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The distribution of the transmission coefficient T of a long system with a correlated Gaussian disorder is
studied analytically and numerically in terms of the generalized Lyapunov exponent (LE) and the cumulants
of ln T . The effect of the disorder correlations on these quantities is considered in weak, moderate, and strong
disorder for different models of correlation. Scaling relations between the cumulants of ln T are obtained. The
cumulants are treated analytically within the semiclassical approximation in strong disorder and numerically
for an arbitrary strength of the disorder. A small correlation scale approximation is developed for calculation
of the generalized LE in a general correlated disorder. An essential effect of the disorder correlations on the
transmission statistics is found. In particular, obtained relations between the cumulants and between them and
the generalized LE show that, beyond weak disorder, transmission fluctuations and deviation of their distribution
from the log-normal form (in a long but finite system) are greatly enhanced due to the disorder correlations.
Parametric dependence of these effects upon the correlation scale is presented.
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I. INTRODUCTION

Properties of stochastic systems can be significantly
affected by the degree of correlation of the external noise term
(see, e.g., Ref. [1] and references therein). As an example
of such a phenomenon, we study statistical properties of
Anderson localization [2] in a linear one-dimensional model,

−d2ψ

dx2
+ V (x)ψ = εψ, (1)

with correlated disorder potential V (x). With a suitable change
of notation, Eq. (1) can describe a stationary problem either
for a quantum particle at energy ε or for classical scalar
electromagnetic or acoustic waves. Equation (1) appears also
in many other fields of physics. For example, with x considered
time, Eq. (1) represents a random frequency oscillator, which
is a simple paradigm of a stochastic dynamical system (see
Ref. [3] for a more detailed discussion of this and other
applications). In all these instances, an important quantity
is the Lyapunov exponent (LE) γ = limx→∞ γ̃ (x), where
γ̃ (x) = 1

2x
ln(|ψ |2 + |ψ ′|2) and ψ is a solution of an initial

value problem. LE is a nonrandom quantity independent of
the specific realization of disorder V (x) [4]. On the contrary,
“local” LE γ̃ (x) is random and should be described statistically
by distribution P (γ̃ ; x). Distribution P (γ̃ ; x) can be studied in
terms of its cumulants (e.g., Ref. [5]) or using the generalized
LEs �(q) = limx→∞ 1

2qx
ln〈(|ψ |2 + |ψ ′|2)q/2〉, where 〈· · ·〉 de-

notes average over the disorder realizations (e.g., Refs. [3,6]).
LEs γ and γ̃ (x) are intimately related to the localization

properties of one-dimensional disordered systems. The latter
was studied extensively and it is rigorously established that
almost all eigenstates in one-dimentional (1D) disordered
systems are exponentially localized under rather general
conditions [7–9] (see also [4,10] and references therein).
The inverse localization length of the eigenstates, as well as
the asymptotic decay rate limL→∞(2L)−1 ln T −1(L) of the
transmission coefficient T of the system of length L, are
equal [4] to the LE γ . More generally, statistical properties

of the quantity (2L)−1 ln T −1(L) and of the introduced above
local LE γ̃ (x = L) become asymptotically equivalent for large
L (see Sec. II). Therefore, in what follows, we discuss the
problem in terms of the transmission coefficient T , while the
results apply in a broader context of the local LE γ̃ .

Transmission coefficient is a basic characteristics of the
wave transport through the nonuniform media. In the electronic
systems, T is related to the dimensionless conductance by
the Landauer formula [11]. Measurement of the transmission
coefficients is one of the ways to investigate different aspects
of Anderson localization experimentally. Some indications
of Anderson localization were observed with light [12],
microwaves [13], cold atoms [14], and ultrasound [15]. In most
of these experiments, the correlation scale of the randomness
is comparable to the scattered wavelength and should be taken
into account to obtain a full quantitative description. In the ex-
periments in Ref. [14], localization of cold atoms was found by
observing localized density profiles, rather than transmission.
Recently, possible experiments on cold atom transmission
through the disordered optical potentials were discussed [16].
It is worth noting that in the actively developing field of cold
atoms, one of the ways to introduce disorder is by using the
laser speckle intensity patterns, which are highly correlated
[17]. On the theoretical side, there is an increasing interest in
the disordered systems with correlated potentials. In particular,
in 1D systems, disorder correlations were found to have strong
effect on the localization length [4,18–21], the generalized LE
[22,23], and the transmission statistics [24,25] and, in special
cases, even lead to the appearance of extended states [26].

The main subject of the present work is the effect of disorder
correlations on the transmission statistics in the asymptotic
limit of large L. Transmission coefficient of a long disordered
system exhibits large sample-to-sample fluctuations and is not
a self-averaging quantity. General properties of the transmis-
sion distribution have been considered in the past using the
composition rule for the transmission of a one-dimensional
chain of statistically identical and independent (or only weakly
dependent) random scatterers [27,28]. It was shown that a
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convenient variable to deal with is ln T (L), since it can be
represented as a sum of independent (or weakly dependent)
random variables, for which the conditions of the central limit
theorem, or its modification for weakly correlated variables,
are valid. Then, by additivity of cumulants of independent
variables, it follows that all cumulants of the ln T distribution,
P (ln T ; L), grow at most linearly in the system length L:

〈〈[ln T −1/2(L)]n〉〉 = cnL + o(L), n = 1,2, . . . . (2)

Here 〈〈Xn〉〉 denotes nth-order cumulant of the quantity X,
and the asymptotic cumulant coefficients cn are constants,
which depend on the microscopic properties of the system.
The above result applies to systems with both uncorrelated
and correlated random potentials, provided the considered
system can be divided into blocks, which are much longer
than the disorder correlation scale and can be treated as nearly
independent scatterers.

Thus, the general form of the large-L limit of the transmis-
sion distribution is well understood, and the remaining ques-
tions are about the dependence of the cumulant coefficients
cn on the parameters of the problem. According to Eq. (2),
transmission statistics can be discussed at the following three
levels of “resolution.” First, there exists a self-averaging
quantity (2L)−1 ln T −1, which has a nonrandom limit

lim
L→∞

(2L)−1 ln T −1 = c1 ≡ γ. (3)

At this level, all the information about the transmission
fluctuations is lost in the asymptotic limit L → ∞. Next,
one can define a variable (ln T − 〈ln T 〉)/(4c2L)1/2, where
〈ln T 〉 = 2c1L, for which the central limit theorem holds
and whose cumulants of the order n � 3 vanish in the
asymptotic limit L → ∞ as L−(n−2)/2. Therefore, this variable
has a limiting Gaussian distribution with zero mean and unit
variance. Limiting probability distributions and their relation
to universality and scaling have been discussed in the past
[28,29]. In the present context of a 1D problem, only two
model-dependent parameters, c1 and c2, are “remembered” in
the limiting distribution of (ln T − 〈ln T 〉)/(4c2L)1/2. This fact
is referred to as “two-parameter scaling” [28]. In special condi-
tions, namely, when the combined scatterers are weak and their
reflection phases are distributed uniformly, the composition
rule yields c1 = c2 up to weak disorder corrections, which is
a manifestation of single parameter scaling (SPS) [27,28].

Finally, for large but finite L, one can study the non-
Gaussian corrections to the limiting Gaussian distribution,
which are characterized by the asymptotic cumulant coeffi-
cients cn, n � 3. The latter are responsible for the extreme
fluctuations of the transmission coefficient. These large devi-
ations can also be studied in terms of the generalized LEs,
which describe asymptotic growth rates of the moments of the
inverse transmission coefficient T −1 and can be expressed as
a sum over cn’s [3].

Under conditions of weak scattering and phase random-
ization, in addition to the SPS relation c1 = c2, it was found
in some models of disorder that cumulant ratios cn/c1, n � 3,
vanish up to the weak disorder corrections [5,30]. Vanishing of
higher cumulants is also indicated by the coincidence of LE γ

and the second-order generalized LE � in the lowest order of
the weak disorder expansion, which is valid for a wide variety

of 1D disordered models [3,4,19,22]. Thus, quite generally,
cumulant coefficients cn satisfy

c2/c1 = 1, cn/c1 = 0, n � 3, (4)

which holds up to the weak disorder corrections.
Considerable analytical and numerical effort was devoted

to verification of SPS and determining limits of its validity
for various models of disorder [5,28,30–34]. Usually, SPS
holds for sufficiently weak disorder, when the localization
length is much larger than other scales in the problem (see
also discussion in Ref. [32]).

Deviations from relations (4) were studied for uncorrelated
disorder [3,5,35], as well as for some specific models of
correlated disorder potentials [24,25]. In particular, for the
continuous white noise model, it was shown [5] that c2/c1 = 1
for large positive energy ε (weak disorder), becomes slightly
different from unity near ε = 0 and vanishes for large negative
ε, while the “non-Gaussian” ratios cn�3/c1 have numerical
values of about a fraction of unity near ε = 0 and vanish for
large negative or positive ε (energy scale is determined by
strength of disorder). Thus, in the white noise model, unless
ε is sufficiently large and negative, the relative width of the
Gaussian bulk of the ln T distribution depends weakly on the
disorder strength, while finite higher cumulants indicate that
some non-Gaussian corrections to the distribution tails develop
in strong disorder. The latter was also observed in Ref. [3],
where distribution of local LEs was studied in terms of the
generalized LEs for a continuous δ-correlated disorder.

The presence of disorder correlations can significantly
enhance deviation from relations (4). For instance, one finds
|c2/c1 − 1| ∼ 1 near certain energies of the tight-binding
model with a weak short-range correlated disorder [24].
Another example of the effect of correlations is scaling relation
c2/c1 ∼ c1Rc, obtained in Ref. [25] for strong exponentially
correlated dichotomous disorder with a correlation scale Rc.
This scaling, which replaces Eq. (4), is valid when c1Rc 	
1, which means c2/c1 	 1, so that Gaussian bulk of the
distribution P (ln T ; L) becomes much broader than in weak
or white noise disorder.

