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Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice
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We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional
degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a
Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the
fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a
biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme
to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic
and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous
mean-field results.
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I. INTRODUCTION

The recent characterization of biaxial nematic phases in
thermotropic liquid crystals [1] has renewed the theoretical
interest in mechanisms leading to macroscopic biaxiality in
such systems. In general, two possibilities exist [2]: (i) Either
the systems are composed of intrinsically biaxial mesogens or
(ii) the systems consist of a mixture of rodlike and disklike
mesogens. Although unquestionable experimental evidence
of biaxiality has only surfaced for systems of the first type,
there have been hints from both experiments [3] and computer
simulations [4] that mixtures can escape the curse of phase
segregation and form stable biaxial nematic phases under the
appropriate conditions. In this paper we introduce a framework
which will allow future theoretical investigations of what
such conditions might be, starting from microscopic models
and obtaining analytical results which go beyond mean-field
calculations. As a first application, we show that a very simple
choice of the interaction potential between mesogens in a
binary mixture leads to a biaxial state which is unstable toward
segregation, in agreement with previous mean-field results [5].

The inclusion of additional degrees of freedom in the Maier-
Saupe model has been used to mimic a mixture of rodlike
and disklike molecules, and to provide an explanation for the
appearance of a biaxial nematic structure [5,6]. According
to some investigations for a mean-field Maier-Saupe model
restricted to a discrete set of orientations, which we call
the Maier-Saupe-Zwanzig (MSZ) model, the inclusion of a
fixed distribution of shape variables leads to a stable biaxial
nematic phase. The biaxial region of the phase diagram is
separated by critical lines from two distinct uniaxial nematic
phases [6], in qualitative contact with some experimental phase
diagrams for a lyotropic liquid mixture [7]. This quenched
polymorphism, however, which is generally used in solid-state
systems, may not be adequate for liquids and liquid-crystalline
systems, with relatively short relaxation times, which may be
better represented by thermalized degrees of freedom. We then
carried out a mean-field investigation of the analogous MSZ
model with an annealed (or thermalized) distribution of shape
variables [8]. At the mean-field level, we have shown that a
biaxial solution of this thermalized problem is still present,
but it becomes thermodynamically unstable, and therefore
physically unacceptable.

In this paper we report an analysis of a similar MSZ model
on the deep interior of a Cayley tree, also known as a Bethe
lattice. The main purpose of this investigation is the analysis of
the global phase diagrams under the effects of fluctuations and
short-range correlations neglected in the simple mean-field
picture, but allowed for by the structure of the Cayley tree.
By restricting the mesogens to sit on the vertices of a Cayley
tree, we are following the idea of using a lattice structure to
approximate the properties of a continuous system. This has
a long tradition in statistical physics, going back to the work
of Lee and Yang on the lattice gas [9], and makes it possible
to deal with interactions of finite range in a relatively simple
mathematical context. The coordination number q of the tree
can then be interpreted as a measure of the average number of
mesogens with which a given mesogen interacts. To maximize
the effects of fluctuations in the model, we restrict ourselves
to the choice q = 3 (as q = 2 leads to a one-dimensional
structure in which no ordering at finite temperature is possible
and q → ∞ corresponds to the mean-field limit). All the
results reported here remain qualitatively valid for larger values
of q, which would be required for a quantitative comparison
with the behavior of real liquid crystals at typical densities.

