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Director libration in nematoacoustics
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We extended the analysis of a variational theory for nematoacoustics recently proposed by Virga [Phys. Rev.
E 80, 031705 (2009)] by allowing the nematic director to vibrate about an average orientation at the frequency
of a propagating wave, a periodic motion that we call the director libration. The acoustic susceptibilities, two
phenomenological parameters that, in this theory, express the coupling between director and acoustic fields, are
estimated along with an extra viscosity coefficient by using available experimental data.
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I. INTRODUCTION

It has long been recognized that sound waves interact with
the orientational order of nematic liquid crystals, realigning
liquid-crystal molecules [1–3]. Relevant experimental obser-
vations include the anisotropy and frequency dependence of
both attenuation and dispersion of ultrasonic waves [4–8]
and the reorienting acoustic action exerted on a uniformly
aligned nematic liquid crystal [9–11]. To interpret these
experimental results, it is essential to understand the interaction
mechanism between the acoustic field with its wave vector k
and the nematic director n representing the average molecular
orientation. It was already anticipated by Helfrich [12], within
a purely hydrodynamic theory, that an acoustic field can
affect the orientation of n. In 1972, the first experimental
results were reported, which suggested introducing an elastic
interaction energy between the acoustic wave and the nematic
director field to account for a direct nematoacoustic coupling
capable of inducing distortions in the director texture [13].
On the theoretical side, the nature of this interaction was
later elucidated in Refs. [14] and [15] by postulating that the
nematoacoustic interaction results from the coupling between
the density modulation induced by the acoustic wave and the
nematic director: Such a coupling occurs at time scales much
larger than those of acoustic vibrations and, as a result, it
is actually the time-averaged interaction energy that enters
the nematic free energy. The proposed averaged interaction
energy Vavg had the form Vavg = 1

2u(k · n)2, where u is a
coupling constant, which could have either sign, introduced
as a phenomenological nematoacoustic susceptibility.

More recently, a variational theory for nematoacoustics has
been based on a variant of this assumption [16]. According
to this theory, liquid crystals are to be regarded as anisotropic
Korteweg fluids [17] at the time and length scale at which
the sound field produces density modulations. In general, the
elastic stress tensor of a Korteweg fluid depends on both
first and second gradients of the density field � [18,19]. For
anisotropic fluids, such as nematic liquid crystals, Korteweg
theory was adapted in Ref. [16] to nematoacoustics by positing
an additional elastic energy quadratic in the mass density
gradient. On the other hand, in Ref. [16], at the time scale
of the acoustic vibrations, the director texture is still regarded
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as immobile in the same spirit of previous work and in line
with experimental studies where the director is kept fixed by
external magnetic fields. Here, within the theory proposed in
Ref. [16], we will relax such an assumption: The director
is set free to vibrate in time and possibly to be distorted in
space around a constant and uniform orientation. This latter
is held fixed by an external (magnetic) field: We refer to such
a motion as the director libration, and we imagine it to arise
as a consequence of the sound wave that propagates through
the nematic liquid crystal. The theoretical outcomes of our
analysis will allow us to interpret the experimental results
published long ago in the literature and to estimate some
phenomenological parameters involved in the theory.

This paper is organized as follows. In Sec. II, we will briefly
recall the general balance equations of the nematoacoustic
theory put forward in Ref. [16]. In Sec. III, we seek plane wave
solutions for these equations, including the director libration.
In Sec. IV, we estimate some relevant phenomenological
parameters of the theory from the available experimental data
on anisotropic dispersion and wave attenuation. Finally, in the
closing Sec. V, we summarize our conclusions and sketch
future research directions suggested by this paper.

II. DYNAMICAL BALANCE EQUATIONS

In this section, to make our account self-contained, we
review the fundamentals of the variational nematoacoustic
theory proposed in Ref. [16]. This theory elaborates upon
the idea that, on the time and length scales characteristic
of acoustic modulations, nematic liquid crystals behave like
anisotropic Korteweg fluids. In Ref. [16], the relevant balance
equations have been derived from a principle of virtual power.
At the same time, the theory presented in Ref. [16] generalizes
the Ericksen-Leslie-Parodi theory for nematic liquid crystals
[20,21] by removing the incompressibility constraint and by
taking the density gradient ∇� into appropriate account.

