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Continuum simulations of shocks and patterns in vertically oscillated granular layers
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We study interactions between shocks and standing-wave patterns in vertically oscillated layers of granular
media using three-dimensional, time-dependent numerical solutions of continuum equations to Navier-Stokes
order. We simulate a layer of grains atop a plate that oscillates sinusoidally in the direction of gravity. Standing
waves form stripe patterns when the accelerational amplitude of the plate’s oscillation exceeds a critical value.
Shocks also form with each collision between the layer and the plate; we show that pressure gradients formed
by these shocks cause the flow to reverse direction within the layer. This reversal leads to an oscillatory state of
the pattern that is subharmonic with respect to the plate’s oscillation. Finally, we study the relationship between
shocks and patterns in layers oscillated at various frequencies and show that the pattern wavelength increases
monotonically as the shock strength increases.
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I. INTRODUCTION

A. Background

Vertically oscillated granular layers provide an important
test bed for granular research. When shaken vertically, flat
layers of grains exhibit convection [1], clustering [2], shocks
[3], steady-state flow fields far from the plate [4], floating
particle clusters [5], and standing-wave pattern formation [6].

In this paper, we model granular media by numerically
solving a set of time-dependent continuum equations for the
rapid flow of dissipative particles in three dimensions. We
use these simulations to investigate the relationship between
shocks and standing-wave patterns in vertically oscillated
granular layers.

B. Granular hydrodynamics

A successful theory of granular hydrodynamics would
allow scientists and engineers to apply the powerful methods
of fluid dynamics to granular flow. Despite experimental
[7–9] and computational [9–13] evidence demonstrating the
potential utility of hydrodynamics models for grains, a general
set of hydrodynamic governing equations is not yet recognized
for granular media [14–17].

Several proposed rapid granular flow models use equations
of motion for continuum fields: number density n, velocity u,
and granular temperature T ( 3

2T is the average kinetic energy
due to random particle motion) [18–20]. In one approach,
particle interactions are modeled with binary, inelastic hard-
sphere collision operators in kinetic theory to derive continuum
equations to Euler [21], Navier-Stokes [22], and Burnett
[23] order. We use three-dimensional (3D) simulations of
continuum equations to Navier-Stokes order to investigate
shocks and standing-wave patterns in shaken granular layers.

C. Standing-wave patterns in oscillated granular layers

A granular layer of depth H atop a plate that is oscillated
sinusoidally in the direction of gravity with frequency f

and amplitude A leaves the plate at some time during the
oscillation cycle if the maximum acceleration of the plate
amax = A(2πf )2 is greater than the acceleration of gravity, g.

In other words, the layer leaves the plate if the nondimensional
accelerational amplitude � = amax/g exceeds unity.

After leaving the plate, the layer dilates above the plate and
then compresses when it collides with the plate later in the
cycle. When the dimensionless accelerational amplitude � is
larger than a critical value �C , standing-wave patterns spon-
taneously form in the layer. These patterns are subharmonic
with respect to the plate, repeating every 2/f [6]. Depend-
ing on the nondimensional accelerational amplitude � and
dimensionless frequency f ∗ = f

√
H/g, various subharmonic

standing waves have been found, including stripe, square, and
hexagonal standing-wave patterns [6].

D. Shocks in oscillated granular layers

If the Mach number Ma (the ratio of the local mean fluid
speed to the local speed of sound) is greater than unity at
the point where a fluid encounters an obstacle, a compression
wave front is formed near the object and steepens to form
a shock. A distinguishing feature of granular materials is
that granular flows reach supersonic speeds under common
laboratory conditions [3,8,18]. Therefore, although shocks are
formed in ordinary gases only under extreme conditions, shock
formation is commonplace in granular media.

Experiments [3] and simulations [11,24–26] demonstrate
that shock waves form in shaken granular layers as the
layers contact the plate. Previous investigations have generally
focused on either shock propagation [3,24,25] or pattern
formation [6,12,13] or considered them as separate phenomena
coexisting in shaken layers [11]. In this paper, we use
continuum simulations to investigate the interactions between
shocks and the standing-wave patterns formed in this system.

E. Model system

We simulate a layer of grains on an impenetrable plate
which oscillates sinusoidally in the direction of gravity. The
layer depth at rest is approximately H = 5.4σ, where the
grains are modeled as identical, frictionless spheres with
diameter σ , mass M , and coefficient of restitution e = 0.7.
In this paper, we study patterns and shocks as a function
of nondimensional frequency f ∗, while the dimensionless
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accelerational amplitude � = 2.20 is held constant. Previous
simulations [12,13] have shown that this value exceeds
the critical accelerational amplitude �C , indicating that we
should expect to see standing-wave patterns for a variety of
frequencies.