The remainder of the paper is organized as follows. In
Sec. II, we define the Zwanzig or discrete version of the
Maier-Saupe model. The statistical problem is formulated in
terms of a set of nonlinear recursion relations whose fixed
points correspond to solutions deep in the interior of a large
tree [10,11]. This simple MSZ model displays a first-order
transition between a disordered and a uniaxial ordered nematic
phase, which is indicated by an overlap of the temperature
ranges of (dynamic) stability of the fixed points associated with
disordered and ordered structures. The location of this first-
order boundary comes from the application of an ingenious
scheme, due to Gujrati [12], which leads to the correct
thermodynamic free energy corresponding to each attractor,
and avoids the well-known pathologies associated with the
surface of the Cayley tree [13]. In the infinite-coordination
limit, we recover the well-known mean-field results. In
Sec. III, we introduce the MSZ model for a thermalized
binary mixture of rodlike and disklike molecules. Again, the
problem is formulated as a set of recursion relations whose
fixed points correspond to the physical solutions. Besides
the attractors associated with the disordered and two-ordered
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uniaxial structures, we find an additional fixed point associated
with a biaxial nematic structure. There is a large region of
overlap of (dynamic) stability of the two nematic uniaxial
attractors. However, we find that the attractor associated with
the biaxial nematic phase is always dynamically unstable.
Also, by using Gujrati’s method, we show that the fixed point
associated with the biaxial structure corresponds to a larger
free energy with respect to the coexisting uniaxial attractors.
This thermodynamic analysis and the (dynamic) stability
analysis rule out the physical presence of an equilibrium
biaxial phase in the Bethe lattice, in qualitative agreement
with the previous mean-field results.

II. THE MSZ MODEL ON A CAYLEY TREE

The Maier-Saupe model is described by the Hamiltonian

H = −A
∑
(i,j )

∑
μ,ν=x,y,z

S
μν

i S
μν

j , (1)

where A is a positive parameter, the first sum is over
neighboring sites on a lattice of N sites, and S

μν

i is an element
of the traceless tensor

S
μν

i = 1
2

(
3n

μ

i nν
i − δμν

)
, (2)

where n
μ

i is the μ component of the unit vector associated
with the orientation of a molecular aggregate on site i. In the
MSZ model we restrict the unit directors to the Cartesian axes
�ni = ±(1,0,0), ±(0,1,0), ±(0,0,1). The canonical partition
function is given by

Z =
∑
{�ni }

exp

[
βA

∑
(i,j )

∑
μ,ν=x,y,z

S
μν

i S
μν

j

]
, (3)

where β is the inverse of the temperature. Since S
μν

i is invariant
under the transformation �ni = −�ni , the problem is reduced to
the analysis of a three-state model, which can be shown to lead
to the same qualitative features of the continuous Maier-Saupe
model [14].

We now formulate the MSZ model on a Cayley tree. In
Fig. 1, we represent some generations (or layers) of a (rooted)
Cayley tree of coordination q = 3. Also, we illustrate one of
the branches of this tree, with a particular set of states of the
nematic molecules. Each of the q branches of a Cayley tree

 n − 2
n−1

 n 

x y

z

n

n − 1

n − 2

FIG. 1. (Left) Some layers of a Cayley tree with coordination
q = 3. Mesogens sit on the vertices of the tree and interactions are
possible only between mesogens located on vertices connected by an
edge. (Right) We also indicate some microscopic states of the sites
of one of the branches of this tree.

with n layers of sites is built from q − 1 branches with n − 1
layers. Due to the well-known thermodynamic pathologies
associated with the surface of a Cayley tree [13], our aim is
to study only those sites deep in the interior of the tree, which
define the Bethe lattice. We thus focus on the properties of the
central site (the root) of a tree with n surrounding layers as
representative of the properties of the Bethe lattice obtained
as n → ∞. The partition function of the MSZ model on such
a tree is written as

Zn = Zx
n + Zy

n + Zz
n, (4)

where Zμ
n (μ = x,y,z) is the partial partition function obtained

when the molecule occupying the central site lies along the
μ axis.

The connections with the usual nematic structures of the
liquid-crystalline systems are extracted from the tensor order
parameter

Qμν = 〈
S

μν

0

〉 = 3
2

〈
n

μ

0 nν
0

〉 − 1
2δμν, (5)

where 〈· · ·〉 indicates a thermal average and the subscript 0
refers to the central site. Once we restrict the unit vectors to lie
along the Cartesian axes, 〈nμ

0 nν
0〉 – and thus Qμν – becomes

zero for μ �= ν. Terms of the form 〈(nμ

0 )2〉 are related to the
density of nematic molecules (in the Bethe lattice) with the
symmetry axis along the μ direction (see Fig. 1). We then
adopt the correspondence〈(

n
μ

0

)2〉 → lim
n→∞

Zμ
n

Zn

, (6)

according to which we have

Qμμ
n = −1

2
+ 3

2

Zμ
n

Zn

,

satisfying the traceless property

Qxx
n + Qyy

n + Qzz
n = 0. (7)

It is convenient to introduce the variables

Sn = Qzz
n , (8)

and

ηn = Qyy
n − Qxx

n , (9)

which are more adequate to distinguish between uniaxial and
biaxial nematic structures.