We consider a nematic liquid crystal occupying a region B
and let the free energy stored in B be

F :=
∫

B
F dV , (1)

where V is the volume measure and

F := 1
2�v2 + We(n,∇n) + �σK(�,∇�,n). (2)
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Here, v is the flow field of the fluid and

We(n,∇n) := 1
2K1(div n)2 + 1

2K2(n · curl n)2

+ 1
2K3|n × curl n|2, (3)

σK(�,∇�,n) := σ0(�) + 1
2 [u1|∇�|2 + u2(∇� · n)2], (4)

the former being the Frank distortion energy per unit volume
and the latter being the Korteweg elastic energy per unit mass
of an acoustic origin. While the Frank distortion energy is
a classical contribution to the total free energy embodying
the texture curvature elasticity, the Korteweg elastic energy
is partly new in this context, and it is worth an additional
comment. Physically, when an acoustic wave travels in a
nematic medium, the condensation wave front, propagating
along the density gradient ∇�, is affected by the local
orientation of the nematogenic molecules. Hence, in addition
to volume compressibility, reflected by the density �, ∇� has
to be included in the energy and coupled to the director n; they
mutually interact leading to a distortion of the texture [22].
Intuitively, making elongated molecules denser along their
common orientation must have a different energetic cost than
making them denser in the orthogonal direction. Actually, the
way n couples in time to ∇� will become clearer from the
balance equations we will derive later.

Neither a kinetic energy for the rotational motion of n nor
a potential energy for the external actions exerted on n are
accounted for in Eq. (2). The former, which could be written
as

κ := 1
2�δ2ṅ2, (5)

with δ representing a molecular radius of gyration, is neglected
in this theory,1 while the latter is only omitted for simplicity.
In the following, we will consider the one-constant approxi-
mation to We, so that Eq. (3) reduces to

We = 1
2K|∇n|2. (6)

The acoustic susceptibilities u1 and u2 in Eq. (4) are assumed
to be independent of the mass density �. Moreover, they must
obey the inequalities

u1 � 0 and u1 + u2 � 0

for the energy density added to σ0 in Eq. (4) to be positive
semidefinite.

Nematic liquid crystals are dissipative fluids. Accordingly,
we write the Rayleigh dissipation functional as

R :=
∫

B
Ra dV , (7)

where Ra is the Rayleigh dissipation function adapted to the
acoustic case: It is a frame-indifferent function of n, D, and n̊,
quadratic in the pair (n̊,D). We denote, by n̊, the corotational
time derivative,

n̊ := ṅ − Wn,

1In Sec. III D, we will estimate the acoustic frequency that
cannot be exceeded for this energy to be safely neglected
in Eq. (2).

where ṅ := ∂n
∂t

+ (∇n)v is the material time derivative of n
and

W := 1
2 [(∇v) − (∇v)T]

is the vorticity tensor; we denote, by D, the stretching tensor,

D := 1
2 [(∇v) + (∇v)T].

Since a nematic liquid crystal is regarded as a compressible
fluid here, and so the velocity field v is no longer solenoidal,
the most general expression for Ra is the following:

Ra : = 1
2γ1n̊ · n̊ + γ2n̊ · Dn + 1

2γ3Dn · Dn + 1
2γ4D · D

+ 1
2γ5(n · Dn)2 + 1

2γ6(tr D)2 + γ7(tr D)n · Dn, (8)

where γ1, . . . ,γ7 are viscosities, considered as functions of
the mass density �. As shown in Ref. [16], Ra in Eq. (8) is
positive semidefinite provided that the following inequalities
are satisfied:

γ1 � 0, (9a)

γ3 + 2γ4 � 0, (9b)

γ4 � 0, (9c)

γ4 + 2γ6 � 0, (9d)

γ3 + γ4 + γ5 + γ6 + 2γ7 � 0, (9e)

γ1γ3 + 2γ1γ4 − γ 2
2 � 0, (9f)

γ4(γ3+γ4 + γ5 + γ6 + 2γ7) + 2
[
γ6(γ3 + γ4 + γ5) − γ 2

7

]
� 0.

(9g)

They will play a role in proving that sound waves are attenuated
in a nematic liquid crystal.

A. Balance equations

Here, we finally recall the balance equations for nematoa-
coustics arrived at in Ref. [16] from the free-energy functional
F in Eq. (1) and the Rayleigh dissipation functional R in
Eq. (7) following the general variational principle posited in
Ref. [23]. The balance of mass has the classical form of the
continuity equation,

∂�

∂t
+ div (�v) = 0. (10)

In the absence of body forces, the balance of linear momentum
is expressed by the equation,

�v̇ = div (TE + TK + Tdis), (11)

where v̇ is the acceleration field and the second-rank tensors
TE, TK, and Tdis represent the Ericksen elastic stress, the
Korteweg elastic stress, and the dissipative stress. With the aid
of Eqs. (4), (6), and (8), these tensors were given the following
explicit expressions in Ref. [16]:

TE = −K(∇n)T(∇n), (12)

TK = −pKI − �[u1∇� ⊗ ∇� + u2(∇� · n)∇� ⊗ n], (13)

where

pK := p0(�) − � div {�[u1∇� + u2(∇� · n)n]}, (14)

with

p0(�) := �2σ ′
0(�)
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assumed to be an increasing function of �, and

Tdis = 1
2γ1(n ⊗ n̊ − n̊ ⊗ n) + 1

2γ2(n ⊗ Dn − Dn ⊗ n)

