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Phase diagram and critical behavior of a forest-fire model in a gradient of immunity
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The forest-fire model with immune trees (FFMIT) is a cellular automaton early proposed by Drossel and
Schwabl [Physica A 199, 183 (1993)], in which each site of a lattice can be in three possible states: occupied
by a tree, empty, or occupied by a burning tree (fire). The trees grow at empty sites with probability p, healthy
trees catch fire from adjacent burning trees with probability (1 − g), where g is the immunity, and a burning
tree becomes an empty site spontaneously. In this paper we study the FFMIT by means of the recently proposed
gradient method (GM), considering the immunity as a uniform gradient along the horizontal axis of the lattice.
The GM allows the simultaneous treatment of both the active and the inactive phases of the model in the same
simulation. In this way, the study of a single-valued interface gives the critical point of the active-absorbing
transition, whereas the study of a multivalued interface brings the percolation threshold into the active phase.
Therefore we present a complete phase diagram for the FFMIT, for all range of p, where, besides the usual
active-absorbing transition of the model, we locate a transition between the active percolating and the active
nonpercolating phases. The average location and the width of both interfaces, as well as the absorbing and
percolating cluster densities, obey a scaling behavior that is governed by the exponent α = 1/(1 + ν), where
ν is the suitable correlation length exponent (ν⊥ for the directed percolation transition and ν for the standard
percolation transition). We also show that the GM allows us to calculate the critical exponents associated with both
the order parameter of the absorbing transition and the number of particles in the multivalued interface. Besides,
we show that by using the gradient method, the collapse in a single curve of cluster densities obtained for samples
of different side is a very sensitive method in order to obtain the critical points and the percolation thresholds.
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I. INTRODUCTION

A wide class of far-from-equilibrium systems exhibits
irreversible phase transitions (IPTs) between an active phase
and an inactive (absorbing) regime, so that the system becomes
irreversibly trapped into the absorbing phase when a suitable
control parameter is finely tuned across the transition point. In
fact, IPTs have been reported in models for heterogeneously
catalyzed reactions [1], prey-predator systems [2], epidemic
propagation [3], as well as in different models proposed to
mimic biological systems, such as the immune system [4], the
spreading of virus propagation [5], and calcium propagation
inside the cells [6–8]. In contrast, self-organized criticality
(SOC) describes the way in which some nonequilibrium
systems develop power-law correlations in a steady state
without any tuning of parameters to a given value. The concept
of SOC has attracted much interest since it might explain
the spontaneous onset of scale-free distributions in nature,
economy, social sciences, etc. [9].

Within this broad context, we focus our attention on a forest-
fire model with immune trees, which is a variant of the model
early introduced by Bak, Chen, and Tang [10]. In general,
forest-fire models are a cellular automaton, so that each site
of a d-dimensional hypercubic lattice can be in three different
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states: occupied by a tree, occupied by a burning tree, or empty.
The system is updated in parallel as follows:

(i) A burning tree becomes an empty site.
(ii) A tree grows with probability p at empty sites.
(iii) A green tree becomes a burning tree with probability

1 − g if at least one of its nearest neighbors is burning.
(iv) A tree becomes a burning tree with probability f � 1

if no neighbor is burning.
In the original version [10] the forest-fire model was

presented with only one control parameter, the tree growth
probability p (that is, f = 0 and g = 0), and shows regular
spiral-shaped fire fronts in the limit of p → 0 [11,12]. The
most studied version of the model, proposed by Mossner,
Drossel, and Schwabl [12], included the nonzero lightning
parameter f (with g = 0). For this version in the limit
f/p → 0, the model has been shown to exhibit SOC in a
nonconservative system for the first time. Self-organization is
found in the model of Mossner, Drossel, and Schwabl because
the steady state is independent of both the initial conditions
and the exact values of the parameters, as long as f/p is small
enough. The system is critical because there are power-law
correlations over long distances and long time intervals [13].
Later, the inclusion of the immunity g �= 0 in the model [14,15]
by means of rule (iii) was proposed. When the immunity is
considered (with f = 0), depending on the value of g, the
model exhibits a second-order IPT between an active phase and
an absorbing phase, in which all sites are occupied by green
trees. This version of the model is known as the forest-fire
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model with immune trees (FFMIT) and it is the focus of the
present work.

The main features of the phase diagrams of far-from-
equilibrium models, such as the FFMIT, can be predicted
by means of different analytic approximations, but usually
the most accurate tool to obtain this kind of phase diagram
is the computational simulation [16]. According to the usual
simulation method used in the FFMIT [14,15,17], for a fixed
arbitrary value of the tree growth probability p (0 < p � 1)
and by starting from the active phase, an increment of g causes
the fire density to decrease until the fire becomes irreversibly
extinguished at a certain critical point (p,gc). The set of critical
points defines a critical curve gc(p) that, in the limit of infinite
lattice size (L → ∞), divides the phase space into two regions:
the active state for g < gc(p), where fire fronts are present, and
the unique absorbing state for g > gc(p), where all sites are
occupied by green trees.