To calculate Sn and ηn, we notice that Zμ
n depends on the

sum over states of the molecules in each of the q branches

Zx
n = [

e
3βA

2 Qx
n + e− 3βA

4 Qy
n + e− 3βA

4 Qz
n

]q
, (10)

Zy
n = [

e− 3βA

4 Qx
n + e

3βA

2 Qy
n + e− 3βA

4 Qz
n

]q
, (11)

and

Zz
n = [

e− 3βA

4 Qx
n + e− 3βA

4 Qy
n + e

3βA

2 Qz
n

]q
, (12)

where Qμ
n is the partial partition function of a branch with n

layers obtained when the molecule in the single site comprising
the innermost layer lies along the μ axis. For these partial
partition functions of branches, it is straightforward to write
the recursion relations

Qx
n = [

e
3βA

2 Qx
n−1 + e− 3βA

4 Qy

n−1 + e− 3βA

4 Qz
n−1

]q−1
, (13)

Qy
n = [

e− 3βA

4 Qx
n−1 + e

3βA

2 Qy

n−1 + e− 3βA

4 Qz
n−1

]q−1
, (14)
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and

Qz
n = [

e− 3βA

4 Qx
n−1 + e− 3βA

4 Qy

n−1 + e
3βA

2 Qz
n−1

]q−1
. (15)

Defining the ratios

ρx
n = Qx

n

Qz
n

and ρy
n = Qy

n

Qz
n

,

Eqs. (13) to (15) lead to

ρx
n =

(
rρx

n−1 + ρ
y

n−1 + 1

ρx
n−1 + ρ

y

n−1 + r

)q−1

≡ gx

(
ρx

n−1,ρ
y

n−1

)
, (16)

and

ρy
n =

(
ρx

n−1 + rρ
y

n−1 + 1

ρx
n−1 + ρ

y

n−1 + r

)q−1

≡ gy

(
ρx

n−1,ρ
y

n−1

)
, (17)

with r ≡ exp( 9
4βA). The connection between the variables

(Sn,ηn) and (ρx
n ,ρ

y
n ) is given by

Sn = −1

2
+ 3

2

1[
gx

(
ρx

n ,ρ
y
n

)] q

q−1 + [
gy

(
ρx

n ,ρ
y
n

)] q

q−1 + 1
, (18)

ηn = 3

2

[
gx

(
ρx

n ,ρ
y
n

)] q

q−1 − [
gy

(
ρx

n ,ρ
y
n

)] q

q−1[
gx

(
ρx

n ,ρ
y
n

)] q

q−1 + [
gy

(
ρx

n ,ρ
y
n

)] q

q−1 + 1
. (19)

The problem is now reduced to the analysis of the set of two
nonlinear recursion relations (16) and (17). Physical solutions
on the Bethe lattice correspond to the (stable) fixed points of
the mapping problem, which are solutions of

ρx = gx(ρx,ρy) and ρy = gy(ρx,ρy).

There is a trivial fixed point, ρx = ρy = 1 (S = η = 0),
corresponding to a disordered (isotropic) phase, and an ordered
fixed point ρx = ρy �= 1 (S �= 0 and η = 0), corresponding to
a uniaxial nematic structure. In this simple problem, it is easy
to see that there is no possibility of a biaxial nematic fixed
point S �= 0 and η �= 0, which would require ρx �= ρy .