+ 1
2γ2(n̊ ⊗ n + n ⊗ n̊) + 1

2γ3(n ⊗ Dn + Dn ⊗ n)

+ γ4D + (γ5n · Dn + γ7 tr D)n ⊗ n

+ (γ6 tr D + γ7n · Dn)I. (15)

Similarly, the balance of torques is expressed by the following
equation:[

∂We

∂n
− div

(
∂We

∂∇n

)]
× n + �

∂σK

∂n
× n + ∂Ra

∂ n̊
× n = 0,

(16)

where three different torques are balanced, namely, an elastic
torque arising from the distortion energy density We, an
acoustic torque representing the action exerted by the acoustic
field on the nematic director, and a viscous torque arising
from the dissipation function Ra. By using the constitutive
equations (4), (6) and (8) for σK, We, and Ra, we give Eq. (16)
the following form:

−K div (∇n) × n + u2�(∇� · n)∇� × n

+γ1ṅ × n + (γ2Dn − γ1Wn) × n = 0. (17)

As can be seen from both Eqs. (13) and (17), the acoustic
action on a nematic liquid crystal is twofold: On one hand,
an acoustic field affects the flow through the stress tensor TK;
on the other hand, it is able to act on the nematic director by
transferring a torque to it. Equation (17) actually suggests that
the effect of ∇� in the acoustic torque is the same as that of an
external electric field. In Sec. IV, we will estimate the acoustic
torque in typical experimental situations of wave propagation
along with the magnitude of the electric field that would be
required to produce the same effect.

Equations (10), (11), and (17), where TE, TK, and Tdis are
as in Eqs. (12), (13), and (15), represent the basic balances of
the theory. They will be solved later in a special setting.

III. PLANE WAVE SOLUTIONS

Here, we study the propagation of forced plane waves of
condensation.2 This propagation has already been studied in
Ref. [16] under the simplifying assumption that n is held fixed
by a compliant external action, such as a magnetic field. In
such an approach, the elastic torque in Eq. (17) vanishes as
does the viscous torque opposing the tumbling of n, while
the viscous torque opposing the acoustic flow vanishes once
averaged in time. The only nonvanishing torque is the time-
averaged acoustic torque, that, in Ref. [16], was imagined to be
balanced by a reactive torque exerted by the external constraint
keeping n fixed. Here, allowing the director to vibrate, we need
to solve the balance equation of torques (17): We can no longer
be content with reading the average unbalanced acoustic torque
from it. Thus, our attention will now turn to the director motion
and to its consequences on the balances of linear momentum
and torque.

2Not to be confused with the shear acoustic waves studied in
Refs. [24] and [25].

The linearized balance laws resulting from Eqs. (10), (11),
and (17) and the constitutive relations in Eqs. (12), (13), and
(15) are solved and are used to find the anisotropic dispersion of
waves and to study the relationship between energy dissipation
and wave attenuation. Solutions are sought in the plane wave
form

�(x,t) = �0(1 + s0 Re E), v(x,t) = s0 Re (Ea), (18)

where E := ei(k·x−ωt), Re denotes the real part of a complex
number, x is the position vector, �0 is the unperturbed mass
density and s0 is a small dimensionless parameter measuring
the scale of perturbation, k is the complex wave vector to
be determined in terms of the angular frequency ω, and a is
an unknown complex amplitude vector. We also allow for a
director libration3 described by

n = [I + s0 Re (EA)]n0, (19)

where A is a complex skew-symmetric tensor and n0 is a
uniform unperturbed director field.

The basic governing equations are solved within the
preceding class of flows, in the limit where s0 is a small
perturbation parameter. In particular, it follows from Eq. (18)
that

D = 1
2 s0 i E(a ⊗ k + k ⊗ a), (20a)

W = 1
2 s0 i E(a ⊗ k − k ⊗ a). (20b)

Here, and in what follows, we fail to take the real part of
equations such as Eqs. (20), while keeping in mind that, as
in Eqs. (18) and (19), only their real parts bear a physical
meaning. Up to first order in s0, Eq. (10) becomes

ω = a · k. (21)

By using Eqs. (18) and (20a), one readily arrives at

�v̇ = −s0 i �0ωEa + o(s0). (22)

Since n0 is uniform in space, it follows from Eq. (12) that TE

is o(s0), and so, at the lowest approximation in s0, the elastic
stress does not contribute to the balance of linear momentum.
On the other hand, by Eqs. (13) and (14), one obtains that

div TK = − s0�0iE
{
c2

0+�2
0[u1k

2 + u2(k · n0)2]
}

k + o(s0),
(23)

where

c0(�0) :=
√

p′
0(�0) (24)

is the velocity of sound in the isotropic limit where u1 =
u2 = 0. Finally, by Eqs. (20a), (20b), and (21), one also arrives
at

div Tdis = 1
2 (γ1 + γ2)s0ωE(k · An0)n0

+ 1
2 (γ2 − γ1)s0ωE(k · n0)An0

− 1
2 s0E

{[
1
2 (γ1 − 2γ2 + γ3) (k · n0)2 + γ4k

2
]
a

+ [
1
2 (γ3 − γ1 + 4γ7) (a · n0) (k · n0)

