the simulation of ordered (nematic or smectic) phases of
anisometric molecules, one would normally want to change
the lengths of the simulation cell independently in each spatial
direction such that these ordered phases can be accommodated
properly. This is particularly important in the formation of
smectic phases of molecules with a large aspect ratio. If, for
example, the length of the simulation cell in the direction of the
smectic layers would not be close to an integer multiple of the
thickness of a smectic layer, the entire fluid would be under an
artificial and unphysical stress because the smectic phase could
not fit properly into the simulation cell. For the present model
in which the molecules have a rather small aspect ratio of
∼1.26 and because we are not interested in smectic phases, this
problem does not arise. We have verified this by monitoring
diagonal components of the pressure tensor P = P 1 separately
during the course of the simulation [38]. Thus, we assume our
simulation cell to be roughly cubic throughout this paper and
change the volume of the simulation cell isotropically, that
is, simultaneously and by the same small amount δs in each
spatial direction. We adjust δs, which is typically of the order
of only a few percent of σ [see Eq. (2.2)], during the course
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of a simulation to achieve an acceptance ratio of 40%–60%
of all attempted changes of simulation-cell volume.

We refer to a Monte Carlo cycle as a sequence of N

attempted displacements or rotations of sequentially selected
fluid particles plus one attempted change of V . Rotations and
displacements are attempted with equal probability. Most runs
comprise initial 5 × 104 Monte Carlo cycles for equilibration
followed by 2 × 105 Monte Carlo cycles; for the largest
systems with N = 5000 and 10 000, and, in the immediate
vicinity of such a transformation, the length of a typical run
was enlarged up to 4 × 105 Monte Carlo cycles to guarantee
sufficient statistical accuracy.

We express all quantities of interest in terms of the custom-
ary dimensionless (i.e., reduced) units. For example, length is
given in units of σ , energy in units of ε, and temperature in units
of ε/kB . Other derived quantities are expressed in terms of
suitable combinations of these basic quantities. For example,
pressure is given in units of ε/σ 3. Throughout this paper,
we fix the temperature T = 1.0, which should be sufficiently
low to allow for a formation of both isotropic and nematic
phases where we take the mean-field bulk phase diagram of
Hess and Su as a rough guidance [35]. To save computer
time, we cut off fluid-fluid interactions beyond a separation
of rc = 3.0 between the centers of mass of a pair of fluid
molecules with no shift [31] or long-range correction applied.
In addition, we employ a combination of a linked-cell and a
conventional (Verlet) neighbor list as described in the book by
Allen and Tildesley to further speed up the simulations (see
Chap. 5.3 of Ref. [60]). This latter list includes all particles as
neighbors whose centers of mass are located within a distance
of rn = 3.5 from a reference molecule at the origin of the
neighbor sphere. Under these conditions, the smallest system
we can study comprises N = 250 molecules. If N < 250, the
actual side lengths of the simulation cell could become shorter
than 2rc such that the minimum image convention [60] would
be violated. We could accommodate these smaller systems
if we reduce rc. However, this would inevitably change the
physical nature of our model fluid. A comparison with our
earlier papers [38,39] would then be disabled. Consequently,
the simulations presented in this paper have been carried
out for systems containing 250 � N � 5000 molecules. A
few simulations for N = 10 000 have also been included to
check certain scaling laws. However, these simulations take
approximately up to 4 days of CPU time per state point on our
computer cluster and, therefore, are too time consuming to be
carried out routinely.

Finally, a comment seems appropriate concerning the
choice of the isothermal-isobaric ensemble for this paper.
Ideally, one would prefer to study phase transitions in the grand
canonical ensemble [61]. Unfortunately, the IN phase transi-
tion normally arises in a density regime where the Metropolis
algorithm adapted to simulations in the grand canonical
ensemble is rather inefficient or breaks down completely [60].
The reason is that, during the particle creation or deletion
substep of the adapted Metropolis algorithm, it becomes
increasingly difficult to either remove existing particles mostly
located at energetically favorable positions or to create new
ones at energetically favorable holes as the fluid’s average
density increases. Because N is fixed in isothermal-isobaric
Monte Carlo simulations, this problem does not arise so that

this latter ensemble seems a better choice for the present paper.
However, it is noteworthy that finite-size scaling procedures
developed originally for the grand canonical ensemble may
be transferred to the isothermal-isobaric ensemble without
modification as shown by Wilding and Binder a while ago [61].