These special examples suggest that disorder correlations
can have a significant effect on the transmission statistics.
One can distinguish two limiting regimes. In weak disorder,
which can be treated perturbatively, LE depends strongly on
the correlation scale Rc [4,18,20,21]. However, it usually
remains the only parameter of the transmission distribution,
and relations (4) stay valid [30,33,34]. Another special regime,
which can be called a semiclassical regime of strong disorder,
occurs when typical random potential barriers are higher than
energy ε and sufficiently broad, so that tunneling probability
already through a single random barrier becomes small. In this
case localization is dominated by the under-barrier tunneling,
and one can generalize the semiclassical approach of Ref. [25]
to study the distribution of ln T (L) in terms of the statistics of
disorder excursions above the level V (x) = ε. In the present
work we use this approximation for the strong disorder regime
to show that cn/c1 ∼ (c1Rc)n−1.

The main focus of the present research is, however, on the
effect of disorder correlations on the transmission distribution
at the transition between these two limiting regimes. We
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consider model (1) with Gaussian disorder V (x), whose
correlation function is arbitrary, except for the assumption that
it is parametrized with a finite correlation scale Rc. The trans-
mission statistics is studied in terms of the dimensionless ratios
c2/c1, c3/c1, and �/c1. Quantity �/c1 characterizes extreme
fluctuations of the inverse transmission coefficient T −1, since
it is related to the ratio of the average to the typical values of
T −1. In addition, it can be used to show violation of relations
(4), because �/c1 = 1 when these relations hold [3,22].

To calculate �, which cannot be treated exactly in a
general case of correlated disorder, we develop a small-Rc

approximation [36]. A simple regularization is proposed to
extend this method to the power law correlations, for which a
standard approximation turns out to be inapplicable. Numeri-
cal simulations are used to verify the analytical approximation
for � and to calculate cumulant coefficients c1,2,3 for different
types of correlations and for different values of Rc (and ε > 0).
As expected, the obtained results for c2/c1, c3/c1, and �/c1

show that SPS and Eq. (4) hold in the weak disorder limit.
Beyond this regime, we find that disorder correlations strongly
enhance deviations from relations (4), as compared to the case
of white noise, and lead to increase of both typical and extreme
fluctuations of transmission. Dependence of these effects on
the parameters kRc and c1Rc is discussed (k = √

ε is the wave
number). In general, effect of disorder correlations on the
transmission statistics becomes important when c1Rc, that is,
the ratio between the correlation and the localization lengths,
is comparable to or greater than unity.

The outline of the paper is as follows. In Sec. II we define the
model in question and discuss in some more detail the standard
and the generalized LEs. The small-Rc approximation for the
generalized LE � is developed in Sec. III. First, using the
analogy of Eq. (1) with the Langevin equation, equations for
the second moments of ψ(x) are obtained by means of the
Furutsu-Novikov formula. This leads to an infinite hierarchy
of the integrodifferential equations for the second moment of
the wave function and its functional derivatives [1,36]. Then,
the small-Rc closure approximation is applied and the result
is compared to numerical simulations. In Sec. IV we obtain
scaling relations for cn/c1 in the semiclassical regime of strong
disorder. In Sec. V analytical and numerical results for � and
cn are used to discuss properties of the asymptotic distribution
of the transmission coefficient and deviation from relations
(4). The results are summarized in Sec. VI. Known results on
the generalized LE for the δ-correlated disorder and on the
Born approximation are presented in Appendixes A and B,
respectively. The method of numerical simulation is explained
in Appendix C. Some auxiliary formulas for the semiclassical
treatment of strong disorder are presented in Appendix D.

II. BASIC EQUATIONS

We consider a one-dimensional Schrödinger equation,

−d2ψ

dx2
+ V (x)ψ = εψ, (5)

where ε is energy and V (x) is zero-mean Gaussian disorder
potential. The latter is completely described by its two-point

correlation function C2(x − x ′) ≡ 〈V (x)V (x ′)〉, written as

C2(x − x ′) = V 2
0 �

(
x − x ′

Rc

)
, (6)

where V 2
0 and Rc are disorder variance and correlation length,

and the dimensionless function �(x) decays on the scale of
unity and is chosen so that

�(0) = 1,

∫ +∞

0
�(x)dx = 1. (7)

The white noise model is obtained by taking the limit Rc → 0,
while keeping RcV

2
0 constant:

lim
Rc−→0

C2(x − x ′) = gδ(x − x ′), (8)

where we have introduced disorder intensity parameter

g ≡
∫ +∞

−∞
C2(x)dx = 2RcV

2
0 . (9)

The transmission properties of a one-dimensional system of
finite length L are described by transfer matrix [37]

1√
T

[
eiφt −√

1 − T e−i(φr−φt )

−√
1 − T ei(φr−φt ) e−iφt

]
, (10)

which relates amplitudes of the incident and the outgoing
waves at one end of the system to those at the other
end (a time reversal invariance is implied). Here φr and
φt are reflection and transmission phases, respectively. In
the following sections, generalized LE � and asymptotic
cumulant coefficients cn are studied in terms of the amplitude
A2(x) = |ψ(x)|2 + |ψ ′(x)|2, where ψ(x) is a solution of
(5) satisfying some generic initial conditions, for example,
ψ(0) = 1, ψ ′(0) = 0. The obtained results are valid also for
the transmission coefficient T , since in the asymptotic limit
L → ∞ it becomes statistically equivalent to the amplitude
A(x). This is because A(x) is expressed in terms of the transfer
matrix (10), which asymptotically factorizes into the product
of large factor T −1 and statistically independent of it matrix
of the order of unity. Such factorization takes place, since
for L much larger than the localization length, phases φr and
φt become statistically (almost [38]) independent of T , while
coefficient T becomes exponentially small in most realizations
of disorder. Thus, for large L, one can write

ln A2(L) = ln T −1(L) + O(L0), (11)

where the term O(L0), which absorbs phases φr,t and the
initial conditions for ψ(x), is statistically independent of the
first one, and its cumulants are of the order of unity. Therefore,
using additivity of cumulants of independent variables, one has
[cf. Eq.(2)]

cn ≡ lim
L→∞

〈〈lnn T −1〉〉
2nL

= lim
L→∞

〈〈lnn A2〉〉
2nL

. (12)

Thus, for large L, inverse transmission coefficient T −1 is
statistically equivalent to the amplitude A2(x = L) and, thus,
to the local LE γ̃ (x = L), defined in the Introduction. In
particular, LE γ coincides with c1, and in the following we
use the latter notation.
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As already mentioned in the Introduction, cumulant
coefficients cn describe asymptotic form of the distribution
P (ln T ; L). Introducing the dimensionless length l ≡ c1L

measured in units of the localization length c−1
1 , cumulants

of ln T can be rewritten as [cf. Eq. (2)]

〈〈lnn T −1/2(l)〉〉 = cn

c1
l + O(l0). (13)

Therefore, it is convenient to discuss transmission distributions
in terms of the dimensionless ratios cn/c1, since meaningful
comparison of transmission fluctuations in different models of
disorder should be done for the same dimensionless system
length l. Then, for instance, relative fluctuation of ln T is
expressed as 〈〈ln2 T 〉〉/〈ln T 〉2 = (c2/c1)/l.

Another quantity which characterizes transmission distri-
bution is second-order generalized LE � defined by [6]

� = lim
L→∞

1

4L
ln〈A2(L)〉 = lim

L→∞
1

4L
ln〈T −1(L)〉. (14)

Since ln〈Aq(x)〉 = ln〈eq ln A(x)〉 is a cumulant generating func-
tion of the distribution P (ln A; x), the generalized LE is related
to all cumulant coefficients cn by the expression

� = 1

4

∞∑
n=1

2n

n!
cn. (15)

For large L, the value of 〈T −1(L)〉 is dominated by the long
tail of the T −1-distribution, which becomes highly skewed and
heavy-tailed. Therefore, rather than representing typical values
of T −1, generalized LE � provides useful complementary
information about the low-T tail of its distribution. To this
end, it is convenient to define the quantity

ρ ≡ �

c1
= 1

4

∞∑
n=1

2n

n!

cn

c1
, (16)

whose meaning is twofold. On the one hand, deviation of the
value of ρ from unity gives an integral measure of deviation
from the universal weak disorder relations (4), since ρ = 1
when these relations hold (cf. Ref. [3]). On the other hand, ρ

can be used to characterize the extreme relative fluctuations of
the inverse transmission coefficient T −1 in terms of the ratio
between the mean and the typical values of T −1:

〈T −1〉
exp〈ln T −1〉 = e(2ρ−1)2l . (17)

III. GENERALIZED LYAPUNOV EXPONENT �

A. Equation of motion for moments

The linearity of the Schrödinger equation (5) allows one
to obtain closed-form equations for the 2n-order products
[ψ(x)]k[ψ ′(x)]l , where k + l = 2n, k,l = 0,1,2, . . .. To this
end, we rewrite Eq. (5) in the form of the Langevin equation.
The x coordinate is considered as a formal time on the
half axis x ≡ t ∈ [0,∞) and the dynamical variables u(t) ≡
ψ(x),v(t) ≡ ψ ′(x) are introduced. In these variables the
Langevin equation reads

∂tu = v, ∂tv = [V (t) − ε]u, (18)

where V (t) is now the correlated noise. We need to con-
sider an initial value problem for the second-order moments
〈|u|2〉,

√
2−1〈u∗v + uv∗〉, 〈|v|2〉, whose asymptotic expo-

nential growth rate gives the generalized LE �, Eq. (14).
Introducing vector

Y = (|u|2,
√

2−1[u∗v + uv∗],|v|2)T , (19)

and using Eq. (18), one obtains

∂tY = [C + V (t)D]Y, Y(0) = Y0, (20)

where

C =
√

2

⎡
⎢⎣

0 1 0

−ε 0 1

0 −ε 0

⎤
⎥⎦; D =

√
2

⎡
⎢⎣

0 0 0

1 0 0

0 1 0

⎤
⎥⎦ (21)

and Y0 is an initial condition. To obtain the equation for
〈Y(t)〉, Eq. (20) is averaged over the disorder, which introduces
correlator 〈V (t)Y(t)〉:

∂t 〈Y〉 = C〈Y〉 + D〈V (t)Y〉, 〈Y(0)〉 = Y0. (22)

Applying the Furutsu-Novikov formula [1,36] yields

∂t 〈Y〉 = C〈Y〉 +
∫ t

0
C2(t − τ )D

〈
δY(t)

δV (τ )

〉
dτ, (23)

where δY(t)
δV (τ ) is a functional derivative of Y(t) with respect

to V (τ ) and C2(t) is the disorder correlation function (6).
Since Eq. (23) contains a new quantity 〈 δY(t)

δV (τ ) 〉, it is not closed
with respect to 〈Y〉. An important exception is the case of
the uncorrelated disorder, which is considered in Appendix A,
and is used in the forthcoming analysis. In the general case,
to proceed further, an additional equation for δY(t)

δV (τ ) is required,
which is obtained by differentiating Eq. (20) functionally
with respect to V (τ ) and using the differentiation property

δ
δV (τ )

∂
∂t

Y(t) = ∂
∂t

δY(t)
δV (τ ) [36]. This yields

∂

∂t

δY(t)

δV (τ )
= DY(τ )δ(t − τ ) + �(t − τ )[C + V (t)D]

δY(t)

δV (τ )
,

(24)
δY(t < τ )

δV (τ )
= 0,

where �(t − τ ) is the Heaviside step function. For t > τ ,
Eq. (24) can be rewritten as

∂

∂t

δY(t)

δV (τ )
= [C + V (t)D]

δY(t)

δV (τ )
,

δY(τ+)

δV (τ )
= DY(τ ). (25)

The causality property δY(t)
δV (τ>t) = 0 was used in derivation of

Eq. (24). It follows from the fact that Y(t) obeys first-order
differential equation (20) with an initial condition at t = 0
and, thus, is independent of V (τ ) at the time τ later than t .
Then, integration of the differential equation (24) over t from
some t1 < τ up to τ+ yields the initial condition in Eq. (25).