We model dry grains in the absence of an interstitial fluid
such as air. The presence of a fluid between grains can sig-
nificantly affect granular behavior. Beds of grains fluidized by
liquid or gas flow represent an important category of granular
system [27,28], and experiments have shown that interactions
between grains and air can also be important in vibrated
granular systems [29–34]. In vibrated systems, interactions
between grains and air are responsible for the formation and
coarsening of Chladni heaps [32–35]. In contrast to the static
Chladni heaps, however, the subharmonic standing waves
investigated here have been studied in experiments using
evacuated containers [6,36–38]. Therefore, we do not include
air in our simulation but rather we model shocks and pattern
formation in an evacuated container.

Previous experiments [39] and molecular dynamics (MD)
simulations [40] have shown that friction between grains plays
a role in these patterns. Experimentally, adding graphite to
reduce friction decreased �C and prevented the formation
of stable square or hexagonal patterns found for certain
ranges of f ∗ and � in experiments without graphite [39].
Similarly, MD simulations with friction between particles
have quantitatively reproduced stripe, square, and hexagonal
subharmonic standing waves seen experimentally [41], but
MD simulations without friction yield only stable stripe
patterns and display a lower �C [40]. In this study, we
investigate stripe patterns in continuum simulations of fric-
tionless particles. To investigate other patterns such as
squares or hexagons, simulations would have to include
friction between particles.

Experiments [42] and simulations [12,13,43] indicate that
fluctuations due to individual grain movement play a larger
role in granular media than do thermal fluctuations in ordinary
fluids. Fluctuating hydrodynamics (FHD) theory models these
fluctuations by adding noise terms to the Navier-Stokes
equations [44–46]. In previous simulations with FHD noise
terms, the critical value of pattern onset �C was consistent with
molecular dynamics simulations, while continuum simulations
without these fluctuations exhibited pattern onset at �C

approximately 10% lower than that found in MD simulations
[12,13]. Above �C , however, simulations both with and
without these fluctuations exhibited standing-wave patterns
with wavelengths consistent with a dispersion relation [37]
found experimentally for a range of shaking frequencies.
In this paper, we do not include FHD noise terms; we
investigate patterns for accelerational amplitude greater than
�C determined from simulations with and without FHD.

We use continuum simulations to investigate the dynamics
of this system including pattern formation and shock propaga-
tion. Section II describes the methods we use to simulate and
analyze oscillated layers. Section III examines the dynamics
of shocks and standing-wave patterns formed in this system at
a fixed dimensionless oscillation frequency f ∗ = 0.25, and
Sec. IV examines how these patterns and shocks change
when this frequency is varied. We present our conclusions in
Sec. V.

II. METHODS

A. Continuum equations

We use a continuum simulation previously used to model
shock waves in a granular shaker [26]. Our simulation
numerically integrates continuum equations of Navier-Stokes
order proposed by Jenkins and Richman [22] for a dense gas
composed of frictionless (smooth), inelastic hard spheres.

This model yields hydrodynamic equations for number
density n (or, equivalently, volume fraction ν = π

6 nσ 3),
velocity u, and granular temperature T :

∂n

∂t
+ ∇ · (nu) = 0, (1)

n

(
∂u
∂t

+ u · ∇u
)

= ∇ · P − ngẑ, (2)

3

2
n

(
∂T

∂t
+ u · ∇T

)
= −∇ · q + P : E − γ, (3)

where the components of the symmetrized velocity gradient
tensor E are given by Eij = 1

2 (∂jui + ∂iuj ). The components
of the stress tensor P are given by the constitutive relation

Pij =
[
−p +

(
λ − 2

3
μ

)
Ekk

]
δij + 2μEij , (4)

and the heat flux is calculated from Fourier’s law:

q = −κ∇T . (5)

To calculate the pressure, we use the equation of state and
radial distribution function at contact proposed by Goldshtein
et al. [47] to include both dense gas and inelastic effects:

p = nT [1 + 2(1 + e)G(ν)] , (6)

where

G(ν) = νg0(ν), (7)

and the radial distribution function at contact, g0, is

g0(ν) =
[

1 −
(

ν

νmax

) 4
3 νmax

]−1

, (8)

where νmax = 0.65 is the 3D random close-packed volume
fraction.

These equations differ from those for a compressible, dense
gas of elastic particles by the energy loss term

γ = 12√
π

(1 − e2)
nT 3/2

σ
G(ν), (9)

which arises from the inelasticity of collisions between
particles. The bulk viscosity is given by

λ = 8

3
√

π
nσT 1/2G(ν), (10)

the shear viscosity by

μ=
√

π

6
nσT 1/2

[
5

16

1

G(ν)
+ 1 + 4

5

(
1 + 12

π

)
G(ν)

]
, (11)
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and the thermal conductivity by

κ = 15
√

π

16
nσT 1/2

[
5

24

1

G(ν)
+ 1 + 6

5

(
1 + 32

9π

)
G(ν)

]
.