B. Finite-size effects

In the context of the IN phase transition, finite-size
effects manifest themselves most notably in the nematic-order
parameter S introduced in Sec. III B. As one can see from
plots in Fig. 2(a), S does not vanish at low pressures in
the isotropic phase but remains nonzero. Generally speaking,
S increases with P as one goes from the isotropic (P = 1.0)
to the nematic phase (P = 2.0). Our data show that S, in the
isotropic phase, is larger the smaller N is. In going from the
isotropic to the nematic phase, the overall increase of S with
P is smaller the smaller N is. Around the IN phase transition,
S increases more steeply as the number of molecules in the
system becomes larger. On the contrary, the dependence of S

on N in the nematic phase is much smaller. These features,
which are relatively easy to understand, already have been
reported and have been discussed many times in the literature.
They are observed in quite different model systems, such as
hard platelets [54], lattice polymers of variable stiffness [34],
polydisperse mixtures of soft spherocylinders [53], and even
under nanoconfinement conditions [31].

In a typical liquid-crystalline material, the interaction
between a pair of mesogens is such that a parallel orientation
of both members of the pair is usually favored regardless
of whether these interactions are purely entropic or of a
van der Waals type. In general, these interactions have a
small but nonvanishing range so that the preferred relative
orientation of a pair of nearest neighbors is transferred,
to some extent, to more distant molecules. Hence, at the
molecular level, nanoscopic clusters form in which molecules
exhibit nematic order, although the thermodynamic state of
the entire liquid crystal pertains to the isotropic phase. On
account of thermal fluctuations, sufficiently remote clusters
may have local directors pointing in different and uncorrelated
directions. In an infinite system, where one would average
over a vast (i.e., essentially infinite) number of such clusters,
the order parameter would vanish identically according to its
definition. In a finite system, however, and no matter how big
the system is, some residual order inevitably remains, and this
is the reason for the nonvanishing values of S in the isotropic
phase that become smaller as N increases as one can see from
Fig. 2(a).

The finite-size effect also manifests itself as an ostensible
biaxiality as can be seen from plots in Fig. 2(b). In an infinite
system and according to its definition, ξ should vanish in the
isotropic phase where no preferred orientation of the molecules
exists. It should also vanish in a perfect nematic phase of
uniaxial symmetry. On the contrary, plots of ξ versus P in
Fig. 2(b) reveal that, even in the isotropic phase, a substantial
biaxiality exists that becomes smaller with increasing N . As
one moves into the nematic regime, ξ becomes smaller because
of the increasing uniaxiality of these phases where n̂ represents
the dominant symmetry axis. Our results show that this drop
of ξ may be relatively sharp in large systems (e.g., N = 5000),
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FIG. 2. (a) Nematic-order parameter S as function of applied
pressure P ; ●, N = 300; ©, N = 500; ■, N = 1000; �, N = 2000;
and ∗, N = 5000. (b) as (a) but for the biaxial order parameter ξ . (c) ξ

as a function of N for ◦, P = 1.0 in the isotropic and ●, P = 2.0 in
the nematic phases; solid lines are fits of aN−1/2 to the discrete
data points where ©, a = 1.042 and ●, a = 0.449, respectively
(see Sec. IV C).

whereas, in smaller systems (e.g., N = 300), the variation of
ξ with P is much weaker around the IN phase transition.
Nevertheless, a small residual ostensible biaxiality remains
even for the largest system and deep in the nematic phase as
the plot of ξ for N = 5000 molecules and P = 2.0 in Fig. 2(b)
shows. Moreover, the plot in Fig. 2(c) shows that our data can
be very well represented by a power law providing further
support for the presence of a perhaps vanishingly small but

always nonzero residual ostensible biaxiality in the nematic
phase of any finite system. The power law decay of ξ will be
rationalized later in Sec. IV C.

C. Cumulant analysis

Because of the finite-size effects demonstrated in
Sec. IV B, it is not immediately obvious at which pressure
P the IN phase transition occurs in the thermodynamic limit
nor what the nature (i.e., continuous versus discontinuous) of
this phase transition is for the present model. For example,
as Fig. 2(a) already indicated, the variation of S around the
(assumed) phase transition becomes steeper with increasing
N but still looks rather continuous, which would point toward
a continuous phase transition. However, one knows that, in
any finite system, phase transitions appear to be more or less
rounded depending on the specific phase transition and the
actual system size [3]. Hence, for the present model, even
the system comprising N = 5000 molecules may still be too
small to reveal the true discontinuous steplike change of S at a
discontinuous IN transition on account of the relative weakness
of the transition. The notion that the IN phase transition in the
Hess-Su model may be unusually weak is further corroborated
by the surprisingly small increase of S across that transition.
For example, it is evident from plots in Fig. 2(a) that S