Note that functional derivative δY(t)
δV (τ ) in Eq. (25) and vector

Y(t) in Eq. (20) obey the same differential equation, but with
different initial conditions. Due to this similarity, moments
〈 δY(t)

δV (τ ) 〉 and 〈Y(t)〉 grow with the same asymptotic rate for
large (t − τ ) and t , respectively. The difference between the
two quantities is that the initial condition for δY(t)

δV (τ ) depends on
Y(τ ) and, therefore, it is correlated to V (t).
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Averaging Eq. (25) over the disorder and using the Furutsu-
Novikov formula, one obtains the following equation for the
moment 〈 δY(t)

δV (τ ) 〉:
∂

∂t

〈
δY(t)

δV (τ )

〉
= C

〈
δY(t)

δV (τ )

〉

+
∫ t

0
C2(t − τ ′)D

〈
δ2Y(t)

δV (τ ′)δV (τ )

〉
dτ ′, (26)

with the initial condition〈
δY(t = τ+)

δV (τ )

〉
= D〈Y(τ )〉. (27)

Thus, Eq. (26) is again not closed with respect to 〈 δY(t)
δV (τ ) 〉,

because it contains an additional quantity 〈 δ2Y(t)
δV (τ ′)δV (τ ) 〉. Then,

the above procedure can be iterated repeatedly to obtain an
infinite hierarchy of coupled differential equations involving
moments of higher functional derivatives of Y with respect to
V (t) [1,36].

B. Small-Rc decoupling approximation

To make progress with the infinite hierarchy of coupled
differential equation, the first two of which are Eqs. (23) and
(26), one usually resorts to some closure approximation [1,36].
In this work we apply a small-Rc approximation to close the
second equation (26) with respect to 〈 δY(t)

δV (τ ) 〉. This makes it

possible to express 〈 δY(t)
δV (τ ) 〉 in terms of the initial condition

D〈Y(τ )〉. Then, substituting it into Eq. (23), one obtains a
closed integrodifferential equation for 〈Y〉.

A formal solution for δY(t)
δV (τ ) is obtained from Eq. (25) in the

form

δY(t)

δV (τ )
= K(t,τ )DY(τ ), (28)

where the evolution operator

K(t,τ ) ≡ T exp
∫ t

τ

dτ [C + V (τ )D] (29)

is the T -ordered exponent. Disorder average of Eq. (28)
introduces a correlator 〈K(t,τ )DY(τ )〉. Application of the
decoupling, or mean field, approximation yields〈

δY(t)

δV (τ )

〉
≈ 〈K(t − τ )〉D〈Y(τ )〉, (30)

where we can write 〈K(t,τ )〉 = 〈K(t − τ )〉 due to the station-
arity of V (t). Terms neglected in Eq. (30) are given formally
by the generalization of the Furutsu-Novikov formula for the
correlation between two functionals of the random Gaussian
process [1]:

〈F {V }G{V }〉 = 〈F {V }〉〈G{V }〉

+
∞∑

n=1

1

n!

∫
· · ·

∫ 〈
δnF {V }

δV (tn) · · · δV (t1)

〉

×
〈

δnG{V }
δV (sn) · · · δV (s1)

〉 n∏
i=1

C2(ti − si)dtidsi .

(31)

In the general case, when functionals F {V } and G{V }
depend on the noise at simultaneous times, the decoupling
approximation does not rely on small correlation radius, but
depends on other parameters of the problem, for example,
small noise intensity [1]. The present case is special, because
Y(τ ) and K(t,τ ) depend on V (t ′) at separate time intervals,
0 < t ′ < τ and τ < t ′ < t , respectively. Therefore, the decou-
pling approximation for 〈K(t,τ )DY(τ )〉 is also justified for
sufficiently small Rc. In particular, Eq. (30) becomes exact
in the white noise limit [cf. Eq. (37) below]. A small-Rc

perturbative expansion of the n = 1 term in Eq. (31) shows that
it can be neglected if both kRc and �Rc are small compared
to unity.

Substitution of the decoupling approximation (30) into
Eq. (23) yields

∂

∂t
〈Y(t)〉 = C〈Y(t)〉

+D
∫ t

0
C2(t − τ )〈K(t − τ )〉D〈Y(τ )〉dτ. (32)

Note that inserting 〈Y(t)〉 = 〈K(t)〉Y0 into Eq. (32), one
arrives at closed nonlinear equation for 〈K(t)〉. Alternatively,
assuming in Eq. (32) some explicit approximation for 〈K(t −
τ )〉, which will be defined later, one obtains a closed linear
equation for 〈Y(t)〉. It can be solved in a standard way by the
Laplace transform, while its large-time (t 	 Rc) eigenvalues
can be determined by substituting the asymptotic solution in
the form 〈Y(t)〉 = Y∞e4�̃t , where Y∞ is a constant vector and
�̃ is an eigenvalue to be found. For t 	 Rc, owing to the
decay of the correlation function C2(t − τ ), the lower limit
of integration in Eq. (32) can be replaced with −∞. Then,
changing the integration variable as τ → (t − τ ), one obtains
a stationary eigenvalue problem, from which the generalized
LE � is found as the largest real root of the characteristic
equation

det

[
C +D

(∫ ∞

0
C2(τ )〈K(τ )〉e−4�̃τ dτ

)
D− 4�̃

]
= 0.

(33)

Equation (33) makes sense only when g ≡ 2
∫ +∞

0 C2(x)dx is
finite, which is satisfied by assumption (7). This condition is
important, since the correct asymptotic growth of 〈K(τ )〉
is proportional to e4�τ [see note after Eq. (25)]. Therefore,
for large τ , it should be exactly canceled by the factor e−4�̃τ

in Eq. (33), when �̃ is equal to �.

C. White noise approximation for 〈 δY(t)
δV (τ ) 〉

For 〈K(τ )〉 in Eq. (33) we apply a standard white noise
approximation [36] by replacing the true correlation function
C2(t − τ ′) in Eq. (26) for 〈 δY(t)

δV (τ ) 〉 with its white noise limit

gδ(t − τ ′), where g = 2RcV
2

0 [cf. Eq. (8)]. The integral in
Eq. (26) becomes∫ t

0
C2(t − τ ′)D

〈
δ2Y(t)

δV (τ ′)δV (τ )

〉
dτ ′

≈ D2

〈
δY(t)

δV (τ )

〉 ∫ t

0
C2(t − τ ′)dτ ′, (34)
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where the initial condition δ2Y(t+)
δV (t)δV (τ ) = D δY(t)

δV (τ ) was used
[cf. Eq. (25)]. Approximation (34) is justified when
〈 δ2Y(t)

δV (τ ′)δV (τ ) 〉 changes slowly on the scale of Rc. Since relevant

characteristic scales of the problem are wave number k = √|ε|
and the generalized LE �, the conditions to be fulfilled are

kRc � 1 and �Rc � 1, (35)

that is, the same conditions as for the decoupling approxima-
tion (30). Inserting the white noise approximation (34) into
Eq. (26) yields the following closed equation for 〈 δY(t)

δV (τ ) 〉:
∂

∂t

〈
δY(t)

δV (τ )

〉
=
[
C + g

2
D2

] 〈 δY(t)

δV (τ )

〉
,

(36)〈
δY(τ+)

δV (τ )

〉
= D〈Y(τ )〉,

which coincides with Eq. (A1), obtained for 〈Y(t)〉 in the white
noise model (Appendix A). The solution of Eq. (36) is〈

δY(t)

δV (τ )

〉
= 〈Kwn(t − τ )〉D〈Y(τ )〉, (37)

where 〈Kwn(t − τ )〉 ≡ eM(ε,g)(t−τ ) and matrix M(ε,g) = C +
g

2D2 is given in Eq. (A2). Thus, decoupling (30) is obtained
automatically within the white noise approximation, whereas
the mean propagator in (30) is approximated by the exponent

〈K(t)〉 ≈ 〈Kwn(t)〉 ≡ eM(ε,g)t . (38)

For weak disorder, using approximation M(ε,g) ≈ C in the
above expression for 〈Kwn(t)〉, and substituting it into Eq. (33),
one recovers the Born approximation (B3), which is valid for
an arbitrary Rc. It follows that validity condition kRc � 1 is
relaxed in the limit of weak disorder (while the second one,
�Rc � 1, is usually fulfilled).