(12)

Other hydrodynamic models include modifications such
as more accurate expressions for kinetic coefficients which
incorporate high density corrections [48,49] and equations
of state which allow for volume fractions greater than the
random-close-packed limit used here [50]. However, the
equations shown here have previously been used to separately
examine shocks [26] and patterns [12,13] in shaken layers and
have demonstrated quantitative agreement with experiments
and molecular dynamics simulations. Therefore, we use these
equations in this study to investigate the relationship between
shocks and pattern formation; in principle, the equations could
be modified to implement other forms of the constitutive
relations.

B. Simulation method

We integrate these hydrodynamic equations to find number
density, momentum, and granular temperature, using a second-
order finite-difference scheme on a uniform grid in three
dimensions with first-order adaptive time stepping [26]. In
these simulations, the granular fluid is contained between
two impenetrable horizontal plates at the top and bottom of
the container, where the lower plate oscillates sinusoidally
between height z = 0 and height z = 2A and the ceiling is
located at a height Lz above the lower plate. Periodic boundary
conditions are used in the horizontal directions x and y to
eliminate sidewall effects. Simulations are conducted in a
box of size Lx = 168σ , Ly = 10σ , and Lz = 160σ . This
orientation causes stripes to form parallel to the y axis. The
numerical methods, boundary conditions at the top and bottom
plates, and grid spacing are the same as used in previous studies
of shocks [26] and patterns [12,13].

III. DYNAMICS OF SHOCKS AND STANDING WAVES

A. Standing-wave patterns

Experimental investigations of shaken granular layers have
shown that above a critical acceleration of the plate, �C ,
standing-wave patterns form spontaneously. These patterns
oscillate subharmonically, repeating every 2/f , so that the
location of a peak of the pattern becomes a valley after one
cycle of the plate, and vice versa [6]. These subharmonic
standing waves have been compared to the parametrically
excited surface waves in ordinary fluids originally described
by Faraday [6,35,37].

Continuum simulations produce standing-wave patterns for
� = 2.2 and f ∗ = 0.25 (Fig. 1). Beginning with a flat layer
above the plate with small-amplitude random fluctuations, the
simulation ran for 250 cycles of the plate until the layer reached
a periodic state. Snapshots from various times during the next
two cycles of the plate are shown in Fig. 1. Alternating peaks
and valleys form a stripe pattern which oscillates at f/2 with
respect to the plate oscillation; a location in the cell which
represents a peak during one cycle will become a valley the
next cycle and then return to a peak on the following cycle.

Volume Fraction
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FIG. 1. Side view of a layer of grains, showing volume fraction
ν at a slice y = 5σ parallel to the x-z plane at various times
f t during two cycles of the plate. Empty space (ν = 0) is white,
random close-packed volume fraction (νmax = 0.65) is black, and the
shading increases from white to black through various shades of gray
as volume fraction increases. The plate is represented as a thick,
horizontal black line. The cell extends to a height of 160σ above the
lower plate, but the figure shows only z � 50σ , since the density is
quite low above this height.
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We examine the wave patterns at various times in the cycle f t

for two cycles of the plate.

1. f t = 0: The layer collides with the plate

At f t = 0 the container is at its minimum height. The bulk
of the layer is dilute and four clear peaks and four valleys are
evident in Fig. 1 (note that one of the peaks wraps around the
edges of the cell since the boundary conditions are periodic).
The material in each peak is falling toward the plate, although
the bottom of the layer has begun to contact the plate and is
beginning to form a pile on the plate. The thin layer colliding
with the plate is characterized by a higher volume fraction ν

than the material in the peaks.

2. f t = 0.25: The layer piles on the plate

At f t = 0.25, the plate has begun to move upward as the
layer falls to meet it. At this time, most of the layer is piling
on the plate, forming a high-volume-fraction region near the
plate. Remnants of the peaks and valleys from the previous
cycle are still visible, although the layer is flattening on the
plate, with the height difference between peaks and valleys
much smaller than at f t = 0 (Fig. 1).

3. f t = 0.50: The layer begins to leave the plate

As the container reaches its maximum downward acceler-
ation at the top of its oscillation, the layer begins to leave the
plate. Although the bottom of the layer is still in contact with
the plate at this time, the layer is expanding, as evidenced by
the fact that it is visibly more dilute in this picture than in the
previous snapshot (Fig. 1). As the layer leaves the plate, new
peaks and valleys develop, with peaks forming in the valleys
from the previous cycle, and vice versa.

4. f t = 0.75: The layer is off the plate

At f t = 0.75, the plate is moving downward, leaving a gap
between the layer and the plate. The mass of the layer has
almost entirely left the plate, and the layer has expanded. The
new peaks and valleys have become quite distinct, with a large
portion of the layer in the peaks and very little material in the
valleys connecting them (Fig. 1).