does not exceed 0.6 even deep in the nematic regime. This
value is less than 2

3 of the ideal value S = 1 in a nematic
phase in which nearly all molecules are perfectly aligned with
n̂ [62]. Further evidence for the formation of only weakly
ordered nematic phases in the Hess-Su model is provided
by the observation that, in our Monte Carlo simulations, the
angle increment for the random orientation of molecules is
adjusted to a remarkably large value of �α � π

2 to preserve
an acceptance ratio of roughly 0.5 even deep in the nematic
phase at P � 2.0. This shows that, after the nematic phase
has formed, molecules are still relatively free to rotate, thus,
explaining the small values of S and, perhaps, the weakness of
the IN phase transition in the Hess-Su model. Consequently,
the apparent smoothness of the curves in Fig. 2(a) may
erroneously be misinterpreted as a signature of a continuous
IN phase transition.

To locate the transition point and to shed more light on the
nature of the IN phase transition, it has been demonstrated,
quite some time ago, in the pioneering work by Binder [3–5]
that cumulants of suitably chosen order parameters are very
useful not only in locating the transition point, but also in
determining the nature of a specific phase transition. In this
paper, we focus on the second-order cumulants g0

2 and g+
2

following the suggestion of Weber et al. [34], where the
superscript refers to the associated eigenvalues λ0 and λ+ of
Q, respectively. Before turning to a detailed analysis of both
cumulants and in view of a similar analysis performed earlier
by Weber et al. for a lattice model of flexible polymers [34], it
seems worthwhile to investigate the scaling behavior of those
moments of λ0 and λ+ on which both cumulants are based [see
Eq. (3.9)]. In the isotropic phase, one anticipates

〈λ0〉 ∝ N−1, (4.1a)〈
λn

0

〉 ∝ N−n/2, n � 2, (4.1b)

〈λn
+〉 ∝ N−n/2. (4.1c)
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FIG. 3. Moments of the order-parameter distribution P(λi) (i =
0,+) [see Eq. (3.10)] as functions of N for P = 1.0 in the isotropic
phase. Results are shown for ©, i = +, n = 1; ●, i = +, n = 2; �,
i = 0, n = 1; and ■, i = 0, n = 2. Solid and dashed lines represent
the various scaling laws given in Eqs. (4.1) (see text).

The scaling laws given in Eqs. (4.1a) and (4.1c) for n = 1
have been obtained analytically by Eppenga and Frenkel [54],
whereas the ones given in Eqs. (4.1b) and (4.1c) have been
conjectured and numerically confirmed by Weber et al. [34].

Plots in Fig. 3 confirm the scaling laws introduced in
Eq. (4.1) quite nicely for a range of particle numbers varying
by a factor of 40 between the smallest and the largest one
considered. In terms of an associated variation of the side
length of the (cubic) simulation cell, this translates to a,
perhaps, somewhat less impressive factor of only 3.4 if this
number is compared with a factor of 32 by which Weber
et al. have varied the number of lattice sites in one spatial
dimension [34]. However, one has to keep in mind that these
latter authors employed a (three-dimensional) lattice model,
which—like most, if not all lattice models—is computationally
much less demanding than a continuous model, such as the
one studied here. Nevertheless, it is gratifying that even over
a smaller range of system sizes, our data already obey the
asymptotic behavior predicted by Eqs. (4.1). We have made
this test as rigorous as possible by fitting power laws aN−b

to the discrete Monte Carlo data where we only took a but
not b as a fit parameter; values for b are taken directly from
Eqs. (4.1). This procedure also enables us to detect a small
deviation from the scaling laws as far as 〈λ0〉 and 〈λ2

0〉 for
N < 500 are concerned. This deviation from the scaling laws
indicates that these systems may be a little bit too small for the
asymptotic expressions in Eqs. (4.1) to be fully valid. In fact,
for insufficiently large N , there should be correction terms
to the asymptotic expressions given in Eqs. (4.1) (see, for
example, Eqs. (A12) of Ref. [54]).