Substitution of Eq. (38) into the eigenvalue equation
(33) yields an integral

∫∞
0 C2(τ )eM(ε,g)τ e−4�τdτ , which is

calculated by diagonalizing matrix M(ε,g). The latter is not a
normal matrix (MM† �= M†M) and can be written as [39]

QLM(ε,g)QR = M̃(ε,g) = 4

⎡
⎢⎣

�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎦ , (39)

where eigenvalues �i = �i(ε,g) are given in Eq. (A5), while
matrices QL = (uL

1 ,uL
2 ,uL

3 )† and QR = (uR
1 ,uR

2 ,uR
3 ) = Q−1

L

are composed of the left and the right eigenvectors of M(ε,g),
given in Eq. (A6). Inserting the white noise approximation
(38) into Eq. (33) and using parametrization of the correlation
function [Eqs. (6) and (9)], one obtains

det
[
C + g

2
DQRHQLD − 4�̃

]
= 0, (40)

where the diagonal matrix

H = h(Rc[4�−M̃(ε,g)]) (41)

is expressed in terms of the Laplace transform of the dimen-
sionless correlation function

h(z) =
∫ ∞

0
�(s)e−zsds, z ∈ C. (42)

Note that if the dimensionless correlation function �(s) decays
slower than exponentially, then h(z) is defined only for Re z �
0. As a consequence, the small-Rc approximation will turn
out to be inapplicable in the case of slowly decaying (e.g., by
power law) correlation functions. This case should be treated
with some care and is discussed later in this section.

From now on, we restrict ourselves to the case ε > − 3
4g2/3.

In this regime, eigenvalues of M(ε,g) satisfy �3 = �∗
2 [cf.

(A5)], and matrix H can be written as

H =

⎡
⎢⎣

h1 0 0

0 hr + ihi 0

0 0 hr − ihi

⎤
⎥⎦, (43)

where

h1 = h(4Rc[�̃−�1]), hr = Re h(4Rc[�̃−�2]),
(44)

hi = Im h(4Rc[�̃−�2]),

and h(z) is defined in Eq. (42). Then the matrix product in
Eq. (40) becomes

DQRHQLD = 1

12�2
1 + ε

⎡
⎢⎣

0 0 0

f12 f22 0

f13 f12 0

⎤
⎥⎦, (45)

where

f12 = 23/2�1(h1 − hr ) +
√

2
6�2

1 + ε√
3�2

1 + ε

hi,

f22 = h1 − hr − 3�1√
3�2

1 + ε

hi, (46)

f13 = 8�2
1(h1 + 2hr ) + 2εhr + 2�1εhi√

3�2
1 + ε

.

Finally, inserting matrix (45) into the eigenvalue equation (40),

det
[
C + g

2
DQRHQLD − 4�̃

]
= 0, (47)

one calculates the generalized LE � as the largest real-valued
root of the determinant.

The roots of the corresponding nonlinear equation can
only be found numerically. Simple analytical expressions,
however, can be obtained in some limiting cases. In weak
disorder, �2

1 � ε, one recovers the Born approximation (B3),
as already discussed after Eq. (38). In sufficiently strong
disorder, such that �2

1 	 ε, one can discard ε in Eqs. (46),
which simplifies the expressions. The resulting eigenvalue
equation can be solved analytically in the limits �1Rc � 1
and �1Rc 	 1. The first condition, �1Rc � 1, corresponds
to the white noise limit and yields � ≡ �1, as expected.
In the second limit, �1Rc 	 1, which is beyond validity
of the small-Rc approximation and is considered formally,
one obtains � ≈ �1 (more specifically 1 < �/�1 < 1.16).
Between these two limits of small and large �1Rc, one still
expects � ≈ �1, which was also found solving the eigenvalue
equation numerically for the correlation functions listed in
Table I. Thus, in strong disorder, �2

1 	 ε, we obtain � ≈ �1

irrespective of the form of the disorder correlation function.
This result was also obtained in semiclassical approximation
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TABLE I. Dimesionless correlation function �(x) and its Laplace
transform h(z) [Eq. (42)] for the models of disorder implemented in
simulations.

Correlation �(x) h(z)

Exponential e−x (1 + z)−1

Gaussian e−πx2/4 ez2/π erfc z√
π

“Speckle” sinc2 x

2
2
π

arctan π

z
− z

π2 ln z2+π2

z2 , Re z � 0

and in numerical simulations discussed below. According to
Eqs. (A4) and (9), the above strong disorder condition can be
reexpressed as |ε|3/2 � V 2

0 Rc.

D. A regularized white noise approximation

In what follows, we refer to the approximation method
described in the previous subsection [Eqs. (45)–(47)] as the
standard white noise approximation. As already noted after
Eq. (40), this method is not applicable to slowly decaying
correlations. We now discuss this point in some more detail
and propose a simple regularization to extend the applicability
of the approximation.

The white noise propagator 〈Kwn(t)〉, involved in approxi-
mation (37) for 〈 δY(t)

δV (τ ) 〉, has the largest eigenvalue e4�1(ε,g)t ,
where �1(ε,g) is the generalized LE for the uncorrelated
disorder (see Appendix A). As follows from the Born approx-
imation (B3), it is usually larger than the generalized LE � for
the correlated potential with the same intensity g, at least for
sufficiently weak disorder. Therefore, if correlation function
C2(τ ) decays slower than e−4(�1(ε,g)−�)τ , then the integral in
the eigenvalue equation (33), which can be estimated as∫ ∞

0
C2(τ )〈Kwn(t)〉e−4�̃τ dτ ∼

∫ ∞

0
C2(τ )e4(�1(ε,g)−�̃)τ dτ,

(48)

diverges for �̃ = �. In the final expressions [Eqs. (40)–
(46)] this potential divergence resides in function h1 =∫∞

0 �(τ )e4(�1(ε,g)−�̃)τ dτ , defined by Eqs. (42) and (44). Thus,
for slowly, for example, subexponentially, decaying correla-
tions, � cannot be a solution of the eigenvalue equation and the
standard white noise approximation is a priori inapplicable.
Divergence of the integral in Eq. (48) as an artifact of the white
noise approximation (37), which yields a wrong large-time
asymptotics 〈 δY(t)

δV (τ ) 〉 ∼ e4�1(ε,g)(t−τ ). Indeed, as noted after
Eq. (25), the true asymptotics of the moment of the functional
derivative is 〈 δY(t)

δV (τ ) 〉 ∼ e4�(t−τ ), that is, the same as for 〈Y(t)〉.
Therefore, if 〈Kwn(t)〉 in (48) had a “correct” asymptotics,
then the integral would converge at �̃ = � as long as∫∞

0 C2(τ )dτ ≡ g

2 < ∞. Thus, some kind of a regularization
is required for τ 	 Rc. One possibility is to introduce an
upper cutoff of the order of Rc into the integral for h1. Such a
cutoff was effectively used in Ref. [23] for another scheme of
a closure of Eq. (23). A more simple regularization is just to
set h1 = ∫∞

0 �(τ )dτ = 1, which amounts to a self-consistent
modification of the white noise propagator 〈Kwn(t)〉 in the
approximation (38) by replacing its largest eigenvalue e4�1(ε,g)t

with e4�t . We use the second approach and refer to it as a “reg-
ularized white noise approximation”. Thus, the regularized

white noise approximation is given by Eqs. (45)–(47), with h1

replaced with unity. Note that this method can be regarded as
applying the decoupling approximation (30) with the corre-
sponding effective propagator, different from that in Eq. (38).

E. Numerical test of small-Rc approximation

The standard and the regularized white noise approxima-
tions are compared to the direct numerical simulation for the
three types of disorder correlations given in Table I. Analytical
values of � are obtained by finding numerically the largest
real-valued root of the determinant (40). The Monte Carlo
simulations were done for the tight-binding model (C1) with
energy E = −2 cos k near the band edge, which translates
to the continuous model (5) with a positive energy ε = k2.
Further details of the numerical simulations are given in
Appendix C.

First we examine models of disorder with the quickly
decaying exponential and Gaussian correlation functions
(Table I). The results are compared to the Monte Carlo simula-
tion in Fig. 1. The error bars indicate uncertainty of the Monte
Carlo calculation of the generalized LE, which is explained
in Appendix C. The generalized LE � is plotted for different
values of kRc as a function of the dimensionless noise intensity

β ≡ gk

8ε2
= V 2

0 kRc

4ε2
, (49)

where g is defined in Eq. (9). Note that β = �/k in the Born
approximation (B3) for the white noise disorder.

The standard and the regularized white noise approxima-
tions yield close results for kRc � 1, while the difference
between them increases with Rc and, for example, for the
exponential correlation with kRc = 3.4, it becomes of the
order of ten [Fig. 1(d)]. Comparison with the simulation
results shows that both approximations are good for kRc � 1
[Figs. 1(a)–1(c)], but deteriorate with further increase of kRc,
as expected. For example, for the exponential correlation
with kRc = 3.4, the result of the standard approximation
and the simulated values of � differ already by a factor of
ten at moderately strong disorder, β ∼ 0.1 [Fig. 1(d)]. The
regularized white noise approximation seems to be somewhat
better, though the improvement is inconclusive.

The main advantage of the regularized white noise
approximation is its applicability to the long-range
correlations, as demonstrated in Fig. 2. As an example,
we use “speckle” correlation function �(x) = sinc2 x

2 , where
sincx ≡ sin πx

πx
, which describes correlation of the intensity in

some quasi-one-dimensional laser speckle patterns [40]. The
latter are used to create disordered potentials in experiments
with cold atoms [17]. Note, however, that our Gaussian model
does not describe a true speckle intensity, which exhibits
highly non-Gaussian fluctuations. This correlation function
has a remarkable property that the corresponding power
spectrum, given by the Fourier transform of the correlation
function 2V 2

0

∫∞
0 dx�(x/Rc) cos qx, is proportional to the

“tent” function (1 − |qRc/π |)�(1 − |qRc/π |) and vanishes
for |qRc| > π . As a result, the Born approximation for both
LE c1 and the generalized LE � [Eq. (B3)] vanishes for
2kRc > π . In view of this fact, the regularized white noise
approximation is tested below and above this threshold for
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FIG. 1. (Color online) The standard (SWNA) and the regularized
(RWNA) white noise approximations for the generalized LE � are
compared to numerical simulation for (a) Gaussian and (b)–(d)
exponential correlation functions (Table I). Legends in (a) apply
to all panels. GLE, normalized to the wave vector k, is plotted
against the dimensionless disorder intensity β [Eq. (49)]. Error
bars indicate uncertainty of the Monte Carlo calculation of �. For
comparison, we also plot second-order (i.e., one order beyond the
Born approximation) perturbative calculation of � due to Ref. [22]
and the exact GLE �wn for δ-correlated disorder given by �1 in
Eq. (A5). In addition, LE c1, obtained by numerical simulation, is
plotted with triangles. As expected for Gaussian disorder [20], � and
c1 coincide in weak disorder as long as second-order perturbation
theory is valid. In strong disorder, β ∼ 1, GLE for correlated disorder
coincides with �wn(β).