5. 1.0 <∼ f t <∼ 2.0: The cycle repeats

At f t = 1.0, the plate has undergone one full oscillation
and has returned to its lowest point in the cycle. The features of
this point in the cycle are similar to those at f t = 0, except the
peaks and valleys have reversed location. Aside from the peaks
and valleys reversing, the next cycle exhibits the same features
as the previous cycle at all times during the cycle. By f t =
1.75, the peaks and valleys are back to their original location,
demonstrating the subharmonic nature of these patterns.

B. Shocks

Previous experiments [3] and simulations [11,24–26] indi-
cate that shocks are formed in vertically oscillated granular
layers during each collision of the layer with the plate. A
prerequisite for shock formation is that the local Mach number
of the flow should be greater than unity with respect to the

object causing the disturbance. Therefore, we calculate the
speed of sound using a relation derived from the equation of
state, Eq. (6) [51]:

c =
√

T χ

(
1 + 2

3
χ + ν

χ

∂χ

∂ν

)
, (13)

where χ = 1 + 2(1 + e)G(ν). The Mach number Ma is cal-
culated as the local flow speed divided by the local speed of
sound: Ma = |u| /c.

From Fig. 1, we see that, at f t = 1.00, a portion of the
layer has begun to compress on the plate, while some of the
material is still falling toward the plate. This is therefore a
time at which we expect to see shock formation. To study this
shock formation, we examine times f t = 1.00 and f t = 1.10
in detail.

In the left column of Fig. 2 we display side views of
the volume fraction ν at horizontal location y = 5σ for
times f t = 1.00 and f t = 1.10, showing only the horizontal
range 0 � x � 84σ and the vertical range 0 � z � 25σ to
better view the interaction between the layer and the plate.
From these snapshots, we see that there is a peak of the
pattern near x = 18σ (shown as a vertical white dashed
line) and a valley near x = 38σ (shown as a vertical black
dashed line). We therefore choose two horizontal locations
to examine; the location y = 5σ , x = 18σ is shown in the
middle column of Fig. 2, corresponding to the first peak of
the pattern; and the location y = 5σ , x = 38σ is shown in
the right column, corresponding to a location away from the
peak.

In the middle column of Fig. 2, we plot one-dimensional
profiles of volume fraction ν and Mach number Ma (here ν

is scaled by a factor of 10 to fit on the same scale as Ma)
as functions of height z from the plate. At the horizontal
location y = 5σ , x = 18σ corresponding to a peak of the wave
pattern, the volume fraction approaches the close-packed value
νmax = 0.65 near the plate at f t = 1.00 [Fig. 2(b)]. As height
increases, ν smoothly decreases for 0 � z � 7σ . The Mach
number with respect to the plate, Ma, is low throughout this
region, as this part of the layer is compressed on the plate and
thus matches the velocity of the plate at height z = 0. However,
at z ≈ 7σ there is a discontinuity in the derivative of ν, and a
sharp increase in Mach number such that Ma approaches 3 for
z � 8σ . This sharp increase in Mach number from subsonic to
supersonic, corresponding to a discontinuity in the derivative
of volume fraction at the same height, indicates that this is the
location of a strong shock front.

While the above description applies to x = 18σ (the
horizontal location of the first peak), a shock also forms in
the valleys. This can be seen in Fig. 2(c), which shows 10ν

and Ma at the same time, but at horizontal location x = 38σ .
Here we again see a high-density, subsonic region near the
plate, with a shock separating this region from a lower-density,
supersonic undisturbed region that is still falling toward the
plate. However, the volume fraction near the plate is smaller
than it was in Fig. 2(b), and the shock profile is quite different.
Also, the shock front at x = 38σ is closer to the plate than it
is at x = 18σ .

By f t = 1.10, the shock has moved away from the plate
and it continues to develop as it moves through different parts
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FIG. 2. Volume fraction ν and Mach number Ma at various locations in the cell at two different times: (a)-(c) f t = 1.00 and (d)-(f)
f t = 1.10. In each case, the plate is shown as a horizontal solid black line. The left column displays a side view of a layer of grains, showing
volume fraction ν at a slice y = 5σ parallel to the x-z plane at times (a) f t = 1.00 and (d) f t = 1.10. Although the full cell has a length
168σ in the x direction and a height 160σ in the z direction, this figure only displays the horizontal range 0 � x � 84σ and the vertical range
0 � z � 25σ to show a closer view of the first two peaks. The middle column shows Mach number Ma (dashed line) and rescaled volume
fraction 10ν (solid line) as functions of height z (ordinate) at the horizontal location y = 5σ , x = 18σ at times (b) f t = 1.00 and (e) f t = 1.10
in the plate’s oscillation. This horizontal location x = 18σ corresponds to a peak of the pattern at this time and is shown as a vertical white
dashed line in the left column (a and d). The right column shows Ma and 10ν at the horizontal location y = 5σ , x = 38σ at times (c) f t = 1.00
and (f) f t = 1.10. This horizontal location x = 38σ corresponds to a valley at this time, as shown by a vertical black dashed line in the left
column (a and d). A shock is present in each case, as indicated by a discontinuity in the volume fraction derivative and a sharp increase in Ma
moving away from the plate.

of the layer [Fig. 2(e)]. The shock front in the valleys is also
developing and moving away from the plate [see Fig. 2(f)],
although the location and profile of the shock are different at
these different horizontal locations.