The occurrence of a first-order transition is associated with
the existence of a range of temperatures in which both fixed
points are dynamically stable (in other words, both fixed points
can be reached from particular sets of initial conditions of
the dynamic map [15,16]). This is indeed the case of the
nematic-isotropic transition, as can be checked by a simple
linear-stability analysis, that is, by finding the (degenerate)
eigenvalues of the matrix

M =
⎛
⎝ ∂gx

∂ρx

∂gx

∂ρy

∂gy

∂ρx

∂gy

∂ρy

⎞
⎠ , (20)

with the derivatives calculated at the fixed point of interest.
The trivial isotropic fixed point is stable for |�iso| < 1,

where

�iso = (q − 1)
1 − exp

(− 9
4βA

)
1 + 2 exp

(− 9
4βA

) . (21)

It is easy to find a numerical expression for the eigenvalue
�uni, which is associated with the limit of linear stability of
the uniaxial nematic fixed point |�uni| < 1. In Fig. 2, we draw
graphs of �iso and �uni as a function of temperature, for a

0.5 0.52 0.54 0.56
T/qA

0.9

1

1.1

Λ

ISO

UNI

FIG. 2. Temperature dependence of the eigenvalues associated
with the analysis of linear stability of the fixed points of the simple
MSZ model on a Cayley tree of coordination q = 3. The gray region
indicates the joint range of stability (|�iso| < 1 and |�uni| < 1).

typical value of the coordination q. The presence of a common
range of stability requires a detailed thermodynamic analysis
to choose the physical solution, corresponding to the smallest
value of the free energy. The problem is further delicate, due
to the need to avoid the pathologies produced by the surface
sites of a Cayley tree.

We now resort to a special technique [12,17] to find the
free energy associated with the bulk attractors of the recursion
relations. The idea of the method is to calculate that free energy
by cleverly subtracting the contribution from the surface sites.
According to an argument of Gujrati [12], we first write the
free energy of a Cayley tree with M layers

FM = − 1

β
ln ZM

= f
(M)
0 + qf

(M)
1 + q(q − 1)f (M)

2

+ · · · + q(q − 1)M−1f
(M)
M−1, (22)

where ZM is the total partition function, defined in Eq. (4),
and f

(M)
j is the free energy per site of molecules located at

the j th layer of the tree, while the coefficients of the f
(M)
j are

the number of sites in the j th layer. We now rewrite this last
equation as

FM = f
(M)
0 + q

M∑
j=1

(q − 1)j−1f
(M)
j ,

and notice that for a tree with M − 1 layers we can write

(q − 1)FM−1 = (q − 1)f (M−1)
0 + q

M−1∑
j=1

(q − 1)j f (M−1)
j .

(The factor q − 1 enters due to the fact that an M-layer tree
has as many surfaces sites as q − 1 trees with M − 1 layers
each.) As M → ∞, the free energies per site at the surface of
both trees, f

(M)
M and f

(M−1)
M−1 , should become identical. In fact,

we expect that f
(M)
j − f

(M−1)
j−1 → 0 for all values of j . Thus

FM − (q − 1)FM−1 → f
(M)
0 + f

(M−1)
0 . (23)

Since f
(M)
0 is the free energy associated with the central

site of an M-layer tree, and the properties of this central site,
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for large M , are governed by the fixed points of Eqs. (16) and
(17), we should have

lim
M→∞

f
(M)
0 = lim

M→∞
f

(M−1)
0 ≡ fb,

the free energy per site fb thus representing all sites in the
Bethe lattice. Therefore, we conclude from Eqs. (22) and (23)
that

fb = − 1

2β
lim

M→∞
ln

ZM

(ZM−1)q−1
.

We then use Eqs. (4) and (10) through (15) in the limit M → ∞
to write the free energy

fb ≡ fb(q,A/T ; S,η), (24)

where S and η are obtained from the fixed-point values of
ρx and ρy via Eqs. (18) and (19), and then determine which
solution corresponds to thermodynamic equilibrium. In Fig. 3,
we show a graph of the uniaxial order parameter, S, in terms
of temperature. The dashed line corresponds to a coexistence
of ordered (S �= 0) and disordered (S = 0) solutions.

III. LATTICE MODEL FOR A BINARY MIXTURE
OF RODS AND DISKS

Since we are interested in modeling a biaxial phase, the
interaction between a rodlike and a disklike object should
favor local arrangements in which these objects are orthogonal
to each other. The simplest form of interaction between
aggregates at sites i and j consistent with this is

−A
∑

μν=x,y,z

λiλjS
μν

i S
μν

j ,

where the form variable λi has different signs for rodlike and
disklike. Making a further simplification, we choose λi = +1
for a rodlike and λi = −1 for a disklike aggregate. In the case
where the aggregates remain fixed at their respective sites, this
choice leads to the appearance of a biaxial phase at sufficiently
low temperatures [6].