2kRc equal to 0.9π and 1.03π , respectively. In both cases we
find agreement with the simulation results within the factor of
the order of unity (Fig. 2).

Let us summarize the above comparison of the analytical
and the numerical results. The suggested simple regulariza-
tion allows extension of the standard white noise closure
approximation to the cases of slowly decaying correlations.
In the regime of moderate disorder, 0.1 � β � 1, white
noise approximation is applicable for kRc � 1 (we consider
ε = k2 > 0), in accord with the formal requirement kRc � 1
[cf. Eq. (35)]. In the limit of weak disorder, β � 1, our
approximation coincides with the perturbation theory (B3),
that is, becomes exact up to weak disorder corrections. Thus,
for β � 1, the validity condition kRc � 1 is relaxed [cf.
discussion after Eq. (38)]. Finally, for strong disorder, β > 1,
numerical data coincide with and thus confirm the analytical
result �(β) ≈ �1(β) ≡ �wn(β), obtained for |ε|3/2 � V 2

0 Rc,
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(a) kRc = 0.9π
2
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(b) kRc = 1.03π
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Λ
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,
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n
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/k

Λ, simulation
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2nd order PT
Λwn - exact
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FIG. 2. (Color online) The regularized white noise approximation
(RWNA) and the numerical simulation of � are compared for the
power law speckle correlation (see Table I) with (a) kRc = 0.9π/2
and (b) kRc = 1.03π/2 [legends in (b) apply to both panels]. Error
bars indicate uncertainty of the numerical calculation of �. As in
Fig. 1, �wn(β) and the second-order perturbative calculation of �

due to Ref. [22] are given for reference. Triangles represent numerical
results for LE c1. As in Fig. 1, � coincides with c1 in weak disorder,
and with �wn(β) in strong disorder.

that is, β 	 1, at the end of Sec. III C. This is in spite of the
fact that for β > 1 in our simulations we have �Rc � 1, which
violates the white noise approximation validity condition
�Rc � 1 [Eq. (35)]. In the next section, however, the same
relation �(β) ≈ �1(β) is obtained in the regime �Rc 	 1
specifically for Gaussian disorder.

IV. SEMICLASSICAL REGIME OF STRONG DISORDER

In this section we analytically calculate cumulant coeffi-
cients cn, defined by Eq. (12), in the regime when conditions
ε < V0 and Rc

√
V0 − ε 	 1 are fulfilled, where V 2

0 is the
noise variance introduced in Eq. (6). An opposite regime,
Rc

√
V0 − ε � 1, corresponds to the white noise limit, for

which the cumulants were calculated in Ref. [5]. We assume
that V0 and Rc are typical height and width of the random
barriers; therefore, the probability of a tunneling through a
single typical barrier is exponentially small under the above
conditions. In this case, as argued in Ref. [25], transport is
dominated by the under-barrier tunneling and interference
effects are negligible. Since Rc is a spatial scale of the disorder
V (x), the second condition, Rc

√
V0 − ε 	 1, justifies the

semiclassical approximation for the under-barrier tunneling.
Thus, an exponential growth rate of the solution amplitude
A(x) =

√
ψ2 + ψ ′2 can be estimated as a magnitude of the

imaginary part of the semiclassical action:

ln |A(L)| =
∫ L

0
κ(x)dx. (50)

Here κ(x) = �ε(V )
√

V (x) − ε is an imaginary part of the
complex momentum, where �ε(V ) ≡ �(V − ε) is a short
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notation for the unit step function. Function �ε(V ) selects
regions where the energy is below the disorder barriers
and solution ψ(x) grows exponentially, while the remaining
regions, where ψ(x) has an oscillatory behavior, are discarded.

Semiclassical approximation (50) directly relates distribu-
tion of ln |A(L)| to the statistical properties of the above-
threshold excursions of the random process V (x). Disorder
average of Eq. (50) yields LE or the first cumulant coefficient

c1 = 〈κ〉 = 〈κ〉ε〈�ε(V )〉, (51)

where 〈�ε(V )〉 = ∫∞
ε

dV P (V ) and 〈κ〉ε ≡∫∞
ε

dV
√

V − εPε(V ) is a conditional average for V > ε over
the distribution Pε(V ) ≡ �ε(V )P (V )/

∫ ∞
ε

dV P (V ). Here
P (V ) is the distribution of the disorder values at a single
position.

Using semiclassical approximation (50), higher cumulant
coefficients cn can be expressed in terms of the corresponding
joint cumulants of κ(x):

cn = lim
L→∞

1

L

∫ L

0
· · ·

∫ L

0

n∏
i=1

dxi

〈〈
n∏

i=1

κ(xi)

〉〉
. (52)

Since V (x) is a stationary process, the joint cumulants 〈〈· · ·〉〉
in Eq. (52) depend only on the coordinate difference. The value
of the cumulants is maximal when all the coordinates coincide
and decays on the scale Rc with a distance between the points.
This is because Rc is the only spatial scale in our model (6).
Thus, shifting all the coordinates in the cumulant by xn and
assuming L 	 Rc, the integral in (51) can be approximated as

cn ≈
∫ ∞

−∞
· · ·

∫ ∞

−∞

n−1∏
i=1

dxi

〈〈
κ(0)

n−1∏
i=1

κ(xi)

〉〉
, (53)

where we have neglected the boundary effects at the corners
x1 = x2 = · · · = xn = 0,L and extended the integration to
±∞. For the Gaussian process V (x), an analytical calculation
of the joint cumulants of κ(x) is quite involved. It is, however,
possible to obtain a simple estimate of the multiple integral
in (53). As an example, consider the two-point correlator of
the regular step function �[V (x)], which can be calculated
analytically [41], and is given by

〈〈�(V (x))�(V (x ′))〉〉
〈〈�2(V )〉〉 = 2

π
arcsin

[
�

(
x − x ′

Rc

)]
, (54)

where the dimensionless correlation function �(x) was defined
in Eq. (6). As expected, the two-point correlator of �[V (x)]
decays in the same manner as �(x). Due to the normalization
conditions (7), the integral of the expression in Eq. (54) is of
the order of Rc. Similarly, any n-order cumulant in (53) has
maximum value 〈〈κn(0)〉〉 and decays with a distance from the
origin on the scale Rc. Therefore, rescaling the integration vari-
ables in (53) by Rc, the remaining dimensionless integral can
be grossly estimated as a volume of the (n − 1)-dimensional
unit sphere Sn−1. This gives the estimate

cn = Bn

(
ε

V0

)
Sn−1R

n−1
c 〈〈κn〉〉, (55)

where functions Bn(ε/V0) are of the order of unity [accord-
ing to Eq. (51)], B1 ≡ 1], and 〈〈κn〉〉 ≡ 〈〈κn(x)〉〉, which
is independent of the position x. Coefficients Bn>1(ε/V0)

compensate for the approximation of the (n − 1)-dimensional
integral by the volume of sphere and depend weakly on the
specific form of the correlation function of V (x) and on the
ratio ε/V0. Numerical values of Bn(ε/V0) can be found in
computer simulation by calculating statistics of the quantity
on the right-hand side of Eq. (50) and fitting it to Eq. (55).
As an example, we obtain B2(0) ≈ 0.9, B2( 1

3 ) ≈ 0.8 and
B3(0) ≈ 1.6, B3( 1

3 ) ≈ 1.2 for all three types of correlations
given in Table I.

Combining Eqs. (51) and (55), one obtains the relations

cn

c1
= Sn−1Bn

(
ε

V0

)
fn

(
ε

V0

)
(c1Rc)n−1, (56)

where fn( ε
V0

) ≡ 〈〈κn〉〉
〈κ〉n are dimensionless functions, whose

specific form depends only on the disorder distribution P (V ).
This result should be contrasted with the weak disorder
relations (4).

Using the fact that �ε(V ) is either 0 or 1, it is convenient to
express cumulants of κ(x) in terms of 〈〈�n

ε (V )〉〉 and 〈〈κn〉〉ε ,
where 〈〈· · ·〉〉ε denotes a “conditional cumulant,” calculated
with distribution Pε(V ) (see Appendix D). For example, for
n = 2,3 one obtains

f2

(
ε

V0

)
= 〈〈�2

ε(V )〉〉
〈�ε(V )〉2

+ 1

〈�ε(V )〉
〈〈κ2〉〉ε
〈κ〉2

ε

,

f3

(
ε

V0

)
= 1

〈�ε(V )〉2

〈〈κ3〉〉ε
〈κ〉3

ε

+ 3
〈〈�2

ε(V )〉〉
〈�ε(V )〉3

〈〈κ2〉〉ε
〈κ〉2

ε

+ 〈〈�3
ε(V )〉〉

〈�ε(V )〉3
. (57)

This expansion is helpful, since it shows separate contributions
of the fluctuation of the indicator function �ε(V ) and of the
barrier height fluctuation above the level ε.

For the Gaussian distribution, P (V ) =
(2πV 2

0 )−1/2e−V 2/2V 2
0 , explicit expression for c1, f2( ε

V0
),

and f3( ε
V0

) are given in Eqs. (D3) and (D4).
Finally, the semiclassical approximation (50) can be used

to calculate the generalized LE � in strong disorder limit

�sc = lim
L→∞

1

4L
ln

〈
exp

[
2
∫ L

0
κ(x)dx

]〉
, (58)

where the disorder average of the exponential involves func-
tional integration over V (x). As an example, we calculate �sc

for Gaussian disorder in the limit |ε| � V0 and
√

V0Rc 	 1,
which justifies the stationary point approximation. The latter
yields

�sc = 3
8

(
2RcV

2
0

)1/3
. (59)

According to Eqs. (59) and (D3), under the conditions
|ε| � V0 and

√
V0Rc 	 1, LE ratio ρ = �/c1 scales like

(RcV
2

0 )1/3/V
1/2

0 ∼ (c1Rc)1/3. For comparison, the Gaussian
part of ρ, that is, ρG = 1

2 (1 + c2
c1

) [cf. Eq.(16)], scales in this
regime as c2/c1 ∼ c1Rc. The obtained scaling is closely related
to the statistics of the disorder fluctuations and, thus, is specific
to the considered Gaussian models (e.g., for strong binary
disorder one expects ρ ∼ const).