Thus, shocks form with each collision of the layer with
the plate, and the shock profile changes and develops as the
shock moves through the layer. Shocks form at each horizontal
location in the cell; however, the shock front is nonuniform
horizontally due to the differences in layer depth between the
peaks and the valleys of the pattern.

C. Interaction between shocks and patterns

There is therefore a relationship between the shocks and the
standing-wave patterns formed in the layer. If the layer were
perfectly flat, the shock front would be uniform horizontally.
However, because there is horizontal variation in layer depth,
a nonuniform shock front forms.

While the system is driven by vertical motion of the plate,
the patterns are characterized by horizontal variation between
peaks and valleys. Periodic horizontal motion is required to
produce the subharmonic oscillation. This horizontal flow can
be thought of as a “sloshing” motion, in which material from
the layer flows out of some regions and into others, creating
peaks and valleys. With the next collision of the layer with
the plate, the flow direction reverses, creating peaks where
there were valleys, and vice versa. In this section, we show
that strong pressure gradients created by the shock drive the
sloshing motion of the layer.

To study this interaction, we investigate the layer properties
near the time of shock formation. According to Fig. 1,
most of the layer is off the plate at f t = 0.75, while the

layer is compressed on the plate and the peaks and valleys
have flattened significantly by f t = 1.25. In Fig. 3 we show
snapshots of the the volume fraction ν (left column) and the
dimensionless pressure p( σ 2

Mg
) (right column) at five different

times (0.8 � f t � 1.2). We display side views of the layer
at y = 5σ in Fig. 3, showing only the horizontal range
0 � x � 84σ and the vertical range 0 � z � 25σ to better
view the interaction between the layer and the plate. This
range shows two wavelengths of the standing-wave pattern and
corresponds to the bottom left quadrant of the range plotted in
Fig. 1.

In order to examine the sloshing motion of the layer, we
also show the dimensionless x component of the pressure gra-
dient ∂p

∂x
( σ 3

Mg
) (left column) and the dimensionless horizontal

velocity ux/
√

gσ (right column) at the these same times and
locations in Fig. 4. We now proceed to examine the horizontal
variation in flow at these five times as the layer collides with
the plate.

1. f t ≈ 0.8: The layer is off the plate

At f t = 0.8, the layer is mostly off the plate, and peaks and
valleys are clearly visible in the left column of Fig. 3. In the
right column of Fig. 3, we show the dimensionless pressure
p( σ 2

Mg
). At this time, the layer is more dilute than it will be

at later times in the cycle, and the pressure is uniformly low
throughout the layer. There are no strong pressure gradients
visible, as can be seen in the left column of Fig. 4, where we
show the dimensionless x component of the pressure gradient
∂p

∂x
( σ 3

Mg
).
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FIG. 3. Side view of a layer of grains, showing volume fraction ν (left column) and dimensionless pressure p( σ 2

Mg
) (right column), at a slice

y = 5σ parallel to the x-z plane at various times f t . Although the full cell has a length 168σ in the x direction and a height 160σ in the z

direction, this figure only displays the horizontal range 0 � x � 84σ and the vertical range 0 � z � 25σ to show a closer view of the collision
of the shock with the plate. In the left column, empty space (ν = 0) is white, random close-packed volume fraction (ν = 0.65) is black, and
the shading increases from white to black through shades of gray as volume fraction increases. The plate is represented as a thick, horizontal
black line. In the right column, low dimensionless pressure is white, high dimensionless pressure is black, and pressure increases from white
to black through shades of gray.

In the right column of Fig. 4, we can see that ux > 0 (the
flow is moving toward the right) for 0 � x � 16σ ; there is a
small range of nearly zero horizontal flow rate near 16σ �
x � 20σ ; then ux > 0 (flow is moving toward the left) for
16σ � x � 34σ . Since the peak of the pattern is located at
16σ � x � 20σ at this time (cf. Fig. 3), grains are flowing
toward the peak from both the left and the right. Therefore, the
flow is still removing material from the valleys and moving it
toward the peak; the difference between peaks and valleys is
growing at this time.

2. f t ≈ 0.9: The layer begins to contact the plate

At f t = 0.9, the bottom of the layer has just begun to
contact the plate at the horizontal location of the two peaks,
but the material between the peaks has not yet contacted the

plate (Fig. 3). The layer looks similar to its appearance at
f t = 0.8, except that, in a very small region near the plate,
the pressure has begun to slightly increase where the layer is
starting to contact the plate.

