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Modeling the properties of ferrogels in uniform magnetic fields
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The properties of ferrogels in homogeneous magnetic fields are studied using a simple microscopic model
and Monte Carlo simulations. The main phenomena of interest concern the anisotropy and enhancement of the
elastic moduli that result from applying uniform magnetic fields before and after the magnetic grains are locked
in to the polymer-gel matrix by cross-linking reactions. The positional organization of the magnetic grains is
influenced by the application of a magnetic field during gel formation, leading to a pronounced anisotropy in the
mechanical response of the ferrogel to an applied magnetic field. In particular, the elastic moduli can be enhanced
to different degrees depending on the mutual orientation of the fields during and after ferrogel formation. The
model represents ferrogels by ensembles of dipolar spheres dispersed in elastic matrices. Experimental trends are
shown to be reflected accurately in the simulations of the microscopic model. In addition, the simulations yield
microscopic insights on the organization of the magnetic grains. Finally, simple relationships between the elastic
moduli and the magnetization are proposed. If supplemented by the magnetization curve, these relationships
yield the dependencies of the elastic moduli on the applied magnetic field, which are often measured directly in
experiments.
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I. INTRODUCTION

A ferrogel is composed of microscopic magnetic grains
firmly embedded in an elastic cross-linked polymer gel matrix
[1–3]. Grains on the 10-nm scale are usually ferromagnetic
or intrinsically superparamagnetic, carrying magnetic dipole
moments which can be estimated from the bulk magnetization
volume of the constituent magnetic material (usually tran-
sition metals or their oxides), while grains on the 100-nm–
1-μm scale may possess several randomly oriented magnetic
domains [4]. Traditionally, magnetic polymer composites have
been fashioned from materials with rather high elastic moduli,
meaning that the mechanical responses of the composites
to external magnetic fields are insignificant. Ferrogels, on
the other hand, are made from polymeric constituents with
much lower elastic moduli, leading to enhanced magnetic
and mechanical responses to external stimuli. The coupling
between magnetic and mechanical properties leads to a large
number of functionalities and applications. Ferrogels can
be used as soft actuators in which magnetic stimuli (such
as magnetic-field gradients) lead to deformations; examples
of applications include crawling “robots” [5,6], media for
localized hyperthermic treatment [7,8] and drug delivery [9],
and artificial muscles [10,11]. Stresses, strains, temperature
changes, and chemical stimuli (such as changes in pH and
ionic strength or the addition of swelling agents) act primarily
on the polymer-gel matrix but lead to changes in the magnetic
susceptibility and so a ferrogel may also function as a
sensor [12].

Magnetic gels also play key roles in the formation of crack
patterns in thin films of magnetic colloidal suspensions drying
on a substrate in the presence of a magnetic field [13,14].
As the solvent evaporates and the magnetic grains become
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more concentrated, the suspension forms a gel phase which
then adheres to the substrate. As more solvent evaporates,
large tensile stresses build up due to the shrinkage of the thin
film and the adhesion of the film to the substrate. At some
point, the film ruptures and crack patterns appear. It turns
out that the spacings between cracks—whether directional or
isotropic—follow a universal scaling law depending on the
thickness of the film [13]. In addition, the shapes of cracks can
be used to estimate the Young’s modulus of the gel just prior
to crack formation [14].

The properties of ferrogels are dictated by the coupling
of magnetostriction (field-induced deformation leading to a
change in magnetic susceptibility), magnetostatics (interac-
tions between magnetic dipoles), and the elastic properties of
the polymer-gel matrix. A manifestation of this coupling can
be observed in the deformation of a macroscopic ferrogel body
in a uniform magnetic field [15–21]. Since a uniform magnetic
field exerts no net force on a magnetic dipole, the deformation
is driven entirely by an interplay of the aforementioned effects,
and the result depends rather sensitively on the geometry of
the ferrogel body. Of course, the most dramatic deformations
(even on the order of 100%) can be achieved with the
application of magnetic-field gradients [1,2,22–24]. Although
such deformations can be rationalized from a relatively simple
treatment of the magnetic interactions and the elastic extension
of the polymer-gel matrix, there are plenty of nontrivial effects
such as magnetic and mechanical hysteresis which require
more detailed microscopic descriptions [12].