Given a configuration {λi} of molecular aggregates, the
energy of the MSZ model for a binary mixture is then written as

H{λi} = −A
∑
(i,j )

∑
μν=x,y,z

λiS
μν

i λjS
μν

j , (25)

0 0.25 0.5
T/qA

0

0.5

1

S

FIG. 3. Graph of the order parameter S versus temperature
(1/T = βAq) for the MSZ model on a Bethe lattice of coordination
q = 3. The dashed vertical line indicates a first-order transition.

which leads to the canonical partition function

ZB =
∑
{λi }

′ ∑
{−→n i }

exp

[
βA

∑
(i,j )

∑
μ,ν=x,y,z

λiλjS
μν

i S
μν

j

]
. (26)

The sum over {λi} is restricted by the fixed concentrations of
the molecular types

Nr − Nd =
N∑

i=1

λi, Nd = N − Nr, (27)

where Nr (Nd ) is the number of rodlike (disklike) molecules
and N is the total number of molecules. It is now convenient to
introduce a chemical potential and change to a grand-canonical
ensemble


B =
N∑

Nr=0

exp(βμNr )ZB =
∑
{λi }

∑
{−→n i }

exp[−βHeff], (28)

with unrestricted sums over the sets of variables, and the
effective Hamiltonian

Heff = −μ

2

(
N∑

i=1

λi + N

)
− A

∑
(i,j )

∑
μ,ν=x,y,z

λiλjS
μν

i S
μν

j . (29)

Along the lines of the treatment of Sec. II for the simple
MSZ model on a Cayley tree, we introduce some extra states
to account for rod and disk variables (λi = ±1) and define a
set of six partial grand-canonical partition functions 
r,x

n , 
r,y
n ,


r,z
n , 
d,x

n , 

d,y
n , 
d,z

n associated with a tree of coordination
q with n surrounding layers (see Fig. 4). The notation is
such that 
r,z

n represents the partial grand-canonical partition
function of the tree with the central site in a state with
λi = +1 (rodlike) and �ni along the z direction, �ni = ±(0,0,1).
In analogy to Eqs. (10) to (12), it is straightforward to
write


r,x
n = eβμ

[
e

3βA

2 Qr,x
n + e

−3βA

4
(
Qr,y

n + Qr,z
n

) + e
−3βA

2 Qd,x
n

+ e
3βA

4
(
Qd,y

n + Qd,z
n

)]q
, (30)


r,y
n = eβμ

[
e

3βA

2 Qr,y
n + e− 3βA

4
(
Qr,z

n + Qr,x
n

) + e
−3βA

2 Qd,y
n

+ e
3βA

4
(
Qd,z

n + Qd,x
n

)]q
, (31)


r,z
n = eβμ

[
e

3βA

2 Qr,z
n + e− 3βA

4
(
Qr,x

n + Qr,y
n

) + e− 3βA

2 Qd,z
n

+ e
3βA

4
(
Qd,x

n + Qd,y
n

)]q
, (32)

n−1

n

 n − 2
n−1

n

 n − 2

FIG. 4. Two examples of configurations of rods and disks on the
sites of a Cayley tree of coordination q = 3.
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d,x
n = [

e
3βA

2 Qd,x
n + e

−3βA

4
(
Qd,y

n + Qd,z
n

) + e
−3βA

2 Qr,x
n

+ e
3βA

4
(
Qr,y

n + Qr,z
n

)]q
, (33)


d,y
n = [

e
3βA

2 Qd,y
n + e

−3βA

4
(
Qd,z

n + Qd,x
n

) + e
−3βA

2 Qr,y
n

+ e
3βA

4
(
Qr,z

n + Qr,x
n

)]q
, (34)


d,z
n = [

e
3βA

2 Qd,z
n + e

−3βA

4
(
Qd,x

n + Qd,y
n

) + e
−3βA

2 Qr,z
n

+ e
3βA

4
(
Qr,x

n + Qr,y
n

)]q
, (35)

the quantities like Qd,x
n now representing partial grand-

canonical partition functions of a branch with n layers
under the condition that the site in the innermost layer
is occupied by a disk whose symmetry axis lies along
the x axis. The full partition function of the tree is
written as


n = 
r,x
n + 
r,y

n + 
r,z
n + 
d,x

n + 
d,y
n + 
d,z

n . (36)