This pressure increase at the two points of contact yields
a horizontal pressure gradient with maximum pressure near
the peak location. For instance, the reddish color found near
the plate for 12σ � x � 18σ in the left column of Fig. 4 at
this time indicates that the pressure is increasing from left to
right; the bluish color for 18σ � x � 26σ in the same picture
indicates that the pressure decreases from left to right.

The picture in the right column for this time shows that
the flow is still moving toward the peak through the bulk of
the layer at this time. However, the pressure gradient near the
plate tends to drive flow in the opposite direction: from high
pressure (near the peak) into low pressure (near the valley).
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FIG. 4. (Color) Side view of a layer of grains, showing dimensionless horizontal pressure gradient ∂p

∂x
( σ 3

Mg
) (left column) and dimensionless

horizontal velocity ux/
√

gσ (right column) at a slice y = 5σ parallel to the x-z plane at various times f t . Although the full cell has a length
168σ in the x direction and a height 160σ in the z direction, this figure only displays the horizontal range 0 � x � 84σ and the vertical range
0 � z � 25σ to show a closer view of the collision of the shock with the plate. In the left column, pressure decreasing left to right ( ∂p

∂x
< 0) is

shown in shades of blue, ∂p

∂x
= 0 is white, and pressure increasing left to right ( ∂p

∂x
> 0) is shown in shades of red. In the right column, flow

toward the left (ux < 0) is shown in shades of blue, zero horizontal velocity (ux = 0) is white, and flow toward the right (ux > 0) is shown in
shades of red. In both columns, the plate is shown as a thick, horizontal black line.

Therefore, the horizontal flow velocity near the plate has begun
to slow (leaving a white space near the plate where the pressure
gradient is strongest) and is even beginning to reverse direction
(note the light blue near the plate at the location of the second
peak).

3. f t ≈ 1.0: A shock forms

By f t = 1.0, more of the material is colliding with the
plate, and the pressure has noticeably increased at the two
main contact points between the layer and the plate (Fig. 3).
This increase in layer density and pressure near the plate marks
the formation of a shock (cf. Fig. 2).

As discussed in Sec. III B, these shocks are not uniform
horizontally; larger layer depth near the peaks leads to larger
pressure at these locations. Thus, shock formation leads to
pressure maxima near the plate at the horizontal location of

the pattern peaks with strong pressure gradients as seen in the
left column of Fig. 4.

These pressure gradients drive the flow in the direction
opposite the pressure gradient; thus, the direction of flow near
the plate at this time is clearly reversing (see the right column
of Fig. 4). For much of the layer, the flow is still away from
the valleys and toward the peaks. Near the plate in the region
of strong pressure gradients, however, the flow has reversed
itself and is now flowing away from the peaks and toward the
valleys. This separation of the flow into two distinct domains
represents the formation of a shock near the plate.

4. f t ≈ 1.1: The shock propagates

This shock then travels upward through the layer, away from
the plate. By f t = 1.1, this shock is well developed and has
propagated through most of the layer, separating a high-density
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and high-pressure region near the plate from a low-density and
low-pressure region above the shock front (Fig. 3).

The pressure gradient is quite strong near the plate (Fig. 4)
and most of the layer is behind the shock. The flow behind
the shock has reversed direction, while the material ahead of
the shock has not yet changed direction. There is still some
material in the peaks that is still falling toward the plate ahead
of the shock (cf. Fig. 3), but its horizontal velocity is small,
and the pressure is relatively low in this region (see Fig. 4).

5. f t ≈ 1.2: The flow has reversed

By f t = 1.2, nearly the entire layer is behind the shock
and the layer has noticeably flattened (Fig. 3), although peaks
and valleys are still visible. As the shock propagates into the
low-density region above the layer, the layer cools behind the
shock due to inelastic collisions. This causes the pressure to
decrease slightly at f t = 1.2 as compared to f t = 1.1.

The pressure gradient is still driving the flow away from the
peaks, although this gradient is not as strong as at f t = 1.1
(Fig. 4). At this time, nearly the entire layer has reversed
direction and is now flowing away from the peaks and toward
the valleys.

As this flow continues, the layer becomes flat and then
develops peaks where there were previously valleys, and vice
versa. Thus, the horizontal pressure gradients created by the
nonuniform shock front drive the flow to reverse itself. It is
this reversal that creates the sloshing motion visible in the
subharmonic oscillation.

IV. FREQUENCY DEPENDENCE OF SHOCKS
AND STANDING WAVES

In Sec. III, we studied the interaction between shocks and
patterns in layers oscillated with a particular nondimensional
frequency f ∗ = 0.25. In this section, we investigate frequency
dependence by holding dimensionless accelerational ampli-
tude � = 2.2 constant while varying dimensionless frequency
f ∗. Experiments have shown that wavelength λ depends on the
frequency of oscillation [36,37]. For a range of layer depths
and oscillation frequencies, experimental data for frictional
particles near pattern onset were fit by the function λ∗ =
1.0 + 1.1f ∗−1.32±0.03, where λ∗ = λ/H [37]. We examine the
correlation between changes in shock properties with changes
in pattern wavelength throughout this frequency range. For
each frequency, we start from an artificial flat layer, then
simulate 250 cycles of the plate to allow the layer to reach
an oscillatory state. Data are taken from the next six cycles of
the plate.