Let us note that �sc in Eq. (59) matches very closely
the strong disorder limit of the small-Rc approximation
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for � (Sec. III C, last paragraph). The latter reads 1 <

�/�1(g) < 1.16, where g = 2V 2
0 Rc and �1(g) = 1

2 ( g

4 )1/3

is the generalized LE for δ-correlated disorder in strong
disorder limit [cf. Eq.(A4)]. The semiclassical result (59) gives
�sc/�1(g) = 1.19, which is remarkably close to the small-Rc

approximation. Note that the considered limit,
√

V0Rc 	 1,
implies that �Rc 	 1, which is formally beyond validity of
the small-Rc approximation.

V. TRANSMISSION STATISTICS

In this section we discuss properties of the transmission
coefficient distribution in terms of the dimensionless ratios
c2/c1, c3/c1, and ρ = �/c1 [Eqs. (13) and (16)]. The cumulant
coefficients are simulated numerically for three types of
correlations listed in Table I and for the white noise model
as well. For the generalized LE � we use both analytical
and numerical results. Details of the numerical simulations
are given in Appendix C. All calculations are performed at
the same fixed value of energy, ε = k2 > 0, and for different
values of the correlation radius Rc and the disorder variance
V 2

0 . Disorder strength is conveniently characterized by the
dimensionless disorder intensity β = V 2

0 kRc/4ε2, introduced
in Eq. (49). For each considered value of Rc, quantities �

and cn are studied as a function of V0 in the range from weak
(β � 1) to strong (β ∼ 1) disorder.

In Figs. 3 and 4 we plot ρ and cumulant ratios c2/c1 and
c3/c1, respectively, as a function of β. Different data series
correspond to different models of correlation and different
fixed values of kRc, as indicated in the legends. All three
quantities, ρ, c2/c1, and c3/c1, exhibit qualitatively similar
behavior in weak and moderate disorder (β < 1). As expected
from the results on the δ-correlated disorder [3,5], universal
relations ρ = 1, c2/c1 = 1, and c3/c1 = 0 [cf. Eqs.(4) and
(16)] are violated beyond weak disorder. Our calculations show
that deviation from these weak disorder values is strongly
enhanced in the presence of correlations and increases with
the correlation radius Rc. Namely, while this deviation is small
compared to unity for δ-correlated disorder, it becomes of the
order of unity, or even larger, in the presence of correlations.
Below we discuss the obtained results and the corresponding
parametric dependences.

A. Scaling of the cumulant ratios cn/c1

In sufficiently strong disorder, such that c1Rc 	 1,
cumulant ratios cn/c1 are described by the semiclassical
relations (56). To verify these relations, in Fig. 5 we plot
(cn/c1)/(c1Rc)n−1 for n = 2,3 as a function of ε/V0 and
compare it to the semiclassical prediction Sn−1Bn( ε

V0
)fn( ε

V0
),

according to Eq. (56). For Gaussian disorder, functions fn( ε
V0

)
are given by Eq. (D4), and we use values B2 = 0.8 and
B3 = 1.2, as explained in text after Eq. (57). Figure 5
shows that the obtained numerical values converge to the
theoretical curve for ε/V0 < 1. As expected, the semiclassical
approximation improves for smaller ε/V0 and larger Rc. Let
us note, for clarity, that in our presentation we increase the
disorder amplitude V0 keeping fixed ε > 0 and fixed Rc. In this
parametrization, cumulant ratios cn/c1 grow monotonically
with β, roughly as (c1Rc)n−1 (cf. Fig. 4). If, however, relative
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5

β

ρ

δ - correlated
exp., kRc = 0.9
exp., kRc = 1.6
exp., kRc = 3.4
Gaussian, kRc = 1.6
speckle, kRc = 1.4
speckle, kRc = 1.6

(a)
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4
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β

ρ

0.01 0.1

1

1.2

1.4 (b)

FIG. 3. (Color online) LE ratio ρ = �/c1 as a function of the
dimensionless disorder intensity β [Eq. (49)]. LE c1 is obtained
by numerical simulations. GLE � is calculated using both the
analytical regularized white noise approximation [panel (a)], as well
as numerical simulations [panel (b)]. Legends in (a) apply to both
panels and specify type of correlation and value of kRc. The analytical
and the numerical results complement each other in different regimes
of disorder. The numerics is noisy or unavailable at sufficiently large
disorder intensities, β > 0.1, where analytical results demonstrate
how ρ increases with kRc. On the other hand, numerical results
are more accurate for smaller disorder intensities, β � 0.1, where
deviation from the limiting weak disorder value ρ = 1 begins to
develop, as shown in the inset of panel (b).

disorder strength is increased by decreasing ε at fixed V0 and
Rc, then ratios cn/c1 would eventually vanish for sufficiently
large and negative ε, as can be seen from Eq. (56) (because
V0/|ε| becomes small in this limit).

Semiclassical scaling (56) is not applicable in weak and
moderate disorder. In this regime, and for kRc � 1, we find
empirically that deviation from the weak disorder relations (4)
for n = 2,3 is described by the approximate scaling

cn

c1
− δ2,n = (kRc)νnμn

(
ln c1Rc

[kRc]α

)
, (60)

where δn,2 is the Kronecker δ. Here μn(x) are some
dimensionless monotonically increasing functions, whose
form depends on the type of correlation. Exponent α is not
universal as well, and we find that α ≈ 0, for the exponential,
and α ≈ 0.4 for the Gaussian and the speckle correlation
functions (Table I). On the contrary, in the considered Gaussian
models, we obtain ν2 ≈ 3/4 and ν3 ≈ 9/8, irrespective of the
disorder correlation. In Fig. 6 we plot (c2/c1 − 1)/(kRc)3/4 and
(c3/c1)/(kRc)9/8 against (kRc)−α lg c1Rc, which demonstrates
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FIG. 4. (Color online) Cumulant ratios c2/c1 (top panel) and c3/c1

(bottom panel) for the δ-correlated and the exponentially correlated
disorder plotted as a function of β (other models of correlation given
in Table I exhibit similar behavior; cf. Fig. 6). Legends in (a) apply
to both panels and specify the types of correlation and the values
of kRc.

that scaling (60) holds for a rather broad range of the
considered values of kRc (see legends) as long as c1Rc < 1.
A logarithmic scale plot of (c2/c1 − 1)/(kRc)3/4, given in the
inset of the top panel, shows that this scaling holds also at
small values of c1Rc (the same is true also for c3/c1).

Let us stress that relations (60) become meaningless in
the white noise limit kRc → 0 and are applicable only for
kRc � 1, when deviation from the weak disorder relations (4)
is dominated by the effects of the correlations. According to
Eq. (60), the latter is controlled by the ratio of the correlation
to the localization lengths, c1Rc.

As seen in Fig. 6, functions μn are rather similar, though
not identical, for different models of correlation. The major
distinction in a specific form of relation (60) for different
(Gaussian) models appears in the value of the exponent α. It is
interesting to note that both μn and α practically coincide for
the models with Gaussian and speckle correlation functions.
This can be related to the qualitative similarity of their
power spectra, given by the Gaussian and the tent function,
respectively, which have either effective or exact cutoff of
the order of R−1

c [the tent function, (1 − |x|)�(1 − |x|), was
introduced in Sec. III E]. On the contrary, power spectrum
of the exponentially correlated disorder is given by the
slowly decaying Lorentzian function. Note that disorder power
spectrum appears, for example, in the Born approximation
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Gaussian, kRc = 1.6
Gaussian, kRc = 3.4
Speckle, kRc = 1.4
Speckle, kRc = 1.6
theory

(b)

FIG. 5. (Color online) Semiclassical scaling relations (57) are
verified for the cumulant coeffcients c2 (top panel) and c3 (bottom
panel) by plotting simulated values of cn/c

n
1R

(n−1)
c as a function of the

parameter ε/V0. Legends in (b) apply to both panels. The dashed lines
represent analytical result due to Eq. (57) with B2 = 0.8 and B3 = 1.2
[see text after Eq. (57)]. To check the semiclassical approximation
for LE c1 [Eq. (51)], inset in panel (a) shows that ratio of the
simulated value of c1 to its semiclassical approximation, denoted
as csc

1 , approaches unity for ε/V0 < 1. As expected, semiclassical
approximation improves for larger values of Rc and smaller values
of ε/V0.

(B3) for � (and LE c1), which shows close relation between
the properties of localization and those of the disorder power
spectrum.

B. Extreme fluctuation of T−1

Beyond weak disorder, LE ratio ρ increases with the
correlation parameter kRc and, as a function of the disorder
intensity, exhibits a peak [42] at moderate disorder (Fig. 3).
Thus, as expressed in terms of the ratio between the mean
and the typical values of the inverse transmission coefficient
T −1 [Eq. (17)], also the extreme relative fluctuation of T −1 is
peaked at moderate disorder and is enhanced by the disorder
correlations. This conclusion is consistent with our observation
that statistical convergence of the Monte Carlo simulation of
the generalized LE � is most slow at moderate disorder and
for larger values of Rc, as indicated by the error bars in Figs. 1
and 2. Note that relative fluctuation (17) depends exponentially
on ρl, where l ≡ c1L. Therefore, for kRc � 1 and l > 1,
correlations lead to the exponentially large enhancement of
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FIG. 6. (Color online) Demonstration of the empirical scaling
(60) for the cumulant coeffcients c2 (top panel) and c3 (bottom panel).
Legends in (b) apply to both panels and specify type of correlation
and value of kRc. We use α = 0 for the exponential correlation and
α = 0.4 for the Gaussian and the speckle correlations. For better
visibility, data for the exponential correlation are offset from zero by
a constant (in both panels). (Inset) Same as in panel (a), but plotted
in a logarithmic scale for the y axis and without the offset.

the extreme fluctuation of T −1 as compared to the case of the
δ-correlated disorder.