In this paper we study the FFMIT by means of the
gradient method (GM) [18], instead of the standard simulation
procedure [14,15,17]. In order to apply the GM to the FFMIT,
we consider the immunity g as a uniform gradient along the
horizontal axis of the lattice. Then, in each simulation, the
GM provides an overview of the behavior of the system for
the whole range of the immunity, at fixed p, of course, in
contrast to the standard simulation method, which requires
an individual (independent) simulation for each value of g

and p. As will be shown below, by using the GM in the
FFMIT, besides the usual second-order IPT, we can also locate
a percolation transition of the green trees inside the active
phase of the model. We also obtained the critical points and
several exponents associated with these transitions.

The GM for the study of IPTs is a generalization of the
so-called gradient percolation method [19,20]. The gradient
percolation method has been used to study the percolation
transition in models where the density is the control parameter
[20]. It is worth mentioning that by using the GM, despite the
percolation transition, one is also able to study continuous
and first-order IPTs. An approach related to the gradient
percolation method, widely used in the study of colloids and
polymers, is the so-called sedimentation equilibrium method
[21]. By measuring concentration profiles of lattice polymers
in a gravitationlike potential [21,22], which generates the
gradient, the equation of state can be inferred if a local density
approximation as in hydrostatic equilibrium is invoked. We
organized the paper as follows: in Sec. II we summarize results
of the gradient percolation approach and introduce the GM for
the case of the FFMIT. Results of Monte Carlo simulations
obtained by applying the GM to the FFMIT are presented and
discussed in Sec. III. Finally, our conclusions are stated in
Sec. IV.

II. THEORETICAL BACKGROUND AND DEFINITIONS OF
THE GRADIENT METHOD

A. Gradient percolation

The standard percolation transition was first shown to be
related to the diffusion front of noninteracting particles in
the seminal work of Sapoval et al. [19]. The diffusion of
noninteracting particles, except for the excluded volume, pro-

duces a concentration gradient along the source-well direction.
By considering a different connectivity between particles and
holes, one can define an interface that constitutes the diffusion
front. This interface is multivalued and self-similar, and it can
be used in order to measure the properties of the percolation
transition. In fact, the diffusion front, for the case of an
infinite lattice size, corresponds to the hull of the incipient
percolation cluster [19,23]. As the concentration of particles
p(x,t) depends on their position, decreasing from the source
to the well, one actually has a gradient percolation system. The
concentration of particles at the mean front position (xf ) is the
same as the percolation threshold pc, that is, p(xf ) = pc.

Sapoval et al. [19] have demonstrated, by using heuristic
arguments, that both the width of the diffusion front (WL) and
the number of particles that constitute it (N ) scale with the
gradient density in the locus of the front [∇p(xf )]. That is,

WL ∼ [∇p(xf )]−α∗
where α∗ = ν

ν + 1
, (1)

and

N

Ly

∼ [∇p(xf )]−αN

where αN = 1

ν + 1
. (2)

ν = 4/3 is the critical exponent of the correlation length for
the standard percolation transition [24], and Ly is the side
of the lattice parallel to the interface (or perpendicular to the
gradient direction). Recently, Nolin [25] has proved the results
of Eqs. (1) and (2), as predicted by Sapoval, for the case of site
percolation in a triangular lattice.

From the point of view of the dynamic scaling theory of
self-affine interfaces early developed by Family and Vicsek
[26], an interface width WL should scale according to

WL ∼ Lα∗
y , (3)

where α∗ is the roughness exponent and Ly is the finite
length along the direction parallel to the interface. For the
diffusion front, one could expect that Eq. (3) will be recovered
if one considers a linear gradient. However, for the self-similar
interface generated by the diffusion of noninteracting particles,
the correlations are constrained by the concentration gradient
and consequently the scaling behavior is dominated by the
growing correlation length along the direction where the
gradient is applied, i.e., the direction perpendicular to the
interface. In fact, it has been demonstrated [27] that for a linear
concentration of particles, the dynamic scaling theory works,
but by taking the length perpendicular to the interface Lx since
Ly becomes irrelevant. So, for the diffusion front in a constant
gradient, the Family-Vicsek scaling behavior [Eq. (3)] should
be replaced by

WL ∼ Lα∗
x . (4)

Note that this equation is a particular case of the general
relationship given by Eq. (1) when one considers a constant
gradient.

The use of the relationships expressed in Eqs. (1) and (2) in
the diffusion front problem allowed for the measurement, with
very high precision, of both the percolation threshold [28] and
the exponent ν [27] for the standard percolation transition.
The idea of defining an interface based on the geometrical
properties of the diffusion front (actually by using the hull of
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the incipient percolation cluster) and calculating the critical
concentration of the percolation transition from the location
of that interface has been called the gradient percolation
method. Subsequently, the gradient percolation method has
been applied extensibly in different models where the density
is the control parameter [20]. In a related context, Kolb et al.
have applied the gradient percolation method to the study of
spinodal decomposition in a lattice gas [29]. A generalization
of the results of the gradient percolation method to diffusion
front models with radial symmetry was made recently by
Nolin [30]. Furthermore, Gabrielli et al. have presented a field
theory description of a model for dynamical etching showing
a rich physical behavior, related to gradient percolation, which
involves self-organization and the existence of absorbing states
when the etching process is stopped [31].