3By libration, here, we mean a motion in which the director keeps a
nearly uniform orientation n0 and vibrates about it as a consequence
of the flow perturbation.
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+ (γ4 + 2γ6) (a · k)
]
k

+ [
1
2 (γ3 − γ1 + 4γ7) (k · n0) (k · a)

+ 1
2 (γ1 + 2γ2 + γ3) (a · n0)k2

+ 2γ5(a · n0) (k · n0)2]n0
}
, (25)

where k2 := k · k. Equations (22), (23), and (25) will be used
in Sec. III B to derive the propagation equation that applies in
the presence of director libration. To this end, we also need to
solve the balance equation of torques (17).

A. Libration equation

At the lowest order in s0 and under the assumption that n0

is uniform in space and constant in time, Eq. (17) becomes

[Kk2 − i γ1ω] (An0) × n0 + 1
2 i (γ2 − γ1) (k · n0)a × n0

+ 1
2 i (γ2 + γ1) (a · n0)k × n0 = 0. (26)

By the constraint set in Ref. [16] on the director motion, the
balance of torque was there only satisfied on average since,
as shown by Eq. (26), for a proper instantaneous balance,
the viscous torque exerted by the acoustic flow entrains a
director vibration. It is also worth noting that, at the lowest
order of approximation in the acoustic condensation parameter
s0, the acoustic torque in Eq. (17) does not contribute to the
libration equation (26). As already shown in Ref. [16], the
acoustic torque is second order in s0 and manifests itself at
times longer than the acoustic period through a time-averaged
action similar in character to an acoustic streaming. We will
further elaborate on this in Secs. IV and V, where we will
also estimate the acoustic torque at second order in s0 and
compare it with the first-order viscous torques appearing in
Eq. (26); here, we only remark that, among the second-order
effects that characterize the slow (streaming) dynamics taking
place at time and length scales larger than the acoustic ones,
we should also include Ericksen elastic stress in the balance
equation of linear momentum.

Since A is skew symmetric, An0 is orthogonal to n0. Letting
An0 = d × n0, with d ⊥ n0, we can easily solve Eq. (26) for
d and then arrive at

An0 = −	
{
γ2(k · n0) (a · n0)n0 + 1

2 (γ1 − γ2) (k · n0)a

− 1
2 (γ1 + γ2) (a · n0)k

}
, (27)

where

	 := 1

γ1ω + i Kk2
.

A consequence of Eq. (27) is especially worth taking notice of.
In the limit as both viscosities γ1 and γ2 vanish, so does An0;
this implies, by Eq. (19), that no director libration occurs in
that limit, and a wave can propagate while n remains immobile,
even in the absence of any external restraining field. In brief,
one could also say that the director libration is a motion fed by
dissipation. Hereafter, we will assume that γ1 > 0.

We now use the explicit solution in Eq. (27) for the
director libration to derive the equation that governs the wave
propagation from the balance of linear momentum Eq. (11).

B. Wave propagation

By employing Eqs. (23) and (25), with the aid of Eq. (27), up
to first order in s0, Eq. (11) is reduced to the purely kinematic
form

2 i �0ωa = 2 i �0
{
c2

0 + �2
0[u1k

2 + u2(k · n0)2]
}

k

+ [
1
2 (γ1 − 2γ2 + γ3) (k · n0)2 + γ4k

2

− 1
2 (γ2 − γ1)2	ω(k · n0)2

]
a

+ [
1
2 (γ3−γ1+ 4γ7) (a · n0) (k · n0) + (γ4 + 2γ6)

× (a · k) + 1
2

(
γ 2

1 − γ 2
2

)
	ω(k · n0)(a · n0)

]
k

+ [
1
2 (γ3 − γ1 + 4γ7) (k · n0) (k · a)

+ 1
2 (γ1 + 2γ2 + γ3) (a · n0)k2

+ 2γ5(a · n0) (k · n0)2 + 2γ 2
2 	ω(k · n0)2(a · n0)

+ 1
2

(
γ 2

1 − γ 2
2

)
	ω(k · n0) (a · k)

− 1
2 (γ1 + γ2)2	ω(a · n0)k2

]
n0, (28)

where all γi’s are evaluated at the unperturbed density �0. We
let k and a be represented as

k = ke and a = aee + ann0, an, ae, k ∈ C, (29)

where the unit vector e designates the propagation direction
and k, ae, and an are all complex numbers to be determined.
The imaginary part k2 of k is associated with the attenuation
of the wave: 1/k2 represents the attenuation length,4 that is,
the length over which the wave amplitude is reduced by the
factor 1/e. Equation (28) must be supplemented with the mass
continuity equation (21), which, by Eq. (29), takes the form

kae + kan cos β = ω, with cos β := e · n0. (30)

It follows from Eqs. (29) and (30) that, whenever sin β = 0,
ae and an are not uniquely defined; we resolve this ambiguity
by setting an = 0 for sin β = 0.