We now use a similar parametrization as in Sec. II. The
tensor order parameter is given by

Qμν =
〈

1

N

∑
i

λiS
μν

i

〉

= 3

2

〈
1

N

∑
i

λin
μ

i nν
i

〉
− 1

2
δμν

〈
1

N

∑
i

λi

〉
, (37)

where 〈· · ·〉 indicates a grand-canonical thermal average.
The factor 〈(∑i λi)/N〉 gives the difference between the
concentrations (number fractions) of rods and disks. It is then
natural to introduce the correspondence〈

1

N

∑
i

λi

〉
→ lim

n→∞
1


n

∑
ν=x,y,z

[

r,ν

n − 
d,ν
n

]
. (38)

The ratio 
r,z
n /
n gives the concentration of rodlike particles

with the symmetry axis along the z direction. Terms of the form
[
∑

i λi(n
μ

i )2]/N are recognized as the difference between the
concentrations of rods and disks along the same μ direction,
so that we have〈

1

N

∑
i

λi

(
n

μ

i

)2

〉
→ lim

n→∞



r,μ
n − 


d,μ
n


n

. (39)

As in Sec. II, it is interesting to work with the tensor order
parameter associated with the central site of an n-layer tree

Qμμ
n = − 1

2
n

∑
ν

(

r,ν

n − 
d,ν
n

) + 3

2



r,μ
n − 


d,μ
n


n

, (40)

such that ∑
μ

Qμμ
n = 0. (41)

Again, it is convenient to introduce parameters Sn and ηn to
characterize the distinct phases.

We can now write recursion relations for the branch partial
partition functions Qα,ν

n [formally obtained from Eqs. (30)

-0.1 0 0.1
Chemical potential (in units of qA)

0

0.2

0.4

T
/q

A -0.09 -0.06

0.432

0.438

ISOTROPIC

NrNd

FIG. 5. Stability lines in the μ × T plane for a mixture of rodlike
and disklike molecules on a Cayley tree with coordination q = 3.
Above the continuous line the isotropic phase is dynamically stable;
below the dashed line at least one of the nematic uniaxial phases
is dynamically stable; and between the dotted-dashed lines the two
nematic uniaxial phases are dynamically stable. The biaxial nematic
phase is dynamically unstable.

through (35) by taking 
α,ν
n → Qα,ν

n , Qα,ν
n → Qα,ν

n−1, and q →
q − 1], and rewrite them in terms of the set of five ratios

ρr,x
n = Qr,x

n

Qr,z
n

, ρr,y
n = Qr,y

n

Qr,z
n

,

ρd,x
n = Qd,x

n

Qr,z
n

, ρd,y
n = Qd,y

n

Qr,z
n

, ρd,z
n = Qd,z

n

Qr,z
n

,

whose connection to the physical parameters Sn and ηn is easily
determined from Eqs. (30) through (35). The resulting five-
dimensional nonlinear mapping problem can be investigated
as in the previous section. The linear-stability analysis of the
fixed points is then reduced to studying the eigenvalues of a
5 × 5 matrix, analogous to that defined in Eq. (20).

Depending on the values of temperature and chemical
potential, there appears a biaxial nematic fixed point (S �=
0 and η �= 0) besides two distinct uniaxial nematic fixed
points (with S �= 0 and η = 0); of course, there is also an
isotropic fixed point (S = 0 and η = 0). In the μ × T plane
(see Fig. 5), there is a large low-temperature region of
stability of both uniaxial fixed points. However, the fixed point
associated with the biaxial nematic structure is dynamically
unstable.