A. Maximum Mach number varies inversely
with driving frequency

Shock properties depend on the Mach number of the layer
with respect to the plate during collision. In Fig. 5, we plot the
maximum Mach number Mamax of the layer with respect to
the plate as a function of dimensionless driving frequency f ∗.
To calculate Mamax, we find the Mach number Ma(x,t) at each
location x in the cell during an oscillation cycle. To ensure
that we are looking at the Mach number of material in the
layer, rather than in the low-density region above the layer, at
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FIG. 5. Maximum Mach number Mamax of the layer with respect
to the plate found at any time during an oscillation cycle as a function
of the dimensionless driving frequency f ∗. We calculate Mamax for
each of six oscillation cycles; points are the average of the six cycles
and error bars represent the standard deviation.

each time t , we find the highest Mach number corresponding
to at least 1% of the total mass of the layer. We then define
Mamax as the maximum Mach number found at any time during
a cycle.

Note that Mamax monotonically decreases as f ∗ increases
(Fig. 5). For fixed � = 2.20, lower oscillation frequency
corresponds to a higher maximum plate velocity and higher
oscillation amplitude. Layers with lower f ∗ generally reach a
higher maximum height when they leave the plate and have a
larger speed relative to the plate when they collide later in the
cycle. Although the relative Mach number between the layer
and the plate depends on the speed of sound in the layer as
well as the time during the cycle at which the collision takes
place, higher frequencies correspond to lower Ma at collision
throughout this range.

B. Higher Mach number at collision produces stronger shocks

Pressure decreases rapidly when moving from the region
behind a shock, across the shock front, to the undisturbed
region ahead of the shock. We examine this pressure change
by calculating the magnitude of the z component of the
pressure gradient | ∂p

∂z
(x,t)| at each time t and location in

the cell, x. We then find | ∂p

∂z
|max(t) as the highest value

corresponding to at least 1% of the total mass of the layer.
Finally, we calculate the time average of these layers 〈| ∂p

∂z
|max〉,

nondimensionalize by a factor of σ 3

Mg
, and plot this as a

function of Mamax in Fig. 6(a). As the maximum Mach
number Mamax increases, the time-averaged maximum vertical
pressure gradient increases monotonically. In other words, the
higher the relative Mach number of the layer with respect to the
plate, the sharper the pressure drop across the shock. Note that
hydrostatic pressure would cause pressure to vary with depth
even in static layers, consistent with the nonzero intercept of
Fig. 6(a).

As discussed in Sec. III, although the shock is produced by
collision with a vertically oscillating plate, horizontal pressure
variation develops as a result of the peaks and valleys in
the layer. Shocks with stronger vertical pressure gradients
correspond to stronger horizontal pressure gradients as well
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FIG. 6. (a) Dimensionless maximum z component (a) of the
pressure gradient found anywhere in the cell averaged over all times
in the cycle 〈| ∂p

∂z
|max〉 σ 3

Mg
as a function of the maximum Mach number

Mamax of the layer with respect to the plate found at any time during an
oscillation cycle, and (b) the maximum x component of the pressure
gradient found anywhere in the cell averaged over all times in the
cycle 〈| ∂p

∂x
|max〉 σ 3

Mg
as a function of the maximum z component of

the pressure gradient found anywhere in the cell averaged over all
times in the cycle 〈| ∂p

∂z
|max〉 σ 39

Mg
. We calculate values for each of six

oscillation cycles; points are the average of the six cycles and error
bars represent the standard deviation.

[Fig. 6(b)]. A flat layer with no patterns would be expected to
have pressure variation with depth but not with horizontal lo-
cation. This is consistent with the apparent nonzero intercept in
Fig. 6(b).

C. Horizontal pressure gradients drive horizontal velocity

As strong pressure gradients develop in the layer, there is
a tendency for the material to flow from high pressure to low
pressure; that is, the direction of flow velocity will be opposite
the pressure gradient (cf. Fig. 4). We calculate the average
flow speed in the x direction at all times and all locations in
the cycle 〈|ux |〉. Figure 7 shows that the nondimensionalized
average flow speed in the x direction 〈|ux |〉/√gσ increases
monotonically as the maximum dimensionless x component
of the pressure gradient found anywhere in the cell averaged
over all times in the cycle 〈| ∂p

∂x
|max〉 σ 3

Mg
increases. Thus, the

stronger the maximum horizontal pressure gradients produced
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FIG. 7. Nondimensional average flow speed in the x direction
〈|ux |〉/√gσ as a function of the dimensionless maximum x compo-
nent of the pressure gradient found anywhere in the cell averaged
over all times in the cycle 〈| ∂p

∂x
|max〉 σ 3

Mg
. Points are calculated as the

average of six oscillation cycles of the plate, and error bars represent
the standard deviation of these six cycles.

across the shock are, the faster the average horizontal flow
speed becomes.