It is instructive to compare ρ to its Gaussian part ρG =
1
2 (1 + c2

c1
). The latter is obtained by discarding the non-

Gaussian terms, n � 3, in Eq. (16), which is equivalent to
approximating the asymptotic distribution of ln T by the
Gaussian one with the same mean and variance, equal to 2c1L

and 4c2L, respectively. Correspondingly, the contribution of
the non-Gaussian corrections is represented by the difference
�ρNG ≡ ρ − ρG = 1

4

∑∞
n=3

2n

n!
cn

c1
. In Fig. 7 we plot �ρNG

for the δ-correlated and the exponentially correlated disorder
(other models of correlation exhibit similar behavior). In
agreement with relations (4), �ρNG vanishes in the weak
disorder limit. Beyond this regime, �ρNG is positively peaked
at moderate disorder, and the magnitude of the peak increases
with kRc. Positive values of �ρNG mean that the low-T
tail of the ln T distribution is heavier than in the Gaussian
approximation in a sense that 〈T −1〉 and, thus, the relative

0.01 0.1 1

0

0.5

1

1.5

2

β

Δ
ρ
N

G

 

 

δ - correlated
Exponential, kRc = 0.45

Exponential, kRc = 0.9

Exponential, kRc = 1.6

Exponential, kRc = 2.5

FIG. 7. (Color online) The non-Gaussian part of ρ, �ρNG =
ρ − ρG, where ρG = (1 + c2/c1)/2, as a function of β. The shown
data correspond to the δ-correlated and exponentially correlated
disorder with different values of kRc, as indicated in the legends.
� is calculated analytically using the regularized white noise
approximation. As noted in Sec. III E, approximation error of this
method becomes significant for kRc > 1. In the presented figure, this
does result in false values for β � 0.1 (simulated values are much
closer to zero). However, the approximation error is not critical in the
region of main interest, 0.1 � β � 1, where it tends to underestimate,
rather than overestimate, the actual values of �ρNG. Thus, the
presented effect is not an artifact of the approximation.

fluctuation (17), are larger than in the corresponding Gaussian
distribution. The result in Fig. 7 shows that this “super-
Gaussian” effect is enhanced by the disorder correlations
and is most prominent at moderate disorder. Let us stress,
however, that this statement applies only to the integral
quantity (17) and does not imply any specific form (e.g., super-
or sub-Gaussian) for the asymptotic decay law of the low-T
tail in the ln T distribution. The latter was studied, for example,
in Refs. [3,43,44] using different methods.

VI. CONCLUSIONS

We have considered statistical properties of the transmis-
sion coefficient T of a one-dimensional disordered system
described by the Schrödinger Eq. (1) with a Gaussian corre-
lated disorder. The main focus of our study was an effect of
the correlations on the transmission distribution, which was
characterized in terms of the dimensionless ratio between
the generalized and the usual LEs, ρ = �/c1, as well as
ratios c2/c1 and c3/c1 of the asymptotic cumulants of ln T −1.
Both analytical and numerical methods were employed for
calculation of � and cn.

First, a small-Rc approximation was developed for the
generalized LE�, which is not limited to weak disorder
and also is able to account for the nontrivial effects of the
correlations. To this end, we obtained an infinite hierarchy
of integrodifferential equations on the second moments of
the wave function and its functional derivatives with respect
to the disorder. We have shown that this hierarchical chain
can be truncated starting from the second level to obtain a
nontrivial approximation, which accounts for the correlations
of the disorder. Note that termination of this hierarchy on
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the first level accounts only for the intensity of the noise,
while all information on the correlation properties is lost. This
nontrivial closure allowed us to obtain an analytical solution
for the generalized LE in an implicit form as a largest real root
of a nonlinear algebraic equation. The obtained approximation
is valid formally for kRc � 1 and �Rc � 1, where k = √|ε|
is the wave number. It turned out that a standard white noise
approximation [36] does not allow to treat the generalized
LE in the case of subexponentially decaying correlations.
To overcome this obstacle, we have proposed a simple
self-consistent regularization, which extends the applicability
of the approximation to any correlation function satisfying
| ∫∞

0 C2(x)dx| < ∞. The derived small-Rc approximation was
compared to numerical simulations and a good agreement was
found.

The asymptotic cumulants of ln T were calculated analyt-
ically within the semiclassical approximation applicable in a
special case of strong disorder, ε < V0 and Rc

√
V0 − ε 	 1.

For an arbitrary strength of disorder, cumulant coefficients
c1,2,3 were obtained by numerical simulations.

Using these analytical and numerical methods, the general-
ized LE and the first three cumulants of ln T were calculated
for several models of correlations and for different values of
Rc, which enabled us to investigate effects of correlations on
the form of the transmission distribution. In order to study
transition between the regimes of weak and strong disorder,
we have considered only positive energies ε, where it was
convenient to introduce the dimensionless disorder intensity
β, defined in Eq. (49).

In sufficiently weak disorder, we obtained c2/c1 = 1,
c3/c1 = 0, and ρ = 1 in all the considered cases. Thus, as
expected from previous work (e.g., Refs. [25,30,33,34]), in
weak disorder, correlations do not destroy SPS and do not
modify the universal relations (4). In the white noise limit,
kRc � 1, this regime is realized for c1/k ∼ β � 1. For
kRc � 1, the relevant control parameter is the ratio of the
correlation to the localization lengths, c1Rc. Quantity (c1Rc)−1

is interpreted naturally as a measure of randomization of
the disorder potential on the scale of the localization length.
Correspondingly, the weak disorder universality, expressed by
relations (4), takes place when c1Rc � 1 (for kRc � 1, this
means that disorder is weak also in the conventional sense
c1/k � 1).

Relations (4) are not valid beyond weak disorder. In the
white noise model, the corresponding deviation from these
relations is weak for any strength of the disorder (for ε � 0),
in a sense that values of ρ and c2/c1 stay very close to unity,
while c3/c1 remains small compared to unity. On the contrary,
in correlated disorder, these quantities depend strongly on
the strength of the disorder through the control parameter
c1Rc. Regarding this parametric dependence, we discuss two
regimes: c1Rc � 1 and c1Rc 	 1.

The first regime, c1Rc � 1, corresponds to transition from
weak to moderate disorder. In this regime and for kRc �
1, cumulant ratios c2/c1 and c3/c1 are described by the
approximate scaling relations (60) with parameters kRc and
c1Rc. These relations demonstrate that, starting from weak
disorder (c1Rc � 1), ratios cn/c1 increase gradually with
parameter c1Rc and, for c1Rc ∼ 1, arrive at values which can
be much larger than unity (depending on kRc). In such a case,

the bulk of the ln T distribution becomes much broader than
in weak or in the white noise disorder.

While the small-n cumulant coefficients cn describe bulk
of the ln T distribution, LE ratio ρ is a measure of the
extreme relative fluctuation of T −1, expressed by the ratio
between the mean and the typical values of T −1 [Eq. (17)].
Like the cumulant ratios, ρ increases from weak to moderate
disorder and its deviation from the weak disorder value ρ = 1
is strongly enhanced by the disorder correlations (namely,
exceeds unity for kRc � 1). As a function of the disorder
strength, ρ and, thus, the extreme relative fluctuation (17)
are peaked at moderate disorder (near c1Rc ∼ 0.1). This peak
of ρ is associated with the non-Gaussian corrections to the
low-T tail of the ln T distribution, whose contribution to ρ

is positively peaked, that is “super-Gaussian,” at moderate
disorder. The latter has the following simple interpretation in
terms of the disorder statistics. In moderate disorder, when
energy ε is of the order of V0, wave propagation becomes
affected by the under-barrier tunneling through the rare but
large peaks of the random potential. For

√
V0Rc ∼ kRc � 1,

already a single large barrier becomes a strong scatterer.
Therefore, fluctuations in height and in occurrence of these rare
peaks lead to extreme deviations of T −1 from its typical value.
In stronger disorder, the typical value grows significantly, and
the relative contribution of the large rare barriers becomes
less pronounced. This simple explanation can be confirmed
by calculating ρ in the framework of the semiclassical
approximation (50) (not presented here).

The second regime, c1Rc 	 1, is realized when ε < V0 and
Rc

√
V0 − ε 	 1. Under these conditions, interference effects

are suppressed and localization is dominated by under-barrier
tunneling. Then, according to Eq. (50), the transmission
distribution is directly related to the statistics of the “excur-
sions” of the random potential above the level V (x) = ε, and
the cumulants of ln T −1 satisfy the “semiclassical” scaling
relations (56), which were verified in numerical simulations.
According to Eq. (56), the effect of correlations is expressed
by the simple relation cn/c1 ∼ fn(ε/V0)(c1Rc)n−1, where the
coefficient fn(ε/V0) ≡ 〈〈κn〉〉/〈κ〉n depends only on the one-
point distribution of disorder. Semiclassical approximation can
also be used to calculate the generalized LE �. In particular, for
|ε| � V0 and

√
V0Rc 	 1, we obtain scaling ρ ∼ (c1Rc)1/3,

which is specific to Gaussian statistics of disorder.
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APPENDIX A: EXACT SOLUTION FOR � IN
δ-CORRELATED DISORDER

Equation (23) decouples and can be solved exactly for the
δ-correlated disorder (see, e.g., Ref. [3]). Namely, substituting
C2(t − τ ) = gδ(t − τ ) into (23) and using the initial condition
〈 δY(t+)

δV (t−) 〉 = D〈Y(t)〉 (27), one obtains

∂t 〈Y(t)〉 = M(ε,g)〈Y(t)〉, (A1)
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where

M(ε,g) = C + g

2
D2 =

√
2

⎡
⎢⎣

0 1 0

−ε 0 1

g/
√

2 −ε 0

⎤
⎥⎦, (A2)

and matrices C and D are defined in (21). Solution of Eq. (A1)
is

〈Y(t)〉 = eM(ε,g)tY0, (A3)

where Y0 = Y(0) is an initial condition. The generalized LE �

[Eq. (14)] is given by the largest real eigenvalue of the matrix
1
4M(ε,g). It is found from the cubic equation

�(4�2 + ε) = g

8
, (A4)

which has the roots

�1 = ρ(g,ε)

4
− ε

3ρ(g,ε)
, �2,3 =

−�1 ± i

√
3�2

1 + ε

2
,

(A5)

where ρ(g,ε) = (g +
√

g2 + ( 4
3ε)3)1/3. The generalized LE �

is given by �1, which is real and positive. The other two
eigenvalues are complex for ε > −3�2

1 (i.e., ε > − 3
4g2/3)

and real otherwise. Matrix M(ε,g̃) is not normal (MM† �=
M†M), and its left and right eigenvectors, corresponding to
the eigenvalues �i in Eq. (A5), are

uR
i = 1

24�2
i + 2ε

[
1, 2

√
2�i, ε + 8�2

i

]T
,

(A6)
uL

i = [
ε + 8�2

i , 2
√

2�i, 1
]†

.