The existence of common regions of stability of distinct
fixed points requires the analysis of the associated free energy
to sort out the physically acceptable phases and to locate the
coexistence (first-order) boundaries. Again, we use Gujrati’s
method to deal with the subtleties of a Cayley tree. As in
Sec. II, the free energy is written in terms of the function

f mix
b ≡ f mix

b (q,A/T ,μ; ρr,x,ρr,y,ρd,x,ρd,y,ρd,z). (42)

The phase diagram for a tree of a typical coordination q = 3
is shown in Fig. 6. At high temperatures, there is an isotropic
phase (S = η = 0). At low temperatures, there are two distinct
uniaxial nematic phases Nr , with S > 0 and η = 0, with an
excess of rods, and Nd , with S < 0 and η = 0, with an excess
of disklike particles. In this thermalized formulation of the
MSZ model, besides the biaxial nematic fixed point being
dynamically unstable, it is associated with larger values of

011701-5



E. DO CARMO, A. P. VIEIRA, AND S. R. SALINAS PHYSICAL REVIEW E 83, 011701 (2011)

-0.15 0 0.15
Chemical potential (in units of qA)

0
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0.5
T

/q
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ISOTROPIC

Nd Nr

FIG. 6. Phase diagram of the MSZ model for a mixture of rods
and disks on the Bethe lattice (of coordination q = 3). We indicate
two uniaxial nematic (Nr and Nd ) and an isotropic phase, which are
bordered by first-order transition lines.

the free energy as compared to the uniaxial solutions, and
cannot be thermodynamically acceptable for all coordinations
q � 3. Of course, in the limit of infinite coordination (q → ∞,
A → 0, with qA fixed), we recover all of the well-known
results of the mean-field calculations. Finally, in Fig. 7 we
show the dynamic-stability lines of the isotropic and of the
uniaxial nematic phases. As expected, the first-order transition
line lies between the two stability lines. The point along
the transition line where μ = 0 is common to both stability
lines signals the fact that at this particular point (known
as the Landau point) the nematic-to-isotropic transition is
continuous.

From the experimental point of view, it is interesting
to draw the corresponding temperature-concentration phase
diagram. We note that c = −∂fb/∂μ and perform a Legendre
transformation to eliminate the chemical potential. In Fig. 8,
we draw the characteristic tie lines between coexisting uniaxial
nematic phases. The regions of coexistence of isotropic and
nematic phases are too narrow to be clearly represented in
this phase diagram. The Landau point corresponds to the point
along the transition line where c = 1/2.

-0.12 -0.06 0 0.06 0.12
Chemical potential (in units of qA)

0.432

0.436

0.44

T
/q

A

Stability limit, uniaxial phase
Transition line
Stability limit, isotropic phase

FIG. 7. Phase diagram presenting the nematic-isotropic first-
order transition line and the two lines which indicate the dynamic-
stability limit of these two phases. As expected the transition line lies
in the region (shown in gray) where there is an overlap of the dynamic
stability of the isotropic and the uniaxial nematic phases.

0 0.25 0.5 0.75 1
c

0

0.25

0.5

T
/q

A

ISOTROPIC

Nd Nr

FIG. 8. Temperature-concentration phase diagram of the MSZ
model for a mixture of rods and disks on a Bethe lattice of
coordination q = 3. The tie lines indicate the coexistence of
the uniaxial nematic phases Nr (rodlike molecules rich) and
Nd (disklike molecules rich). There is no stable biaxial nematic
phase.

IV. CONCLUSION AND PERSPECTIVES

We have formulated the problem of a MSZ model on a
Cayley tree as a set of nonlinear discrete recursion relations
whose attractors correspond to physically acceptable solutions
on the Bethe lattice (deep in the interior of the tree). Due to
the presence of first-order transitions, we have large regions
of overlap of stability of distinct attractors. We then resort to
an ingenious scheme to obtain the Bethe-lattice free energy
associated with the coexisting attractors and to determine the
thermodynamically acceptable solutions.

We first considered the simple MSZ model on a Cayley tree.
In this problem there are just two fixed points, corresponding
to disordered and uniaxial ordered structures, which are
both (dynamically) stable in a certain intermediate range
of temperatures, and which is an indication of occurrence
of a first-order transition. We then use Gujrati’s method to
locate the first-order boundary between the high temperature
isotropic and the low temperature uniaxial nematic phases. The
MSZ model for a binary mixture comes from the introduction
of a new set of shape variables and the definition of an effective
Hamiltonian in the grand-canonical ensemble. The problem
is more involved, but we can perform a relatively simple
stability analysis of the fixed points and draw a phase diagram
in terms of the temperature and chemical potential. At low
temperatures, we find large regions of overlap of stability of
fixed points associated with uniaxial phases. However, the
biaxial structure is unstable both from a dynamic-stability and
a thermodynamic standpoint. The main qualitative features of
the phase diagrams on the Bethe lattice agree with previous
mean-field predictions [8].