The mechanical properties of ferrogels exhibit subtle but
nonetheless important dependencies on applied uniform mag-
netic fields. Significantly, the nature and extent of these effects
can be tuned by altering the synthetic conditions. In recent
work, ferrogels have been synthesized in uniform magnetic
fields. Before the cross-linking reaction is initiated between
the polymers, the magnetic grains can diffuse throughout the
sample and adopt whichever microstructures and orientations
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that minimize the free-energy for the fluid phase in the presence
of the magnetic field. Uniform fields are well known to
promote chainlike positional and orientational correlations
between magnetic grains. Subsequently, the cross-linking
reaction can be chemically initiated and the polymer gel is
formed, locking in the anisotropic positional microstructure
of the magnetic grains. This naturally leads to an anisotropy
in the elastic properties of the ferrogel since the forces between
the magnetic grains will depend on the directions in which
stresses and magnetic fields are applied. This has been demon-
strated in a number of experimental situations [12,22–27].
In Ref. [27] for example, 10-to-30-wt% suspensions of
iron-carbonyl microspheres in cross-linked polymer gel were
prepared in applied fields of 400 mT and then subjected to
fields in various orientations. It was found that the elastic
modulus can be enhanced to varying degrees depending on the
orientation of fields during synthesis and measurement. If no
field is applied during synthesis, then the elastic modulus of a
30-wt% ferrogel increases from 13 to 15 kPa (15% increase).
If the fields during synthesis and measurement are parallel,
then the elastic modulus in the field direction increases from
54 to 87 kPa (61% increase), while those in the transverse
directions increase from 26 to 35 kPa (35% increase). If the
fields during synthesis and measurement are perpendicular,
then the elastic modulus in the measurement-field direction
increases from 26 to 28 kPa (8% increase), while that in the
synthesis-field direction increases from 54 to 60 kPa (11%
increase). The increases in elastic moduli are less pronounced
with lower concentrations of magnetic material. Qualitatively
similar trends are seen for other ferrogels, including those
containing much smaller magnetic grains [23]. Clearly, these
features are due to the interplay between the elastic properties
of the gel, the distribution of the magnetic particles throughout
the ferrogel, and the resulting magnetostatic forces between the
dipoles and the applied field.

The aim of this work is to establish a working microscopic
model of a ferrogel that incorporates the most important
features of the positional microstructure and possesses phys-
ical properties that are in good agreement with those of
real materials. To this end, a ferrogel is modeled as an
elastic continuum in which are embedded interacting dipolar
spheres. Given this microscopic model, Monte Carlo (MC)
computer simulations are performed to generate typical fluid
microstructures and to determine the responses of the resulting
ferrogel to applied magnetic fields.

In this preliminary study, the model is restricted to
monodisperse dipolar spheres, although it is recognized that
polydispersity is an unavoidable experimental fact [28,29];
nonetheless, the good agreement with experiment to be demon-
strated in what follows shows that this assumption is valid.
Another simplifying assumption is that the ferrogel can only
undergo affine distortions. This means that shear deformations
and irregular shape distortions are not considered. Shear
moduli of elastomers with imbedded magnetic particles can be
significantly enhanced with magnetic fields [30], but this more
complicated situation will be addressed in future work. It is
noted that models with explicit representations of the polymer-
gel matrix are perhaps better suited to the case of nonaffine
distortions [31], albeit with a greater computational cost. The
case of ferromagnetic particles is considered because rather a

lot is known about their fluid-phase magnetization properties
from a theoretical perspective [32,33] and it turns out that this
also provides adequate predictions for the model ferrogels.
Typically, ferromagnetic particles are limited to the 10-nm size
range [4] and although ferrogels are made with such particles
[12,23,24], particles on the 100-nm–1-μm scale are sometimes
preferred [22,24–27]. Detailed theoretical predictions for
the magnetization curves and magnetic susceptibilities of
anisotropic ferrogels are lacking [34]. It will be shown that
for the current model there exist simple relationships between
the elastic moduli and the magnetization, and so if the
magnetization curve is known, then so are the dependencies of
the elastic moduli on the magnetic-field strength. Finally, an
issue related to the preceding points is that the dipole moment
of a magnetic grain may reorient by Néel relaxation and/or by
Brownian rotation of the particle as a whole [4]. It is assumed
here that the dipole moment is free to rotate unhindered by
interactions between the gel matrix and the magnetic grain.

This article is organized as follows. The microscopic
model and simulation protocol is described in Sec. II and
particular attention is paid to the choices of reduced units
and appropriate simulation parameters for useful comparisons
with experiment. The simulation results are presented in
Sec. III with emphases on the magnitude and anisotropy of
the elastic moduli and the relationships between the elastic
moduli and the magnetization. Section IV concludes the paper
with a summary and an outlook on future developments.

II. MODEL AND METHODS

The ferrogel is modeled as a suspension of dipolar hard
spheres (DHSs) trapped in an elastic matrix. The simulated
region of the ferrogel is assumed to be orthorhombic and its
deformations are restricted to be affine; that is, the coordinates
of a particle are equal to r = (Lxsx,Lysy,Lzsz), where Lα are
the box lengths (which may fluctuate) and − 1

2 � sα � 1
2 are

fractional coordinates (which stay constant).
The following protocol was used to prepare samples of a

model gel with a prescribed concentration of magnetic grains.
Fluid-phase configurations were generated using standard
N-P-T MC simulations [35,36] of N = 250 DHSs in a
cubic simulation cell of volume V = L3 and with a uniform
magnetic field H f applied; in what follows, the subscript
“f” refers to simulations in the fluid phase. The Boltzmann
distribution for the fluid is

pf ∝ V N exp [−β (UDHS + PV − μ0 H f · M)], (1)

where β = 1/kBT , UDHS = ∑N
i<j uij is the DHS interaction

potential energy, and M = ∑N
i μi is the magnetization. The

pair potential for two DHSs with separation vector r and dipole
moments μi and μj is

uij =
⎧⎨
⎩

∞ r � σ,
μ0

4π

[
μi · μj

r3
− 3(μi · r)(μj · r)

r5

]
r > σ,

(2)

where σ is the hard-sphere diameter. The long-range dipolar
interactions were handled using the Ewald summation with
conducting boundary conditions [35]. One MC sweep con-
sisted of, on average, N translational or orientational particle
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moves and one volume move. The maximum translational and
orientational displacement parameters were adjusted to give
acceptance rates of 20% and 50%, respectively. Simulation
configurations were saved at intervals of 104 sweeps. The
N-P-T runs yielded an average concentration ρ = 〈N/V 〉 and
an average fluid box length 〈L〉f . At least 20 independent
fluid-phase configurations were generated for each ferrogel.