Were 	 = 0, Eq. (28) would reduce to the propagation
equation found in Ref. [16] in the absence of director libration.
What makes Eq. (28) more difficult to solve than that equation
is the way 	 depends on the unknown k2. Here, we assume
that

γ1ω � K|k2|, (31)

so that, in Eq. (28), 	ω can be approximated by 1/γ1.
Physically, this approximation amounts to disregarding the
elastic torque in the balance equation (17); thus, elastic effects
disappear from the balances of both linear momentum and
torque, although for different reasons. In Sec. III D, we will
derive the upper bound to be imposed on ω to make (31)
compatible with the solution for the propagation equation
obtained here. As in Ref. [16], we also consider the limit
of Eq. (28) where all viscosities are small. More precisely, we
assume that there is a small dimensionless parameter ε0 such
that

γi = �0
c2

0

ω
O(ε0), i = 1, . . . ,7, (32)

4In Sec. III C, we will show that inequalities (9) imply k2 � 0.
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and we further seek solutions of Eq. (28) such that

k2 = ω

c0
O(ε0), an = c0 O(ε0), (33)

where c0 is as in Eq. (24). The validity of Eq. (32) requires
that ω does not exceed an upper bound that will be discussed
in Sec. III D along with the one that makes (31) acceptable.

Under assumptions (31)–(33), proceeding exactly as in
Ref. [16], we finally arrive at the following solution of Eqs. (28)
and (30) at the lowest order of approximation in ε0:

k = ω

c
+ i k2, (34a)

k2 = ω2

2�0c
3
0

1
c
c0

+ 1
2ω2τ 2 c0

c

[
γ4+γ6+

(
γ3+2γ7−γ 2

2

γ1

)
cos2 β

+
(

γ5 + γ 2
2

γ1

)
cos4 β

]
, (34b)

an = − i

2

cos β

sin2 β

ω

c�0

[
γ3 + 2γ7 − γ 2

2

γ1

−
(

γ3 − 2γ5 + 2γ7 − 3
γ 2

2

γ1

)
cos2 β

−2

(
γ5 + γ 2

2

γ1

)
cos4 β

]
for sin β �= 0, (34c)

ae = c − i
c2

ω
k2 − an cos β. (34d)

Here, c is the velocity of sound along e, which depends on
both ω and β through the equation,

c

c0
= ωτ√

2(
√

1 + ω2τ 2 − 1)
, (35)

where τ is the anisotropic characteristic time defined by

τ := 2
�0

c2
0

√
u1 + u2 cos2 β. (36)

The same expression (35) for c was obtained in Ref. [16]
in the absence of director libration, while the expressions for
k2, an, and ae would formally reduce to the corresponding
ones found in Ref. [16] in the limit as γ1/γ2 → ∞, where the
director libration would be hampered by an arbitrarily large
rotational viscosity γ1. Here, we record, for future reference,
the limiting expression of k2 in the absence of libration:

k∞
2 = ω2

2�0c
3
0

1
c
c0

+ 1
2ω2τ 2 c0

c

× [γ4 + γ6 + (γ3 + 2γ7) cos2 β + γ5 cos4 β]. (37)

As already pointed out in Ref. [16] for k∞
2 , since c in Eq. (35)

is a function of ω, k2 in Eq. (34b) does not depend on ω in
a purely quadratic fashion, as in earlier theoretical studies on
wave propagation in nematic liquid crystals [26–29]. Such a
nonquadratic dependence is a characteristic signature of our
assumption on the Korteweg nature of the acoustic coupling;
it will be quantitatively compared in Sec. IV with the available
experimental data.

C. Wave attenuation

We now proceed to show that both k2 and k∞
2 are not

negative whenever the dissipation inequalities (9) are satisfied.
To this end, we set z := cos2 β and call h(z) the function
defined by the expression enclosed in brackets on the right
side of Eq. (34b):

h(z) := γ4 + γ6 + (γ3 + 2γ7)z + γ5z
2 − γ 2

2

γ1
[−(z2 − z)].