Also, we are now in a position to rationalize the scaling
behavior of the ostensible biaxiality already displayed in
Fig. 2(c). From Eq. (3.8), it follows that

ξ ≡ 〈ζ 〉 = 〈λ+〉
(

1

2
+ 〈λ0〉

〈λ+〉
)

N→∞∝ N−1/2, (4.2)

where we employed the scaling laws stated in Eqs. (4.1). In
the nematic phase, however, Eppenga and Frenkel’s analysis

indicates a different scaling behavior of the eigenvalues of Q,
namely,

〈λ0〉 ∝ N−1/2, (4.3a)

〈λ+〉 ∝ N−1, (4.3b)

such that

ξ = 〈λ0〉
(

1

2

〈λ+〉
〈λ0〉 + 1

)
N→∞∝ N−1/2 (4.4)

leads to the same scaling behavior of the ostensible biaxiality
in both isotropic and nematic phases. Our data plotted in
Fig. 2(c) are consistent with both Eqs. (4.2) and (4.4) as
far as sufficiently large systems (N � 500) are concerned.
Deviations from the scaling laws in Eqs. (4.2) and (4.4)
at smaller particle numbers are anticipated on account of
additional N -dependent corrections that were neglected in our
analysis [54]. However, our data do not permit us to verify
Eqs. (4.3) directly because, in the nematic phase, the variation
of both eigenvalues over the range of system sizes considered
is vanishingly small as one can see, for instance, from the plots
in Fig. 2(a).

After analyzing these various scaling laws, it follows from
Eqs. (4.1) and the plots in Fig. 3 that, in the isotropic phase,
g+

2 ≈ c and g0
2 ∝ N where c is a nonuniversal model-specific

constant. This scaling behavior of the cumulants makes it
somewhat more cumbersome to analyze g+

2 because curves
for different N bundle up in the isotropic phase as we will
demonstrate shortly. A similar bundling up is not expected for
g0

2, and this is the reason why analyzing this latter cumulant
was suggested earlier by Weber et al. [34]. However, we will
show later that both cumulants provide data sets that are
consistent with each other. However, before turning to that
discussion, it seems worthwhile to point out that numerical
accuracy of g0

2 in the isotropic phase decreases with increasing
N despite the more favorable scaling behavior. This is because
an increasing value of g0

2 with increasing N is obtained by
taking the ratio of two numbers, both of which tend to zero
as N → ∞ [see Eqs. (3.9), (4.1a), and (4.1b)]. Therefore,
the accuracy of g0

2 is expected to go down with system
size. Focusing on small systems to circumvent this problem
is not advisable either because the linear dimension(s) of
the simulation cell may eventually become comparable in
magnitude with �. In this latter case, one has to be prepared
for additional features that render the interpretation of the
cumulant difficult [34].

Plots in Fig. 4(a) illustrate the behavior of g+
2 with P

and for different system sizes. In the isotropic regime, one
clearly sees the bundling up of curves for different N as
anticipated. As P increases, g+

2 decreases monotonically as
far as smaller systems (N � 500) are concerned. In larger
systems, g+

2 exhibits a nonmonotonic dependence on P and
passes through a maximum located at a system-size-dependent
pressure in the isotropic phase [cf., Fig. 2(a)]. The height
of this maximum, which is most clearly visible in the plot
for N = 5000, increases with N similar to what has been
observed earlier by Weber et al. [34]. Most importantly,
however, curves for different N have a common intersection at
the transition pressure P ∗ � 1.74 and reverse their magnitude
for P > P ∗. Comparing Figs. 4(a) and 4(b), one notices a
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FIG. 4. (a) Second-order cumulant g+
2 − 1 as a function of

applied pressure P ; ●, N = 300; ©, N = 500; ■, N = 1000; �,
N = 2000; and ∗, N = 5000. (b) as (a) but for g0

2 . The insets show
enlargement of plots around the IN phase transition (see text).

couple of differences. First, as predicted on the basis of
Eqs. (4.1a), (4.1b), and Fig. 3, plots of g0

2 in Fig. 4(b) do
not bundle up in the isotropic phase. In fact, g0

2 at P = 1.0
changes by little more than an order of magnitude over the
range 300 � N � 5000 as expected. The pressure dependence
of all curves is monotonic. All curves intersect at P ∗ � 1.74
(as do the curves g+

2 ), where they change their curvature and
reverse their order for P > P ∗. Hence, from plots in both parts
of Fig. 4, we conclude that the IN phase transition at T = 1.0
occurs at PIN = P ∗ � 1.74.