The solid ferrogel was modeled at zero pressure in an
orthorhombic cell by performing independent moves in the
box dimensions Lx , Ly , and Lz. The DHSs underwent only
orientational moves because real magnetic grains are locked in
to the ferrogel matrix. The effects of the gel were represented
with an elastic potential

Uel = 1

2
L3

0G0

∑
α=x,y,z

(
Lα

L0
− 1

)2

, (3)

where L0 = 〈L〉f is the equilibrium cubic box length of the
elastic matrix. Simulations of the ferrogel in an arbitrary
homogeneous magnetic field Hg were performed according
to the Boltzmann distribution,

pg ∝ exp [−β(UDHS + Uel − μ0 Hg · M)], (4)

where the subscript “g” refers to simulations in the ferrogel
phase. Note that the factors of V N and exp (−βPV ) are now
omitted because the only degrees of freedom are the dipole
orientations and the box lengths, and the latter are sampled
as if the gel is a solid body with embedded interaction sites,
undergoing affine thermal fluctuations under zero applied pres-
sure.1 The elastic modulus of the ferrogel in direction α was
determined by measuring fluctuations in the corresponding
strain [37],

Gα = kBT

〈V 〉g
〈
ε2
α

〉
g

, (5)

where

εα = Lα

〈Lα〉g
− 1 (6)

and 〈Lα〉g and 〈V 〉g are, respectively, the average box lengths
and volume of the ferrogel and not those for the parent fluid
which may have been prepared under a different applied
magnetic field. All ferrogel properties were averaged over at
least 20 simulations of 106 MC sweeps, each started from
an independent particle configuration generated in the fluid
phase. It is noted that systematic finite-size errors appear to be
insignificant compared to the statistical errors arising from
sampling different configurations. Spot checks were made
with simulations of N = 500 DHSs, and the results were in
agreement with those from 250-particle simulations within
statistical errors.

1To show that Eq. (4) is correct, imagine that the DHS and dipole-
field interactions are turned off so that pg ∝ exp (−βUel). For a large-
enough system in which the fluctuations in Lα are small compared to
L0, the ensemble averages are given in terms of elementary Gaussian
integrals and so 〈Lα〉 = L0 and Gα = G0 (5), which are the correct
ensemble averages for the gel containing noninteracting particles.

Three distinct situations have been studied: (i) a ferrogel
prepared with no magnetic field applied (H f = 0); (ii) a
ferrogel prepared with a magnetic field H f = (Hx,0,0); and
(iii) a ferrogel prepared with a magnetic field H f = (0,0,Hz).
In each case, the properties of the ferrogel were measured
with a field applied in the x direction, Hg = (Hx,0,0), so that
in cases (ii) and (iii) the field is parallel and perpendicular,
respectively, to the enhanced positional correlations in the
parent fluid phase. With realistic parameters, the anisotropy
of the microstructure is not apparent from the simulation
snapshots; some snapshots are shown in Fig. 1. The extent
of the correlations is discussed in detail in Sec. III.

A. Parameters and reduced units

All simulations were performed in reduced units defined
using the DHS diameter σ as the basic unit of length and the
thermal energy kBT as the basic unit of energy. Experimental
conditions vary widely, but some characteristic choices are
made here to afford some contact with real materials. Real
ferrogels are often synthesized with magnetic compositions in
the region of 10%–30% by weight. The magnetic component
may consist of roughly spherical grains of magnetite (Fe3O4)
with mean diameters σ ∼ 10 nm [12,23,24]. The mass density
of magnetite is 5 g cm−3 and by assuming that the polymer
gel has a mass density close to 1 g cm−3, the required
volume fraction of magnetic grains is ϕ = πρσ 3/6 ∼ 0.01 –
0.1. N-P-T simulations of the fluid phase were carried out
with βPσ 3 = 0.15 and 0.25, giving volume fractions of
ϕ � 0.07 and 0.10, respectively. For magnetite the saturation

FIG. 1. (Color online) Simulation snapshots of DHS fluids.
(a) H∗

f = 0, ϕ = 0.064; (b) H∗
f = (0,0,5), ϕ = 0.071; (c) H∗

f = 0,
ϕ = 0.096; (d) H∗

f = (0,0,5), ϕ = 0.106.
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TABLE I. Results for model ferrogels prepared from the fluid phase in a magnetic field H f . P is the osmotic pressure of the DHSs in
the fluid phase, ρ is the concentration of DHSs, and ϕ is the corresponding volume fraction. Mx is the average magnetization in the field
direction. Gα(0) and 	Gα are the fitting parameters in Eqs. (12) and (13) relating the elastic moduli to the magnetization in the x direction.
The figures in brackets are the estimated statistical uncertainties in the final digits.