Clearly, the sign of k2 is the same as the sign of h. Since we
assumed that γ1 > 0, by Eq. (9f), we also have that

γ 2
2

γ1
� γ3 + 2γ4,

and so,

h(z) � γ4 + γ6 + 2(γ7 − γ4)z + (γ5 + γ3 + 2γ4)z2

=: h0(z) ∀ z ∈ [0,1]. (38)

It readily follows from Eqs. (9c)–(9e) that both h0(0) � 0 and
h0(1) � 0. Thus, if h0 is either linear or concave, that is, if
γ5 + γ3 + 2γ4 � 0, then h0(z) � 0 ∀z ∈ [0,1], which, by (38),
is the desired conclusion. If, on the other hand, h0 is convex,
that is, if γ5 + γ3 + 2γ4 > 0, the desired conclusion follows
from the inequality h0(zm) � 0, where zm is the minimizer of
h0 in R. Indeed, an easy computation shows that

h0(zm) = (γ4 + γ6) (γ3 + γ5 + 2γ4) − (γ7 − γ4)2

γ3 + γ5 + 2γ4
.

While the denominator of this ratio is positive by assumption,
the numerator can be shown to be non-negative by taking the
product of the left sides of (9c) and (9e) and by adding the
result to the left side of (9g).

Similarly, we show that k∞
2 � 0. By Eq. (37), h is then

replaced by

h∞(z) := γ4 + γ6 + (γ3 + 2γ7)z + γ5z
2,

which can also be written as

h∞(z) = h(z) + γ 2
2

γ1
[−(z2 − z)] � h(z) � 0, ∀z ∈ [0,1],

since γ1 > 0.

D. Admissible frequency ranges

Several simplifying assumptions have been made to arrive
at Eqs. (34); here, we identify the ranges where the angular
frequency ω of the propagating wave must be chosen to make
these assumptions admissible.

First, we identify the values of ω that make ε0 in Eq. (32)
a small parameter. From Ref. [30], estimating the velocity
of sound c0 = 1.3 × 103 ms−1, from Ref. [21] (p. 231),
estimating the average viscosity γ = 10−1 Pa s, and from
Ref. [31], estimating the mass density �0 = 103 kg m−3, one
easily sees, from Eq. (32), that ε0 � 1 whenever ω � ωγ ,
with

ωγ := c2
0�0

γ
= 0.8 × 1010 s−1 ∼ 104 MHz.
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Second, we identify the angular frequencies that make the
solution (34) of the propagation equation (28) compatible with
the assumption (31). To this end, we recall, from Ref. [16],
that c ≈ c0 for ωτ < 10, and so, since by Eq. (34a), k ∼ ω/c,
estimating γ1 as 2γ and taking K ∼ 10−11 N from Ref. [21]
(p. 103), we see that Eq. (31) is satisfied for the solution (34)
whenever ω � ωK , with

ωK := c2
0γ1

K
= 3.38 × 1016 s−1 ∼ 1010 MHz.

Finally, as remarked in Sec. II, our theory has neglected the
director inertia. Such an approximation is valid if κ in Eq. (5) is
much smaller than the kinetic energy density associated with
the acoustic flow. By Eqs. (18), (29), and (34d), this latter
can be estimated as 1

2�0s
2
0c

2
0. On the other hand, by Eq. (19),

|ṅ| = s0ω|An0| + O(s2
0 ), and by Eq. (27), for the solution (34),

|An0| = O(1), so that κ can be neglected whenever ω � ωδ ,
with5

ωδ := c0

δ
= 6.5 × 1012 s−1 ∼ 106 MHz.

It is clear from the previous estimates that the largest upper
bound on ω for the validity of our theory is ωK : Such a bound
of an elastic origin can still not be exceeded when the rotational
kinetic energy κ comes into play. For ω ∼ ωδ , however, our
solution (34) ceases to be valid, as the upper bound ωγ is
violated, and so, Eq. (32) no longer applies. Thus, the most
stringent bound on ω is ωγ ; it will follow from the estimate
of τ in Sec. IV that this easily complies with the requirement
that ωτ < 10.

IV. PHENOMENOLOGICAL PARAMETERS

Using data published in the literature for N-
(p-methoxybenzylidene)-p-butylaniline (MBBA), numerical
evaluations for both dispersion and attenuation are made in
this section and are compared to acoustic experiments. Our
objective is to estimate the phenomenological parameters
introduced by our theory, namely, u1, u2, γ6, and γ7.

To account for the experimental data available in
Refs. [4,13], we introduce a measure of anisotropy for the
speed of sound c in Eq. (35) as

c := c − c|β=π/2

c|β=0
. (39)

c is a function of both ω and β, which vanishes for β = π
2 .

By assuming that

ε := u2

u1
(40)

is a small parameter, as in Ref. [16], we arrive at6

c = εf (ωτ1) cos2 β + O(ε2), (41)

5Here, we take the molecular radius of gyration δ as a typical
molecular length, and following Ref. [21] (p. 98), we estimate
δ ≈ 2 nm.

6In Eq. (41), we actually correct a typographical error that occurred
in Eq. (87) of Ref. [16].

where

τ1 := 2
�0

c2
0

√
u1,

(42)

f (x) := 1

4

x2 − 2(
√

1 + x2 − 1)√
1 + x2(

√
1 + x2 − 1)

.