D. Nature of the isotropic-nematic phase transition

Although this result and the observation of a common
cumulant intersection for both g+

2 and g0
2 are gratifying,

they still leave the question concerning the nature of the
IN phase transition unanswered. For example, the fact that
a common intersection of the second-order cumulants exists
is not necessarily indicative of a continuous phase transition
as emphasized earlier by Vollmayr et al. [20]. On the contrary,
a unique cumulant intersection could also mean that the
system-size-dependent shift of the intersection characteristic
of a discontinuous phase transition is too weak to be detected
over the range of system sizes accessible and the statistical
accuracy with which g+

2 and g0
2 can be computed.

 20

 40
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100

1.00 1.20 1.40 1.60 1.80 2.00

c P

P

FIG. 5. Isobaric heat capacity cP as a function of applied pressure
P ; ●, N = 300; ©, N = 2000; and ■, N = 5000.

To gain more insight into the nature of the IN phase
transition, we considered additional quantities in this paper.
Plots in Fig. 5 show the variation of the isobaric heat capacity
[see Eq. (3.6)] as a function of pressure for three selected
system sizes. One notices that sufficiently far away from the
maximum, the heat capacity apparently is independent of N .
This holds for low pressures in the isotropic as well as for
sufficiently high pressures in the nematic phases. In the vicinity
of the phase transition, the shape of cP exhibits a marked
system-size dependence. Generally speaking, the larger N ,
the sharper and taller the maximum cm

P of the curve cP. For the
largest system of N = 5000 molecules considered in Fig. 5,
the location of cm

P agrees very well with P ∗ � 1.74 obtained
via the cumulant intersection approach and, therefore, is taken
as a fingerprint of the IN phase transition as in our previous
work [38,39]. One also sees from Fig. 5 that the location of cm

P
is remarkably insensitive to the system size, whereas, both the
width of the curves plotted in Fig. 5 as well as the height of
their maximum depend strongly on N .

According to Vollmayr et al., one expects cm
P in a

three-dimensional system to scale with N2/3ν−1 if the IN
phase transition is continuous [20]. In this scaling relation,
ν = 0.6289 is the relevant critical exponent [63] such that the
divergence of cm

P with increasing system size at a continuous
phase transition would be rather weak. If, on the other hand,
the IN phase transition was discontinuous, cm

P should increase
linearly with N [20]. However, in analyzing the scaling
behavior of cm

P , some care has to be taken. This is because it
was pointed out by Bruce and Wilding [64] and reemphasized
more recently by Fernandez et al. [65] that the scaling law
for cm

P contains an analytical background that does not scale
with system size (see, for example, Eq. (48) of Ref. [65]). As
we show in Fig. 6, cm

P may be represented by an expression
of the form aNy + b. Fitting this expression to our data, the
analytic background b � 8.2 turns out to be rather substantial
and amounts to roughly 1

4 of cm
P for N = 300. In addition,

our fit gives y � 0.58, which is much larger than the value
2/3ν − 1 � 0.06 expected for a continuous phase transition.
Nevertheless, our value of y is still smaller than 1, which would
be anticipated for a strongly discontinuous IN transition. A
scaling behavior intermediate between those characteristics
of a continuous and that of a discontinuous phase transition

011704-8



FINITE-SIZE SCALING ANALYSIS OF ISOTROPIC- . . . PHYSICAL REVIEW E 83, 011704 (2011)

 50

100

150

200

 50 100 150 200

c P

Ny

FIG. 6. Maximum of the isobaric heat capacity cm
P as a function

of the number of molecules Ny where y � 0.58 is obtained by fitting
the expression aNy + b to the simulation data.

has been reported earlier by Vollmayr et al. for the q-state
Potts model [20]. However, Vollmayr et al. did not include
the analytical background in their scaling analysis of cm

P .
Nevertheless, we follow these authors and conclude that, for
the Hess-Su model, the IN phase transition is most likely to be
weakly discontinuous because our value of y turns out to be
midway between that characteristic of a continuous and that
of a strongly discontinuous phase transition.