H∗
f βPσ 3 ρσ 3 ϕ Mx/Nμ βGx(0)σ 3 β	Gxσ

3 	Gx/Gx(0) βGz(0)σ 3 β	Gzσ
3

0 0.15 0.123 0.064 0.0004(2) 15.88(14) 2.97(30) 0.187(19) 15.52(34) −0.06(78)
0 0.25 0.183 0.096 −0.0003(2) 20.92(24) 7.76(65) 0.371(31) 20.66(13) 2.01(37)
(5,0,0) 0.15 0.136 0.071 0.81611(8) 20.85(13) 8.33(29) 0.399(14) 15.03(14) 1.07(36)
(5,0,0) 0.25 0.203 0.106 0.82179(7) 27.862(56) 24.00(14) 0.8614(54) 20.78(17) 2.70(43)
(0,0,5) 0.15 0.136 0.071 0.81611(8) 14.90(21) 2.70(46) 0.181(31) 19.692(63) −1.77(14)
(0,0,5) 0.25 0.203 0.106 0.82179(7) 19.099(51) 8.39(12) 0.4393(64) 25.95(11) −3.80(24)

magnetization is Ms = 4.8 × 105 A m−1 at T = 293 K. The
reduced dipole moment is defined as μ∗ =

√
βμ0μ2/4πσ 3

and with μ = πMsσ
3/6, this parameter has a value of 1.25

at room temperature. In this work, a value of μ∗ = 1 is used
throughout. The reduced magnetic-field strength is defined
as H ∗ = H

√
4πβμ0σ 3. A value of H ∗ = 1 corresponds to

a real magnetic-field strength of H = 16 kA m−1 (or B =
20 mT); values of H ∗ in the range 1–10 correspond to the
magnetic fields typically applied in experiments. The reduced
elastic modulus is defined as G∗ = βGσ 3. Typical cross-
linked polymer gels have elastic moduli G0 ∼ 10–100 kPa,
corresponding to reduced elastic moduli G∗

0 ∼ 2 –20. In this
work, a value of G∗

0 = 10 is used throughout.

III. RESULTS

Table I summarizes some basic parameters for the systems
considered in this work. For the fluid phases simulated with an
applied field, a reduced magnetic-field strength of H ∗ = 5
was found to give a high magnetization M/Nμ � 0.8;
fluid configurations at this field strength were used for the
subsequent ferrogel simulations. For a given osmotic pressure
P , the average concentration of DHSs in the fluid phase
varies only weakly with applied field. When the elastic gel
potential is switched on, the average concentration changed

by an insignificant amount; the precise values are reported for
each ferrogel in what follows.

A. H∗
f = 0, H∗

g = (H∗
x ,0,0)

Figure 2 shows results for model ferrogels at two different
concentrations, prepared with no magnetic field applied. In
real applications, the deformation of a ferrogel in an applied
magnetic field is best characterized with reference to the zero-
field dimensions. Relative deformations are therefore defined
by

δ(· · ·) = 〈· · ·〉g(Hx)

〈· · ·〉g(0)
− 1. (7)

δ(Lα) and δ(V ) are shown in Fig. 2 for each of the model
ferrogels as a function of applied field H∗

g = (H ∗
x ,0,0). The

x dimensions of the system shrink a little due to the alignment
and nose-to-tail attraction of the dipoles along the direction of
the field, while the transverse dimensions expand due to the
corresponding side-by-side parallel repulsions. Nonetheless,
these distortions are much less than 1% and are therefore
insignificant (as observed in experiments). The variation in the
system volume is also insignificant, being on the order of 0.1%.
It is therefore safe to make the common assumption that the
overall volume is fixed. The concentrations of DHSs therefore
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FIG. 2. (Color online) Relative deformations
δ (top row) and elastic moduli Gα (bottom row)
as functions of the applied magnetic field H∗

g =
(H ∗

x ,0,0) for model ferrogels prepared with no
magnetic field applied and at magnetic volume
fractions ϕ = 0.064 (left column) and ϕ = 0.095
(right column). In (a) and (b) the points are δ(Lα)
(α = x,y,z) and the line is δ(V ). In (c) and (d) the
points are from simulations and the solid lines are
from Eqs. (12) and (13) with Mx(Hx) given by
Eq. (10). Properties in the x, y, and z directions
are indicated by circles, squares, and diamonds,
respectively.
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remain roughly constant with applied field, and the average
concentrations shown in Fig. 2 apply to each field strength
and vary imperceptibly from the fluid-phase concentrations
reported in Table I. Snapshots of the DHS configurations are
shown in Figs. 1(a) and 1(c).