These eigenvectors satisfy the normalization (uL
i ,uR

j ) = δij .

APPENDIX B: BORN APPROXIMATION FOR �

The systematic weak disorder expansion (i.e., in powers
of the disorder amplitude V0) for the generalized LE �

was considered in Ref. [22]. Here we only note that the
Born approximation for � can be obtained by substitution
of the zero-order solution for 〈 δY(t)

δV (τ ) 〉 into (23). The zero-order

solution for 〈 δY(t)
δV (τ ) 〉 is obtained by neglecting the noise term in

equation (26),

∂

∂t

〈
δY(t)

δV (τ )

〉
= C

〈
δY(t)

δV (τ )

〉
,

〈
δY(τ+)

δV (τ )

〉
= D 〈Y(τ )〉 ,

which has the solution〈
δY(t)

δV (τ )

〉
= eC(t−τ )D〈Y(τ )〉. (B1)

Inserting this solution into Eq. (23) yields an equation closed
with respect to 〈Y(t)〉:

∂t 〈Y〉 = C〈Y〉 +
∫ t

0
C2(t − τ )DeC(t−τ )D〈Y(τ )〉dτ, (B2)

where pair correlation function C2(t − τ ) is defined in Eq. (6).
Then, lowest-order calculation of the asymptotic growth rate
of the solution 〈Y(t)〉 yields the Born approximation

�

k
= g

8ε3/2

∫ ∞

0
ds�(s) cos (2kRcs) + o

( g

8ε3/2

)
, (B3)

where k = √
ε and g = 2V 2

0 Rc. This expression coincides
with the Born approximation for LE c1 [4].

APPENDIX C: METHOD OF NUMERICAL SIMULATIONS

The numerical simulations were performed using the tight-
binding (TB) model

Eψn = εnψn − ψn+1 − ψn−1, (C1)

with energy near the band edge, 0 < E + 2 � 1, and the
diagonal disorder |εn| � E + 2. In this regime, Eq. (C1) is
a good approximation to the continuous model (5). We relate
the continuous model with energy ε = k2 and potential V (x)
to the TB counterpart by setting

E = −2 cos k, εn = sin k

k
V (x)|x=n. (C2)

The correlated Gaussian disorder εn was generated by fil-
tering sequences of independent Gaussian random variables.
The real space convolution with a proper kernel was used
to obtain the “short-range” exponential [�(x) = e−x] and
Gaussian [�(x) = e−πx2/4] correlations, while the Fourier
space filter was applied to obtain the power law correlation
�(x) = sinc2 x

2 .
In all simulations presented in this paper, we have fixed

the energy at E = −1.95 and varied values of the disorder
amplitude V0 and the correlation radius Rc. Note that for E =
−1.95, the corresponding wavelength of the solution for a
pure system (εn = 0) is equal to about 28 sites. Therefore,
approximation to a continuum is good as long as V0 � E.

A standard transfer matrix formalism (see, e.g., Ref. [45])
was used, in which the TB equation (C1) is rewritten in the
matrix form(

ψn+1

ψn

)
= Tn

(
ψn

ψn−1

)
, Tn =

[
(εn − E) −1

1 0

]
, (C3)

where Tn is a single-site transfer matrix. Then, the solution of
the initial value problem is given by(

ψN+1

ψN

)
= TN,1

(
ψ1

ψ0

)
, TN,1=TN ...T2T1, (C4)

where T1,N is the total transfer matrix for the system of
length N .

In analogy with Eq. (19), one can introduce vector
Yn = (u2

n,
√

2unvn,v
2
n)T , where un ≡ ψn and vn = (ψn −

ψn−1)/k ≈ k−1∂xψ . Similarly to (C4), the solution for YN

can be written as

YN+1 = KN,1Y1, (C5)

where Y1 is an initial condition and KN,1 is the transfer matrix
for YN , which is readily expressed in terms of the elements
of TN,1. The largest eigenvalue of KN,1 is equal to the square

011128-14



GENERALIZED LYAPUNOV EXPONENT AND . . . PHYSICAL REVIEW E 83, 011128 (2011)

modulus of the largest eigenvalue of TN,1. Finally, ensemble
average over the disorder realizations yields

〈YN+1〉 = 〈KN,1〉Y1.

Cumulant coefficients cn, defined in Eq. (12), are given
by the asymptotic linear growth rate of the cumulants
2−n〈〈lnn κN 〉〉 with the system length N , where κN denotes the
largest eigenvalue of the matrix K1,N . The asymptotic slope
was calculated by the linear fit, which have to exclude the
region of the initial transient of the order of a few localization
lengths. The ensemble average was performed over ∼106–107

realizations of disorder.
The generalized LE � [Eq. (14)] was calculated as a linear

slope of 1
4 ln〈κN 〉. Alternatively, � could be found as a slope

of the logarithm of the largest eigenvalue of 〈KN,1〉, which
gives practically the same result. About 108 realizations were
generated to calculate each value of 〈κN 〉.

Monte Carlo simulation of the generalized LE can be a
quite challenging task, as is briefly explained in the following.
In numerical simulation of the generalized LE one has to deal
with two restrictions on the system size, both from below and
from above. The lower bound is determined by the width of
the transient to the asymptotic behavior:

ln 〈κN 〉 = N� + const. (C6)

The width of this transient is at least of the order of Rc.
This follows from the form of the differential equation
(23) for 〈Y (t)〉, which suggests that growth rate of 〈Y (t)〉
cannot stabilize unless t 	 Rc. This is because the correlation
function in the integral on the right-hand side of Eq. (23)
decays on the scale of Rc. In the white noise limit, Rc → 0, the
transient region is absent, as follows from the exact analytical
result (Appendix A) and was observed numerically. Therefore,
we assume that the width of the transient is of the order of
Rc, and other scales, such as the localization length, are less
important (unlike the case of cn, n > 2).

The upper bound on the system size is determined em-
pirically from the numerical data as a value of N , beyond
which the linear dependence in Eq. (C6) is violated. This
computational artifact originates from the insufficient statistics
in averaging of the broadly distributed quantity κN , which
is equivalent to T −1. According to Eqs. (2) and (4), the
distribution of κN is log-normal for weak disorder, while
some corrections to the limiting log-normal form occur for
stronger disorder. As follows from Eqs. (13) and (17), this
distribution becomes increasingly broad and heavy-tailed with
the increase of the dimensionless system length l = c1N .
For large l, long tails of the distribution, which dominate
the theoretical mean of κN , are typically undersampled in
simulations with a finite number of realization. As a result, the
obtained values of ln〈κN 〉 become typically underestimated
(formally, expectation value of ln〈κN 〉 becomes smaller than
ln〈κN 〉∞, where 〈κN 〉∞ is the theoretical mean). This effect

increases with the system size, the relevant length scale being
the localization length c−1

1 . Therefore, the upper bound on
the system length is of the order of a few c−1

1 . Thus, the
upper and the lower bounds eventually coincide in sufficiently
strong disorder, since c−1

1 becomes small. In such a case,
numerical calculation of � becomes impossible, unless the
number of the realizations is increased dramatically (for the
exactly log-normal κN , it can be shown that the improvement
is logarithmically slow). In moderate disorder, the small range
between the lower and the upper bounds results in large
uncertainty in the calculated �, as indicated by the error bars in
Figs. 1 and 2.

APPENDIX D: AUXILIARY FORMULAS FOR
SEMICLASSICAL APPROXIMATION

Cumulants 〈〈κn〉〉 are easily written in terms of 〈〈κn〉〉ε
and 〈〈�n

ε (V )〉〉 using that �n
ε (V ) = �ε(V ) and 〈κn〉 =

〈κn〉ε〈�ε(V )〉, where 〈· · ·〉ε stands for the average with the
distribution Pε(V ) ≡ �ε(V )P (V )/

∫∞
ε

dV P (V ), introduced
in Sec. IV. For example, the second cumulant, 〈〈κ2〉〉 ≡
〈κ2〉 − 〈κ〉2, becomes

〈〈κ2〉〉 = 〈κ2〉ε〈�ε(V )〉 − 〈κ〉2
ε〈�ε(V )〉2, (D1)

which, using 〈〈�2
ε(V )〉〉 = 〈�ε(V )〉 − 〈�ε(V )〉2 and

〈〈κ2〉〉ε = 〈κ2〉ε − 〈κ〉2
ε , yields after some rearrangement

〈〈κ2〉〉 = 〈〈κ2〉〉ε〈�ε(V )〉 + 〈κ〉2
ε〈〈�2

ε(V )〉〉. (D2)

Similar expansion for the third cumulant, 〈〈κ3〉〉 = 〈κ3〉 −
3〈κ2〉〈κ〉 + 2〈κ〉3, gives expression (57) for f3 = 〈〈κ3〉〉/〈κ〉3.

For Gaussian distribution P (V ) = (2πV 2
0 )−1/2e−V 2/2V 2

0 ,
definition (51) yields the expression for LE

c1 = V
1/2

0 2−9/4e−r2/2U

(
3

4
,

1

2
,

r2

2

)
, r ≡ ε

V0
, (D3)

while functions fn( ε
V0

) ≡ 〈〈κn〉〉/〈κ〉n for n = 2,3 are given
by (r � 0)

f2(r) = −1 + 8
2er2/2 − √

2πrer2
erfc(r/

√
2)

√
πU 2

(
3
4 , 1

2 , r2

2

) ,

f3(r) = 2 − 24
2e

r2

2 − √
2πrer2

erfc r√
2√

πU 2
(

3
4 , 1

2 , r2

2

) (D4)

+
32r

1
2 e

5r2

4

[(
1 + r2

)
K 1

4

(
r2

4

)
− r2K 3

4

(
r2

4

)]
21/4

√
πU 3

(
3
4 , 1

2 , r2

2

) ,

where U (a,b,z) is a confluent hypergeometric function of the
second kind (or Tricomi function) and Kν(z) is a modified
Bessel function of the second kind [46].
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