Further evidence for this conclusion is provided by an
inspection of the orientational correlation function G2(r) [see
Eq. (3.12)] plotted in Fig. 7 for two state points in the
immediate vicinity of the IN phase transition at P � 1.735
and 1.745. These values are very close to P ∗ � 1.74 at
which all cumulants g0

2 and g+
2 intersect (see Fig. 4). For a

large system containing N = 10 000 molecules, both curves
converge nicely to their asymptotic values S2 within the range
of accessible intermolecular distances. For the state at lower
pressure P = 1.735, the system is still in its isotropic phase
(S � 0.072); whereas, at the higher pressure P = 1.745, one
has already entered the nematic regime (S � 0.343). For
N = 10 000, the IN phase transition is already relatively sharp
as these numbers indicate. Whereas this already suggests
that, in the limit N → ∞, one is probably dealing with a
discontinuous rather than a continuous phase transition, plots
in Fig. 7(b) provide further evidence for this interpretation.
These plots reveal that, over a relatively large range of
intermolecular separations r , Gc

2(r) can be described by an
exponential function as discussed at the end of Sec. III B. A
fit of an exponential function gives � � 2.13 at P = 1.735,
whereas an only slightly larger value of � � 2.33 is observed
at P = 1.745 immediately above the IN phase transition. In
other words, across the IN phase transition, � does not exceed
two times the length of the long molecular axis. Moreover,
directly at the IN phase transition, � remains smaller by a factor
of 3 than the length of the computational cell for the smallest
system studied (N = 300, L � 7). From our data, it seems
unlikely to expect that � → ∞ as one would if the IN phase
transition were continuous. Similar observations have been
made by Weber who found that � passes through a maximum
at the IN phase transition but remains small and finite [66].
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FIG. 7. (a) Orientational correlation function G2(r) for N =
10 000 and ●, P � 1.735 and +, P � 1.745. The inset shows
long-range behavior of G2(r) → S2 [——, S � 0.072 and - - - - , S �
0.343, see Eq. (3.13)]. (b) as (a) but for Gc

2(r) on a semilogarithmic
scale; lines are fits of an exponential function to the curves for ——,
P � 1.735 and - - - - , P � 1.745.

E. Predictions of Landau theory

Finally, it seems worthwhile to analyze the IN phase
transition in terms of Landau’s theory of phase transitions
[50]. To that end, one expresses the relevant thermodynamic
potential as a Taylor series in terms of the order parameter.
In the present case, where the relevant thermodynamic field
driving the phase transition is the pressure, we may expand G
in terms of Q as [50]

βG = βG0 + 1
2A(P )〈Q〉 : 〈Q〉 + 1

3B(P )〈Q〉 : (〈Q〉 · 〈Q〉)
+ 1

4C(P )(〈Q〉 : 〈Q〉)2 + · · · , (4.5)

where A(P ), B(P ), and C(P ) are dimensionless coefficients
depending only on P under the present isothermal conditions.
In Eq. (4.5), we employ the notation of Gray and Gubbins
for single and double contractions of the second-rank tensor
Q [44]. In the uniaxial case (ξ = 0) and after diagonalizing
Q in the basis of its eigenvectors, it follows from Eq. (3.8)
that second- and third-order scalar invariants of Q are
given by

〈Q〉 : 〈Q〉 = 3
2S2, (4.6a)

〈Q〉 : (〈Q〉 · 〈Q〉) = 3
4S3, (4.6b)
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and, therefore, [50],

βG = βG0 + 3
4A(P )S2 + 1

4B(P )S3 + 9
16C(P )S4 + · · · .

(4.7)

Notice that the expansion of βG starts with the second-order
scalar invariant of Q as the first nontrivial term because the
first-order scalar invariant Tr Q = 0 on account of Eq. (3.7). In
principle, A(P ), B(P ), and C(P ) may be obtained from P(S)
because [54]

P (S) = P0 exp [−βG (S)] , (4.8)

where the normalization constant P0 is determined such that∫ 1

0
dSP (S) = 1 (4.9)

according to the discussion in Sec. 5.6.3 of Chap. 1 in
Ref. [11].

In the simulations, we obtain P(S) as a histogram using a
width δS = 0.005 for the histogram bins. Plots in Fig. 8 reveal
that, in the isotropic phase and sufficiently far away from the
IN phase transition, P(S) exhibits a single maximum. This
maximum is larger the smaller P is. Likewise, the width of
P(S) increases as P increases toward P ∗. In the immediate
vicinity of the IN phase transition, P(S) becomes bimodal
where the two peaks of the distribution are not completely
separated because our system is still finite. However, we notice
that the shape of this bimodal distribution can still be fitted very
well with the Landau expansion of βG. In a sequence of very
careful simulations, we have also been able to determine P(S)
directly at the pressure P ∗ � 1.74 at which the cumulants
g0