The elastic moduli Gα are shown in Fig. 2. First, the elastic
moduli are seen to increase with increasing DHS concentration
due to the influence of the interparticle interactions. Upon
the application of a field, the elastic modulus in the field
direction (Gx) increases with increasing field strength, while
the elastic moduli in the transverse directions (Gy ,Gz) remain
roughly constant. The increase in Gx is more pronounced at
the higher DHS concentration, in good correspondence with
what is observed in experiments. To compare further with
experiment, a DHS volume fraction of ϕ = 0.064 equates to a
magnetic loading of about 25 wt%. In this case, G∗

x increases
by 13% from 16 to 18; in real units, this corresponds to
Gx = 65–73 kPa. This enhancement is comparable to that
seen in some experiments, but a more detailed comparison is
precluded by the large number of variables such as particle-size
polydispersity (and its relation to ferromagnetism and intrinsic
superparamagnetism), polymer-gel elastic modulus, and range
of magnetic-field strengths that differ from study to study.

B. H∗
f = (5,0,0), H∗

g = (H∗
x ,0,0)

Figure 3 shows results for model ferrogels at two different
concentrations, prepared with a magnetic field H∗

f = (5,0,0).
As for the zero-field case, the relative deformations δ(Lα)
and δ(V ) are less than 1% and the overall DHS concen-
tration remains almost constant over the whole range of
magnetic-field strengths. An applied magnetic field increases
the elastic modulus in the field direction, while the elastic
moduli in the transverse directions show only very slight
increases; these changes are mirrored by the very small but
systematic variations in δ(Lα). In the system with ϕ = 0.071
(corresponding to a loading of 28 wt%) G∗

x increases by 33%
from 21 to 28 (in real units 85–113 kPa). This increase is

FIG. 4. Grayscale plots of the pair correlation function g(r‖,r⊥)
in DHS fluids; x = r/σ is the dimensionless distance. (a) H∗

f = 0,
ϕ = 0.064; (b) H∗

f = (5,0,0), ϕ = 0.071; (c) H∗
f = 0, ϕ = 0.096;

(d) H∗
f = (5,0,0), ϕ = 0.106.

greater than that in the H f = 0 case discussed previously; this
is in qualitative agreement with experiment. Clearly, this has
to do with the way the particles are positioned in the matrix.

Figures 1(b) and 1(d) show that there are no clearly de-
fined chainlike clusters. Nonetheless, the dipolar orientations
are aligned by an applied field and the particle positions
show enhanced nose-to-tail correlations in the field direction.
Figure 4 shows a two-dimensional, grayscale plot of the
pair correlation function g(r‖,r⊥), where r‖ and r⊥ are the
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FIG. 3. (Color online) Relative deforma-
tions δ (top row) and elastic moduli Gα (bottom
row) as functions of the applied magnetic field
H∗

g = (H ∗
x ,0,0) for model ferrogels prepared in

a field H∗
f = (5,0,0) and at magnetic volume

fractions ϕ = 0.071 (left column) and ϕ = 0.107
(right column). In (a) and (b) the points are δ(Lα)
(α = x,y,z) and the line is δ(V ). In (c) and (d)
the points are from simulations and the solid
lines are from Eqs. (12) and (13) with Mx(Hx)
given by Eq. (10). Properties in the x, y, and z

directions are indicated by circles, squares, and
diamonds, respectively.
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parallel and perpendicular projections, respectively, of the pair
separation vector on to the magnetic-field direction. The light
regions show that there are enhanced positional correlations
in the field direction. Consequently, when a field is applied to
the ferrogel in the same direction, the interparticle forces are
enhanced. A thorough theoretical and simulation analysis of
anisotropic correlations in DHS fluids is under way [38].

Interestingly, there is already a degree of anisotropy in
the elastic moduli in zero field: the material is stiffer in the
x direction than in the y and z directions. This is also due to
the enhanced positional correlations in the x direction; even in
zero field, the DHSs are still close to contact and interacting
with each other strongly through both the hard-core and the
dipolar forces. The particles are separated further from one
another in the y and the z directions, however, and this leads
to a relative softening of the material in those directions. The
zero-field anisotropy observed here is in qualitative agreement
with what is seen experimentally [12,23,24,27].

C. H∗
f = (0,0,5), H∗

g = (H∗
x ,0,0)

The final situation to be studied is when the field applied
to the fluid phase is perpendicular to the field applied to the
resulting ferrogel. Figure 5 shows the results. Once again,
the relative deformations of the ferrogel in an applied field
are rather small, being less than 1%. In zero field, the elastic
moduli show anisotropies opposite to those in the previous
section: The elastic modulus in the direction of H f (now the
z direction) is greater than those in the other two directions;
this is in good correspondence with experiment. As before,
this is due to the presence of enhanced positional correlations
in the field direction between particles close to contact. An
applied magnetic field increases the elastic modulus in the field
direction (x) and decreases that in the z direction. The particle
positions are correlated in the z direction but the dipoles are
oriented along the x axis (side-by-side parallel), which means
that the dipoles repel along the z direction; this manifests itself
in a very slight increase in δ(Lz) and a reduction in the elastic

modulus. Although no chainlike clusters are apparent in the
simulation configurations, enhanced correlations in the field
direction are certainly there as already shown in Fig. 4. For
the ferrogel with ϕ = 0.071 (corresponding to a loading of
28 wt%) G∗

x increases by 13% from 15 to 17 (in real units 61–
69 kPa); this change is in good agreement with that typically
seen in experiments. The elastic modulus and deformation in
the y direction show almost no changes.