The framework employed in the study of the binary
mixture can be extended in straightforward ways to deal with
more complicated interaction potentials, although, of course,
requiring greater analytical effort. An obvious extension is to
consider a pair interaction described by

∑
μ,ν

[λiλj + b(λi + λj ) + c]Sμν

i S
μν

j ,
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which breaks the symmetry between rod-rod and disk-disk in-
teractions. It is also possible to introduce dilution and isotropic
repulsive forces to mimic the interaction potentials leading to
stable biaxial phases in recent computer simulations [4]. We
hope to report on such extensions in future publications. Other
extensions possibly leading to the stabilization of a biaxial
phase in mixtures, such as the introduction of polidispersity

[18,19], can also be considered, at least in principle, although
the analytical work becomes quite involved.

ACKNOWLEDGMENTS

We acknowledge financial support from the Brazilian
agencies CNPq and FAPESP.

[1] B. R. Acharya et al., Pramana 61, 231 (2003); B. R. Acharya,
A. Primak, and S. Kumar, Phys. Rev. Lett. 92, 145506 (2004);
L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski,
ibid. 92, 145505 (2004); K. Merkel, A. Kocot, J. K. Vij,
R. Korlacki, G. H. Mehl, and T. Meyer, ibid. 93, 237801 (2004).

[2] See, e.g., R. Berardi et al., J. Phys. Condens. Matter 20, 463101
(2008).

[3] D. Apreutesei and G. H. Mehl, Chem. Commun. 2006, 609
(2006).

[4] A. Cuetos, A. Galindo, and G. Jackson, Phys. Rev. Lett. 101,
237802 (2008).

[5] P. Palffy-Muhoray, J. R. de Bruyn, and D. A. Dunmur,
Mol. Cryst. Liq. Cryst. 127, 301 (1985); J. Chem.
Phys. 82, 5294 (1985); S. R. Sharma, P. Palffy-Muhoray,
B. Bergersen, and D. A. Dunmur, Phys. Rev. A 32, 3752 (1985).

[6] E. F. Henriques and V. B. Henriques, J. Chem. Phys. 107, 8036
(1997); E. F. Henriques, C. B. Passos, V. B. Henriques, and
L. Q. Amaral, Liq. Cryst. 35, 555 (2008).

[7] L. J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000 (1980);
Y. Galerne and J. P. Marcerou, ibid. 51, 2109 (1983); A. A.
de Melo-Filho, A. Laverde, and F. Y. Fujiwara, Langmuir 19,
1127 (2003).

[8] E. do Carmo, D. B. Liarte, and S. R. Salinas, Phys. Rev. E 81,
062701 (2010).

[9] T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952), and
references therein.

[10] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(Academic Press, New York, 1982), Chap. 4.

[11] C. J. Thompson, J. Stat. Phys. 27, 441 (1982).
[12] P. D. Gujrati, Phys. Rev. Lett. 74, 809 (1995).
[13] T. P. Eggarter, Phys. Rev. B 9, 2989 (1974).
[14] M. J. de Oliveira and A. M. Figueiredo Neto, Phys. Rev. A 34,

3481 (1986).
[15] M. J. de Oliveira and S. R. Salinas, Rev. Bras. Fis.

15, 189 (1985). Available online at [http://www.sbfisica.
org.br/bjp/download/v15/v15a15.pdf].

[16] M. N. Tamashiro and S. R. A. Salinas, Physica A 211, 124
(1994).

[17] T. J. Oliveira, J. F. Stilck, and P. Serra, Phys. Rev. E 80, 041804
(2009).

[18] Y. Martı́nez-Ratón and J. A. Cuesta, Phys. Rev. Lett. 89, 185701
(2002).
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