2 and g+
2 apparently intersect (see Fig. 4). It is particularly

gratifying that, at this pressure,P(S) is bimodal with two peaks
of equal height as the inset in Fig. 8 clearly shows. Hence,
in the sense of Eq. (4.8), P(S) at P ∗ may be interpreted as
an order-parameter distribution for coexisting isotropic and
nematic phases in a system of finite size.
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FIG. 8. Order-parameter distribution P(S) as a function of the
nematic-order parameter S for N = 5000; �, P = 1.00; ■, P =
1.60; ©, P = 1.70; and ●, P = 1.75. Full line is a fit based upon G
from Eq. (4.7) treating A(P ), B(P ), and C(P ) as fit parameters and
replacing S → S − Sres where the residual nematic-order parameter
Sres is treated as an additional fit parameter accounting for the
nonvanishing nematic order in any finite system [see Fig. 2(a)]. The
inset shows P(S) directly at �, P ∗ � 1.74 (see also Fig. 4).
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FIG. 9. Plot of A(P ) in the Landau expansion of βG [see
Eq. (4.7)] as a function of pressure �, P . The solid line is a
fit of Eq. (4.10) to the discrete data points taking A0 as a fit
parameter and P ∗ = 1.74 from the cumulant analysis presented
in Sec. IV C.

It is also apparent from the plots in Fig. 8 that P(S)
is not Gaussian in agreement with the Landau expansion
of G in Eq. (4.7) if one assumes both B(P ) and C(P ) to
be appreciable in magnitude. We obtain information about
A(P ), B(P ), and C(P ) by fitting Eqs. (4.7) and (4.8) to the
histograms representing P(S). As noted earlier by Eppenga
and Frenkel [54], B(P ) and C(P ) are determined mostly by
the wings of P(S), which can only be determined with limited
accuracy so that we refrain from plotting any data. However,
our results seem to suggest that B(P ) decreases toward P ∗ but
remains small, whereas, C(P ) > 0 everywhere. These general
features are consistent with requirements of Landau’s theory
as far as discontinuous phase transitions are concerned (see
Sec. 143 of Ref. [46]). At such a transition, A(P ) has to change
sign at P ∗. Here, the usual assumption [46] is that, sufficiently
close to P ∗,

A(P ) = A0(P − P ∗), (4.10)

such that A(P ) changes sign at P = P ∗. Results of our fit
plotted in Fig. 9 are consistent with this general prediction
of Landau’s theory, thereby supporting our earlier conclusion
that the IN phase transition in the Hess-Su model is likely to
be weakly discontinuous.

V. DISCUSSION AND CONCLUSIONS

In this paper, we employed Monte Carlo simulations in
the isothermal-isobaric ensemble to investigate finite-size
effects at the IN phase transition in the Hess-Su model of
a liquid crystal [35] and to gain a more detailed picture of
the nature of this phase transition. In particular, we wished
to determine whether this phase transition was continuous or
discontinuous. Finite-size effects manifest themselves most
directly as nonvanishing values of the nematic-order parameter
S in the isotropic phase. From an operational point of view, S is
usually computed as an ensemble average of a suitably chosen
eigenvalue of the alignment tensor Q. From the pioneering
work by Eppenga and Frenkel, one knows how these ensemble
averages should scale with the number of molecules N both
in the isotropic and in the nematic phases and, of course,
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irrespective of the specific model system [54]. Later, Weber
et al. proposed similar scaling laws for higher-order moments
of the eigenvalue distributions [34]. All these scaling laws are
confirmed numerically in this paper and for the range of system
sizes chosen.

Another fingerprint of finite-size effects is an ostensible
biaxiality ξ that is small but does not vanish completely,
although the molecules of our model are uniaxial and there are
no external fields that would cause nematic phases to have true
biaxial symmetry [39]. From the scaling relations for ensemble
averages of eigenvalues of Q, the system-size dependence of
ξ is given by N−1/2 both in the isotropic and in the nematic
phases. Here, this prediction is tested and is confirmed, at least,
for sufficiently large system sizes. The detailed investigation
of various scaling predictions is important because it allows us
to verify that the range of system sizes chosen for this paper
is large enough for our model. Moreover, the confirmation of
analytically predicted scaling laws indicates that the statistical
accuracy of our Monte Carlo results is sufficient to determine
both location P ∗ and nature of the IN phase transition in the
Hess-Su model.