D. The relationships between the elastic moduli,
the magnetization, and the field

Figures 2, 3, and 5 show the variations of Gα with magnetic-
field strength Hx . Now attention is turned to the detailed
variation of Gx (along the field direction). In earlier work,
Varga et al. noted that at small Hx , Gx(Hx) − Gx(0) ∝ H 2

x ,
while at large Hx , Gx(∞) − Gx(Hx) ∝ 1/H 2

x [12,27]. On this
basis, they proposed a fitting function equivalent to

Gx(H ) = Gx(0) + 	Gx

(
H 2

x

aH + H 2
x

)
, (8)

where aH is a material parameter. Equation (8) gives excellent
fits to experimental data, but it is a heuristic relationship and
it would be desirable to obtain a more physically transparent
form. To this end, note that at small Hx , the magnetization
curve Mx(Hx) ≈ χHx , where χ is the initial magnetic sus-
ceptibility. This suggests that Gx may have a very simple
dependence on the square of the corresponding magnetization
M2

x ; the magnetization curve will be considered first, and
then the dependence of Gx on Mx will be revealed. At large
Hx , the magnetization reaches saturation as Mx(Hx) ≈ Nμ −
N/βμ0Hx because the field-dipole interaction dominates and
so the magnetization curve reduces to the appropriate limit of
the single-particle, Langevin result:

ML
x (Hx) = Nμ

[
coth (βμ0μHx) − 1

βμ0μHx

]
. (9)
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FIG. 5. (Color online) Relative deformations
δ (top row) and elastic moduli Gα (bottom row)
as functions of the applied magnetic field H∗

g =
(H ∗

x ,0,0) for model ferrogels prepared in a field
H∗

f = (0,0,5) and at magnetic volume fractions
ϕ = 0.071 (left column) and ϕ = 0.106 (right
column). In (a) and (b) the points are δ(Lα) (α =
x,y,z) and the line is δ(V ). In (c) and (d) the
points are from simulations and the solid lines
are from Eqs. (12) and (13) with Mx(Hx) given
by Eq. (10). Properties in the x, y, and z directions
are indicated by circles, squares, and diamonds,
respectively.
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FIG. 6. Magnetization curves for ferrofluids
and ferrogels (points) with the predictions of
modified mean-field theory for the fluid phase
(lines). (a) Fluids. (b) Ferrogels prepared with no
magnetic field applied. (c) Ferrogels prepared in
a field H∗

f = (5,0,0). (d) Ferrogels prepared in
a field H∗

f = (0,0,5). The volume fractions ϕ of
DHSs are indicated in the legend.

Figure 6 shows the magnetization curves for two DHS fluids
and all six of the model ferrogels studied in this work. There
is very little dependence on the DHS concentration and the
preparation conditions. (In all cases, My and Mz are zero within
the statistical uncertainties.) Theoretical magnetization curves
for DHS fluids are shown for comparison. According to the
modified mean-field theory of Ivanov and Kuznetsova [32],
the fluid magnetization curve is

Mx(Hx) = ML
x

(
H eff

x

)
, (10)

where the effective field H eff
x is given by

H eff
x = Hx + 4π

3

ML
x (Hx)

V
+ (4π )2

144

ML
x (Hx)

V 2

dML
x

dHx

.

(11)

The modification of the field accounts for dipole-dipole
interactions in a systematic perturbation-theory expansion
in terms of ρ and βUDHS [32]. Equation (10) has been
shown to give an excellent account of the magnetization
curves in real and simulated ferrofluids, and the corresponding
predictions for the magnetic susceptibility are also highly
accurate [28,29,32,33]. This is reconfirmed for DHS fluids
in Fig. 6(a). Figures 6(b)–6(d) show that Eq. (10) also gives
adequate descriptions for the ferrogels.

Figure 7 shows the elastic modulus Gx plotted against M2
x

for all six ferrogels studied in this work. As anticipated, the
results can be fitted accurately using the simple relationship

Gx(Mx) = Gx(0) + 	Gx

(
Mx

Nμ

)2

, (12)

where 0 � Mx/Nμ � 1 is a dimensionless, fractional measure
of the magnetization. On symmetry grounds, Gx(Mx) must
be an even function of Mx and the high quality of the
fits suggests that terms higher in order than M2

x are not
required. The fit parameters Gx(0) and 	Gx are given in
Table I. Figure 7 illustrates succinctly how the degree of
enhancement in Gx depends on the DHS concentration and

the preparation conditions, as discussed in Secs. III A–III C.
A convenient measure for the maximum possible enhancement
in Gx is the ratio 	Gx/Gx(0); these values are included in
Table I and confirm that, as seen in experiments, the greatest
enhancement in elastic modulus is achieved when H f and Hg

are parallel.
Equations (10) and (12) can be combined to yield the

relationship between Gx and Hx . The resulting curves are
shown in Figs. 2, 3, and 5. In all cases the agreement with
simulation is essentially perfect. A better representation for
the magnetization curve may be sought [34], but Eq. (10) is
clearly adequate for the current purposes.