D. Horizontal velocity produces standing waves

For the dimensionless frequency f ∗ = 0.25 examined in
Sec. III, four wavelengths fit in a box of size 164σ in
the x direction, yielding a wavelength of 41σ (Fig. 1). We
calculate the dimensionless wavelength λ∗ = λ/H and plot it
as a function of nondimensional average flow speed in the x

direction 〈|ux |〉/√gσ for each frequency in our range (Fig. 8).
Due to the periodic boundary conditions and finite size of the
box, an integer number of waves must fit in the box. This finite
size effect of quantized wavelength yields inherent uncertainty
in the wavelength that would be selected in an infinite box.

Faster flow in the x direction corresponds to more horizontal
motion of the particles throughout an oscillation cycle.
Therefore, the wavelength (and therefore the distance between
peaks) increases monotonically as the average horizontal flow
speed increases (see Fig. 8).
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FIG. 8. Nondimensional wavelength λ∗ = λ/H as a function of
nondimensional average flow speed in the x direction 〈|ux |〉/√gσ .
Points are calculated as the average of six oscillation cycles of the
plate. The error bars for λ∗ = λ/H are calculated exclusively from
discretization due to periodic boundary conditions in a finite-size
box. The error bars for 〈|ux |〉/√gσ represent the standard deviation
of these six cycles.
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FIG. 9. Dimensionless wavelength λ∗ as a function of dimen-
sionless frequency f ∗. Data from our simulations are shown as
points, with error bars calculated exclusively from discretization due
to periodic boundary conditions in a finite-size box. The dominant
wavelength found in our simulations fits quite well the dispersion
relation λ∗ = 1.0 + 1.1f ∗−1.32±0.03 (solid line) found as a fit to
previous experimental data [37].

E. Dispersion relation

Summarizing the results from this section thus far, we
find that higher frequencies of oscillation yield smaller Mach
numbers between the layer and the plate during collision
(Fig. 5). Larger values of the Mach number produce stronger
shocks, as reflected in larger vertical and horizontal changes
in pressure across the shock front (Fig. 6). Larger pressure
gradients produce faster horizontal flow (Fig. 7), which in turn
corresponds to larger horizontal distances between peaks of
the pattern and thus a larger wavelength (Fig. 8).

Given this chain of reasoning, it follows that, as the Mach
number of the layer with respect to the plate increases, the
wavelength of the pattern increases monotonically throughout
the range. As Mach number increases with decreasing shaking
frequency, wavelength should decrease monotonically as the
oscillation frequency increases. Figure 9 shows that this is
indeed the case throughout the range of frequencies we
have simulated. Additionally, the wavelengths found in our
simulation throughout this range are consistent with the
dispersion relation previously found by fit to experimental
data [37].

V. CONCLUSIONS

We have simulated vertically oscillated layers of granular
media by numerically solving a proposed set of granular
hydrodynamic equations to Navier-Stokes order. We have
shown that these continuum simulations can describe im-
portant aspects of shocks and patterns in granular mate-
rials. In our simulations, layers spontaneously form sub-
harmonic standing-wave patterns in which the wavelength
λ depends on the frequency f of the oscillation of the
plate. The wavelengths of the patterns formed in our
simulation agree with the dispersion relations found in pre-
vious experiments.

As these standing waves oscillate subharmonically, shocks
are formed with each collision of the layer with the plate. We
have analyzed these shocks and found that variation in the layer
depth produces a shock front that is not uniform horizontally.
This horizontal variation in the shock front produces horizontal
components of flow velocity, causing grains to move from high
pressure to low pressure. Therefore, despite the fact that the
plate oscillates vertically, the shocks produced during collision
between the layer and the plate drive the horizontal sloshing
motion that characterizes the standing-wave patterns.

We have simulated shocks in layers oscillated at various
frequencies and have shown that the strength of the shock
varies depending on the oscillation frequency. We have
also established that there is a relationship between pattern
wavelength and the Mach number of the layer with respect to
the plate at the time of collision. Specifically, the horizontal
and vertical components of the pressure gradient both increase
monotonically as the Mach number increases. The horizontal
flow speed increases monotonically with the strength of these
pressure gradients, leading to longer wavelengths.

Therefore, throughout the range we studied, the wavelength
of the pattern increases monotonically with the maximum Ma
of the layer with respect to the plate. This analysis indicates that
shocks play a significant role in the dynamics of the standing-
wave patterns formed in these oscillating layers.
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