In this regard, the cumulant intersection method originally
proposed by Binder [4,5] is particularly useful. Based upon
the second-order cumulant of λ+ and λ0 of Q, we obtain
P ∗ = 1.74 at the given temperature T = 1.00. In this regard,
it is somewhat striking that our cumulants seem to intersect
at a universal pressure P ∗ irrespective of system size and
seemingly contrary to what one would have anticipated for a
discontinuous phase transition. However, following arguments
put forth by Vollmayr et al. [20], this observation alone is
insufficient to conclude that the IN phase transition is, in fact,
continuous. In principle, it is conceivable that, at a very weak
discontinuous phase transition, one may fail to observe the
anticipated shift of the intersection between pairs of cumulants
proportional to N−1. This could happen if, for instance, the
constant of proportionality is too small to be detected given
the statistical accuracy of the data. In fact, looking at Fig. 8 of
Ref. [34], one sees that their system-size-dependent temper-
ature Tcr(L) changes rather weakly with L for lattices with
more than only L = 10 sites.

Therefore, to decide whether the IN phase transition in
the present model is continuous or discontinuous, additional
information is required. To that end, we compute the ori-
entation correlation function G2(r) for a large system with
N = 10 000 molecules. Around the phase transition, Gc

2(r)
exhibits an exponential decay governed by a correlation
length �, which does not exceed twice the long axis of our
molecules and, thus, remains finite and small in the immediate
vicinity of the IN phase transition. Similar observations have
been made earlier by Weber for his lattice model of flexible
polymer chains. For example, in his thesis, Weber shows
that � remains finite but passes through a weak maximum
during the IN phase transition [66]. The finiteness of � clearly
points to a discontinuous phase transition. However, if that
were the case, one anticipates the maximum of the associated
isobaric heat capacity to scale proportional to N . In the
actual simulations, we find an increase of cm

P ∝ Ny where
y � 0.58 is significantly smaller than 1. On the other hand, y is
significantly larger than 2

3ν
− 1 � 0.06 expected for a con-

tinuous phase transition [20]. The scaling of cm
P , with an

effective exponent intermediate to that characteristic of a
continuous and that of a discontinuous phase transition,
parallels results obtained by Vollmayr et al. for a thermally
driven discontinuous phase transition in a three-dimensional
q-state Potts model (q � 3). Moreover, we notice that, for
particle numbers 500 � N � 5000, the shift of cm

P with
N is surprisingly minute. This seems consistent with the
observation that we have been unable to detect any dependence
of the intersection between pairs of neighboring cumulants g0

2
and g+

2 with N .
The apparent insensitivity of the location of cm

P to changes
in N is particularly gratifying in view of our earlier studies of
the IN phase transition in various confined geometries [38,39].
In these works, we located the IN phase transition solely via
the position of the maximum of the isobaric heat capacity
and only for 1500 � N � 2000 molecules. From our present
more extensive investigation, we conclude that, in this range
of particle numbers, cm

P is a sufficiently accurate indicator to
locate the IN phase transition. Nevertheless, it needs to be
stressed that the value of P ∗ � 1.70 first reported by Steuer
et al. [37] and confirmed later by us [38], which was based
upon system sizes of N = 1000 [37] and N = 1500 [38], is
presumably a bit too low because of a small residual system-
size effect.

Moreover, it is interesting to note that Landau’s the-
ory of phase transitions [46] seems qualitatively applicable
here similar to what has been concluded by Eppenga and
Frenkel [54] for their model liquid crystal of hard platelets.
Within this theory, the continuous or discontinuous character
of a phase transition depends on whether or not the coeffi-
cient B in front of the third-order term of the expansion of
the thermodynamic potential vanishes [46,50]. Although our
data do not permit us to distinguish, with absolute certainty,
between the two, they seem to suggest that B is small but
nonzero at P ∗. In addition, at the IN phase transition, the
symmetric bimodal shape of P(S) reveals that the free-energy
barrier β�G separating coexisting isotropic and nematic states
(see, for example, the inset in Fig. 8) is only on the order
of kBT . Therefore, the IN phase transition is most likely
to be weakly discontinuous. This notion is corroborated
further by the observation that the variation of S with P

still looks rather smooth even for N = 5000. Moreover, the
pronounced peak in plots of cP versus P indicates a loss
of orientational entropy caused by the preferential alignment
of molecules with the director n̂ as one goes from the
isotropic to the nematic phase [38]. Thus, we conclude
that all observations made in this paper are consistent with
a weakly discontinuous entropy-driven IN phase transition.
Similar conclusions have been reached for the lattice polymer
model investigated by Weber et al. [34] despite the fact
that, in their study, the IN phase transition was thermally
driven.
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