In the ferrogels prepared with H∗
f = 0 and H∗

f = (5,0,0),
Gy and Gz show only very weak dependencies on the applied
field. In the H∗

f = (0,0,5) case, however, Gz exhibits an
interesting dependence on Hx . By analogy with Eq. (12), a
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FIG. 7. (Color online) Ferrogel elastic modulus Gx as a function
of the square of the magnetization M2

x (points) with the fits from
Eq. (12) (lines). The magnetic fields and volume fractions ϕ of DHSs
are indicated in the legend.
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FIG. 8. (Color online) Ferrogel elastic modulus Gz as a function
of the fourth power of the magnetization M4

x (points) with the fits
from Eq. (13) (lines). The magnetic fields and volume fractions ϕ of
DHSs are indicated in the legend.

simple relationship between Gz and Mx is sought. It turns out
that, heuristically, the best expression for fitting is

Gz(Mx) = Gz(0) + 	Gz

(
Mx

Nμ

)4

. (13)

Figure 8 shows Gz plotted against M4
x for all six ferrogels

studied in this work. Excellent fits are obtained, although the
variations in Gz for the H∗

f = 0 and H∗
f = (5,0,0) cases are

small; the fitting parameters are given in Table I.
When supplemented by the magnetization curve from

Eq. (10), Eq. (13) furnishes an expression for Gz in terms of
Hx . The resulting curves are shown in Figs. 2, 3, and 5. Once
again, the agreement with simulation is essentially perfect.

Finally, the anisotropy of a ferrogel can be characterized by
a simple parameter such as

Axz = Gx − Gz

Gx + Gz

, (14)

where the x and z components are selected because they
show the greatest variations. Figure 9 shows Axz for all six
ferrogels. In the H∗

f = 0 case, the zero-field anisotropy is
essentially zero within the statistical uncertainties. Applying a
field increases the anisotropy, with the effect being more highly
pronounced at higher concentration. In the H∗

f = (5,0,0) case,
the zero-field anisotropy and high-field asymptote are greater
than those for the H∗

f = 0 case. The zero-field anisotropy in the
H∗

f = (0,0,5) case is negative because of the stiffening in the
z direction, as discussed in Sec. III C . With H∗

f = (0,0,5) and
ϕ = 0.106 it is possible to tune the magnetic field (H ∗

x � 5)
so that the elastic moduli in the x and z directions are equal.
Of the three cases, the greatest anisotropy is achieved with
H∗

f = (5,0,0). Equations (12), (13), and (10) can be substituted
in to Eq. (14) to describe the dependence of the anisotropy on
the applied field. Figure 9 shows the resulting curves, which
are in excellent agreement with the simulation data.
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FIG. 9. Anisotropy Axz = (Gx − Gz)/(Gx + Gz) of the elastic
moduli in the x and z directions. (a) Ferrogels prepared with no
magnetic field applied. (b) Ferrogels prepared in a field H∗

f = (5,0,0).
(c) Ferrogels prepared in a field H∗

f = (0,0,5). The volume fractions ϕ

of DHSs are indicated in the legend. The points are from simulations
and the lines are from a combination of Eqs. (12) and (13) with
Mx(Hx) given by Eq. (10).

IV. CONCLUSIONS

A simple microscopic model of ferrogels has been de-
scribed and its properties have been determined using MC
simulations. The model represents the material as a dispersion
of DHSs trapped in an elastic matrix. In this preliminary study,
a portion of ferrogel was restricted to be orthorhombic and only
allowed to undergo affine deformations. Despite the simplicity
of the model, it captures much of the phenomenology from ex-
perimental studies. Specifically, the elastic moduli of ferrogels
can be tuned by applying uniform magnetic fields during the
gel-formation stage; the field gives rise to a subtle enhancement
of positional correlations between magnetic grains and a
pronounced anisotropy to the material properties. A very
significant enhancement of the elastic modulus can then be
observed if the ferrogel is then placed in a parallel uniform
field; less pronounced effects occur with other arrangements
of fields during and after the synthesis stage. It has been
demonstrated using MC simulations that the model ferrogel
mimics experimental trends quite reliably, while providing
specific insights on the microscopic arrangements of the
magnetic grains. In addition to these insights, the simulation
results suggest a particularly simple relationship between the
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elastic moduli and the magnetization; when supplemented by a
magnetization curve, this relationship leads to the dependence
of the elastic moduli on the magnetic-field strength, which is
normally the property measured directly in experiments.

A number of improvements to the model can be envisaged.
An extension of the model to the case of paramagnetic
particles should be attempted. Although ferrogels are often
made with nanometer-sized ferromagnetic or intrinsically
superparamagnetic particles, some more recent applications
may require materials made from larger particles that do
not possess single magnetic domains. Another feature of real
ferrogels is the polydispersity of the magnetic-grain sizes and
dipole moments. In other contexts, magnetic polydispersity has
been shown to have quite significant effects [28,29]. The model

might also be extended to take in to account shear deformations
and nonaffine deformations; an explicit model of the cross-
linked polymer gel component would help accommodate
local nonaffine displacements of the magnetic grains within
a simulation box of triclinic geometry. Despite the simplicity
of the current model, however, the correspondence with
experiment is quite good. As a proof of principle, it is hoped
that this study will stimulate further links to be made between
the microscopic and macroscopic properties of ferrogels.
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Symp. 227, 123 (2005).