By Eqs. (40) and (42), we can write Eq. (36) as

τ = τ1
(
1 + 1

2ε cos2 β
) + O(ε2).

Since f is a positive function, the speed of propagation along
the average orientation of the nematic director n0 is larger than
the speed of propagation at right angles to it whenever ε > 0.

Similarly, we introduce the following measure of anisotropy
for the attenuation k2:

k′
2 := k2

⊥k2
, (43)

where k2 := k2 − k2|β=0 expresses the change in attenuation
and ⊥k2 := k2|β=π/2 is the value of k2 when the wave
propagates at right angles to n0. It follows from Eq. (34b) that,
in the limit of small ε,

k′
2 = G(β) + O(ε), (44)

where

G(β) := sin2 β

(
1 + γ1γ5 + γ 2

2

γ1(γ3 + γ5 + 2γ7)
cos2 β

)
.

To represent how ⊥k2 depends on ω relative to a reference
angular frequency ω0, we introduce

k′′
2 := ⊥k2

⊥k2|ω=ω0

,

which, in the limit of small ε, becomes

k′′
2 = ω

ω0

√√√√√√
√

1 + τ 2
1 ω2 − 1√

1 + τ 2
1 ω2

0 − 1

√
1 + τ 2

1 ω2
0

1 + τ 2
1 ω2

+ O(ε). (45)

In this approximation, k′′
2 , unlike k′

2, is independent of
the viscosities: It depends on a single phenomenological
parameter, that is, τ1.

We used formulas (39), (41), (44), and (45) to fit the data
measured for c in Ref. [13] for MBBA at the wave frequency
ω/2π = 10 MHz and the data measured for k2 in Ref. [4] in
the range of 2–6 MHz for ω/2π . The former data were taken
from Fig. 2 of Ref. [13], and the latter data were taken from
Figs. 1 and 2 of Ref. [4].

We started from Fig. 2 of Ref. [4], which exhibits the
dependence of k2 on the wave frequency ω/2π . We fitted
these data with formula (45) using ω0/2π = 6 MHz as
the reference frequency. By employing the built-in function
FINDFIT in MATHEMATICA [32] for the least-squares fit, we
obtained τ1 = 3.47 × 10−8 s for the only fitting parameter.
From this value, we computed τ1ω1 = 2.18 at the frequency
ω1/2π = 10 MHz used in Ref. [13]. We inserted this value
of ω1τ1 in the exact formula (39) for c to validate our
assumption about the smallness of ε, which was then found to
be ε = 7.74 × 10−3 by fitting the data in Fig. 2 of Ref. [13]
for u2 = εu1. Thus, our using Eq. (45) to fit the data in
Ref. [4] was fully justified. Moreover, the data in Fig. 2 of
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Ref. [13] for c could also be fitted directly with the function
A cos2 β, which gave A = 11.25 × 10−4, consistent with the
value A = 12 × 10−4 found in Ref. [13] from the row data.
On the other hand, by using the approximate formula (41) for
c, we found instead A = εf (τ1ω1) = 11.28 × 10−4, which
is in very good agreement with the value found by the direct fit
and, thus, further confirms the validity of our assumption on ε.
Finally, we used Eq. (44) to find the value of the viscosity γ7,
taking, for γ1, . . . ,γ5 in G, the standard values for MBBA (see
p. 231 of Ref. [21]). Thus, we arrived at γ7 = 1.58 × 10−1 Pa s.
Since both k′

2 and k′′
2 are independent of γ6, this latter

viscosity would only be determined with the aid of Eq. (34b)
from direct measurements of k2.

Now, we use the preceding estimates of phenomenological
parameters in typical situations of acoustic wave propagation
to justify our linear approximation in the balance equations of
the theory. In particular, as already anticipated in Sec. III A, we
estimate the magnitude of the second-order acoustic torque and
compare it with the viscous torques surviving in the linearized
equation (26). To this end, we recall from Ref. [16] that the
time average K a of the acoustic torque over a period of the
acoustic wave is given by

K a = u2〈�(∇� · n)∇�〉 × n = −sgn (u2)K0(n0 · e)n0 × e,

(46)

where

K0 = 1

4

I0

c0
εω2τ 2

1

(c0

c

)2
. (47)

Here,

I0 = 1
2�0s

2
0c

3
0e

−2k2 x·e (48)

is related to the acoustic intensity Ia carried by the wave
through the equation,

Ia = 〈pKv · e〉 = I0

[(
c

c0

)
+ 1

4
ω2τ 2

(
c

c0

)]
. (49)