[24] Z. Varga, G. Filipcsei, and M. Zrı́nyi, Polymer 46, 7779 (2005).
[25] L. V. Nikitin, G. V. Stepanov, L. S. Mironova, and A. N. Samus,

J. Magn. Magn. Mater. 258-259, 468 (2006).
[26] L. V. Nikitin, D. G. Korolev, G. V. Stepanov, and L. S. Mironova,

J. Magn. Magn. Mater. 300, e234 (2006).
[27] Z. Varga, G. Filipcsei, and M. Zrı́nyi, Polymer 47, 227 (2006).
[28] A. O. Ivanov, S. S. Kantorovich, E. N. Reznikov, C. Holm,

A. F. Pshenichnikov, A. V. Lebedev, A. Chremos, and P. J.
Camp, Phys. Rev. E 75, 061405 (2007).

[29] A. O. Ivanov, S. S. Kantorovich, E. N. Reznikov, C. Holm,
A. F. Pshenichnikov, A. V. Lebedev, A. Chremos, and P. J.
Camp, Magnetohydrodynamics 43, 393 (2007).

[30] M. R. Jolly, J. D. Carlson, B. C. Munoz, and T. J. Bullions,
J. Intell. Mater. Syst. 7, 613 (1996).

[31] M. R. Dudek, B. Grabiec, and K. W. Wojciechowski, Rev. Adv.
Mater. Sci. 14, 167 (2007).

[32] A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 041405
(2001).

[33] A. O. Ivanov and O. B. Kuznetsova, Colloid J. 68, 430 (2006).
[34] E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand, Phys.

Rev. E 68, 041706 (2003).
[35] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Clarendon Press, Oxford, 1987).
[36] D. Frenkel and B. Smit, Understanding Molecular Simulation:

From Algorithms to Applications, 2nd ed. (Academic Press,
San Diego, 2001).

[37] M. Parrinello and A. Rahman, J. Chem. Phys. 76, 2662 (1982).
[38] E. A. Elfimova, A. O. Ivanov, and P. J. Camp (unpublished).

011402-9

http://dx.doi.org/10.1063/1.471564
http://dx.doi.org/10.1063/1.471564
http://dx.doi.org/10.1063/1.473589
http://dx.doi.org/10.1063/1.473589
http://dx.doi.org/10.1007/s003960050017
http://dx.doi.org/10.1088/0953-8984/18/38/S30
http://dx.doi.org/10.1016/j.jmmm.2006.11.153
http://dx.doi.org/10.1016/j.jmmm.2006.11.153
http://dx.doi.org/10.1016/S0304-8853(00)01237-3
http://dx.doi.org/10.1023/B:JMSM.0000046386.78633.e5
http://dx.doi.org/10.1021/la060371e
http://dx.doi.org/10.1088/0964-1726/15/4/008
http://dx.doi.org/10.1088/0964-1726/15/4/008
http://dx.doi.org/10.1007/12_2006_104
http://dx.doi.org/10.1007/12_2006_104
http://dx.doi.org/10.1021/nl801501y
http://dx.doi.org/10.1021/nl801501y
http://dx.doi.org/10.1103/PhysRevE.77.021402
http://dx.doi.org/10.1016/S0304-8853(02)01102-2
http://dx.doi.org/10.1016/S0304-8853(02)01102-2
http://dx.doi.org/10.1007/s10808-005-0094-5
http://dx.doi.org/10.1007/s10808-005-0094-5
http://dx.doi.org/10.1016/j.jmmm.2004.11.018
http://dx.doi.org/10.1016/j.jmmm.2004.11.018
http://dx.doi.org/10.1016/j.jmmm.2005.10.079
http://dx.doi.org/10.1016/j.jmmm.2005.10.079
http://dx.doi.org/10.1063/1.2905212
http://dx.doi.org/10.1088/0953-8984/20/20/204126
http://dx.doi.org/10.1088/0953-8984/20/20/204126
http://dx.doi.org/10.1103/PhysRevE.79.040801
http://dx.doi.org/10.1103/PhysRevE.79.040801
http://dx.doi.org/10.1016/j.jmmm.2003.12.838
http://dx.doi.org/10.1002/masy.200550912
http://dx.doi.org/10.1002/masy.200550912
http://dx.doi.org/10.1016/j.polymer.2005.03.102
http://dx.doi.org/10.1016/S0304-8853(02)01099-5
http://dx.doi.org/10.1016/j.jmmm.2005.10.087
http://dx.doi.org/10.1016/j.polymer.2005.10.139
http://dx.doi.org/10.1103/PhysRevE.75.061405
http://dx.doi.org/10.1177/1045389X9600700601
http://dx.doi.org/10.1103/PhysRevE.64.041405
http://dx.doi.org/10.1103/PhysRevE.64.041405
http://dx.doi.org/10.1134/S1061933X06040065
http://dx.doi.org/10.1103/PhysRevE.68.041706
http://dx.doi.org/10.1103/PhysRevE.68.041706
http://dx.doi.org/10.1063/1.443248