To estimate K0, we need to estimate the perturbation parameter
s0 and to find I0 accordingly. To this end, we identified
Ia with the applied acoustic intensity in a typical experi-
mental situation. More precisely, we considered the range
10–103 mW cm−2 for the applied acoustic intensity. We also
assumed that |k2x · e| � 1 and that c ∼ c0, as already done
in Sec. III D. With the foregoing estimates for τ1ω1 = 2.18
and ε = 7.74 × 10−3, valid at the wave frequency 10 MHz,
by Eqs. (48) and (49), we finally arrived at

s0 =
√

Ia

1.1�0c
3
0

. (50)

Thus, choosing Ia = 10 mW cm−2 and taking c0 = 1.3 ×
103 ms−1 and �0 = 103 kg m−3, as in Sec. III D, the perturba-
tion parameter turns out to be s0 = 6.43 × 10−6. Correspond-
ingly, the magnitude of the acoustic torque per unit volume was
found to be K0 = 3.22 × 10−4 N m−2, comparatively small
with respect to the viscous torque per unit volume in the libra-
tion equation (26), estimated by γω1s0 = 4.04 × 10 N m−2,
with γ as in Sec. III D. Then, choosing Ia = 1 W cm−2,
we found s0 = 6.43 × 10−5, K0 = 3.22 × 10−2 N m−2, and
γω1s0 = 4.04 × 102 N m−2.

Equation (46) makes the analogy with the effect of an
electric field already mentioned in Sec. II even stricter. In this
case, the interaction energy density WE and the corresponding
torque K E suffered by the director n0 would be

WE = − 1
2ε0εa (n0 · E)2 , K E = ε0εa|E|2 (n0 · e) n0 × e,

where E = Ee is the external electric field, ε0 = 8.8544 ×
10−12 C2 N−1 m−2 is the dielectric permittivity in vacuum, and
εa is the relative dielectric anisotropy. The typical value of
εa for MBBA at 25 ◦C is −0.7 [33, p. 27]. With the aid of
Eqs. (47), (48), and (50), the simple identification,

K0 = ε0|εa|E2

shows that Ia is proportional to E2 and yields E =
0.72 V μm−1 for Ia = 1 W cm−2.

V. CONCLUSIONS

We extended a variational theory for nematoacoustics
recently proposed in Ref. [16] to the case where the nematic
director can freely librate around an average orientation.
According to this theory, the acoustic field interacts with
the nematic texture through an additional elastic energy
of Korteweg type, characterized by the phenomenological
susceptibilities u1 and u2 introduced in Eq. (4). We estimated
these constitutive parameters with the aid of experimental data
available in the literature for the anisotropy of both sound
speed and wave attenuation. We also estimated one additional
viscosity (γ7) introduced in the Rayleigh dissipation function
(8) by the relaxation of the incompressibility constraint.

We solved the balance equations of the theory in the
linear approximation of acoustic propagation. In particular,
we sought plane wave solutions also involving the director
libration, and we proved that the wave attenuation is not
negative as a consequence of the semipositive definiteness
of the Rayleigh dissipation function.

Seen from an experimentalist’s point of view, perhaps the
most relevant outcomes of our theory are the anisotropies
in both sound speed and attenuation. In particular, formula
(34b) for the attenuation differs from the ones in earlier
works [26–29] in two ways. On one hand, it exhibits a
nonquadratic dependence on the frequency ω, as the speed
of propagation c, which enters Eq. (34b) also depends on ω.
On the other hand, it is affected by the librational motion
of the director in the coefficients of the anisotropic factor,
as seen by comparing Eqs. (34b) and (37). New experiments
could confirm these distinctive features of theory and possibly
determine the viscosity γ6 by direct attenuation measurements.

We showed that, in the (fast) acoustical regime, elastic
stresses and torques do not affect the motion: Ericksen
stress tensor is second order in the acoustical perturbation
parameter, and the elastic torque is negligible with respect
to viscous torques as long as the angular frequency of the
propagating wave does not exceed an upper bound much
larger than the frequency at which the rotational inertia of the
director—neglected here as usual—should also be taken into
account.

Also, the torque transferred to the director by the acoustic
wave is second order in the acoustical perturbation parameter
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and is negligible with respect to viscous torques, as confirmed
by the direct estimate in Sec. IV. Thus, acoustic torques and
elastic stresses act at time and length scales larger than the
acoustic ones: They should be regarded as streaming sources
that affect the flow through their time averages. Other steady
motions of the director texture can then take place at time
and length scales much larger than the acoustic characteristic
times and lengths, including the director relaxation dynamics.
Correspondingly, although no net hydrodynamic flow takes

place at the time scale of the acoustic vibrations, at longer
time scales, even an initially stagnant fluid may develop steady
flows by acoustic streaming, as already proved for isotropic
viscous fluids in a vast literature [34–37], originating from
Rayleigh’s work [38–40]. For nematic liquid crystals, elastic
stresses and acoustic torques are new streaming sources: They
both affect the slow director and flow dynamics, mutually
interwoven, for which the appropriate balance equations will
be derived and studied in Ref. [41].
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