B. Gradient method

By extending the early ideas of the gradient percolation
method, we have recently proposed the so-called gradient
method (GM) for the study of IPTs of both first and second
order, as well as the standard percolation transition. The GM
can be applied to a wide variety of irreversible models. The
first step necessary for the implementation of the GM is to
impose a gradient on one of the control parameters of the
model. This condition generates a configuration that forces a
gradient concentration. In the case of the FFMIT we impose a
constant gradient on the control parameter g (immunity) along
the horizontal (x direction) axis, for a fixed given value of p.1

In this way the immunity is given by

g(x) = x

Lx

, (5)

where Lx is the horizontal lattice side and 1 � x � Lx . For
steady states, some relevant properties such as the densities
of trees, burning trees, and empty sites depend only on the
parameters p and g(x). In Fig. 1(a) we show a typical stationary
configuration of the FFMIT with g(x) given by Eq. (5).

In the snapshot of Fig. 1(a) one can see a green cluster
that obviously percolates along the vertical direction (right-
hand side), and on the left-hand side of the sample one has
that the green trees do not percolate anymore. Therefore it
is clear that there is a percolative-nonpercolative transition of
green trees, which can be studied by analyzing the self-similar
interface. In order to find this interface we proceed as follows.
One first determines all the green sites in contact with the
green cluster, located on the right-hand side of the sample.
These sites, connected by means of nearest neighbors, are
denoted as the “land.” Empty sites and burning trees are linked
through both nearest and next-nearest-neighbor sites and form
a large cluster that is termed the “sea.” The sites that are
neither connected with the large clusters of land nor of sea are
identified as “islands” and “lakes,” respectively, but they are

1We expect exactly the same results if one imposes the gradient on
the control parameter p, rather than on the immunity. Namely, Gastner
et al. [32] have shown that the results for the gradient percolation
method applied to the contact process are independent of the control
parameter selected to apply the gradient.

a b

d c

FIG. 1. FFMIT in a linear gradient of immunity for a square
lattice of L = 64 (p = 0.5), after a transient of 500 Monte Carlo
steps (MCSs). All figures correspond to the same configuration.
(a) Typical snapshot. The burning trees are represented by the black
sites, the green trees by the gray sites, and the empty sites are left
white. On the left-hand side of the figure we can see the active region,
whereas on the right-hand side the system is in the absorbing state,
with all sites taken by green trees. (b) Identification of the land (gray
sites), the sea (white sites), the islands (light gray sites), and the lakes
(black sites). (c) Islands and lakes of (b) were eliminated in order
to easily identify the MVI, shown with the black sites. The average
position of the MVI is the black vertical line. On the right-hand side of
the figure (gray sites) we can see the cluster of percolation particles.
(d) The SVI is identified with the black sites and the average position
of the SVI is the black vertical line. On the right-hand side of the SVI
one has only green trees, defining the absorbing cluster (gray sites).
On the left-hand side of the SVI one has the active phase (white sites),
with all states represented by the same color for the sake of clarity.

irrelevant. In fact, the interface is given by the seashore where
land and sea are in contact [19,27,32]. We call the set of these
sites {xj ,j = 1, . . . ,NMVI} the multivalued interface (MVI).

Figure 1(b) shows the land (gray), the sea (white), as well
as the islands (light gray) and lakes (black). In order to make
the meaning of the MVI clearer, in Fig. 1(c) we dismiss
islands and lakes present in Fig. 1(b). The MVI shown in
Fig. 1(c) is identified with the seashore (black sites), which
is the border between the percolating phase (gray sites) and
the nonpercolating phase (white sites), on the right-hand and
left-hand sides of the sample, respectively. The mean position
of the MVI is the black vertical line.

An interface can be characterized by two observables: its
mean position and its width. Of course these observables are
measured in terms of the x coordinate, but here for the sake
of clarity of the paper it is more convenient to measure these
observables in units of the parameter g, just by using Eq. (5).
The average immunity undergone by the sites belonging to the
MVI ({xj ,j = 1, . . . ,NMVI}) is given by

gMVI = 1

NMVI

NMVI∑
j=1

g(xj ), (6)
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and it is identified as the percolation threshold gp [18], as in
the case of the gradient percolation method.

On the other hand, the width of the MVI is given by

wMVI =
√√√√ 1

NMVI

NMVI∑
j=1

[g(xj ) − gMVI]2. (7)

The previous scaling relationship formulated for the width of
the interface in the diffusion front problem [Eq. (4)] is also
valid for the MVI defined here. However, it is convenient to
rewrite Eq. (4) because in the GM the width is measured in
units of g. Therefore one has that w = (dg/dx)WL, where WL

is the width measured in lattice units. Because g(x) = (x/Lx),
one obtains w = (1/Lx)WL ∝ Lα∗−1

x . Then the width scales
as

w ∝ L−(1−α∗)
x = �1−α∗

, (8)

where � is the gradient. Considering that α∗ = ν
ν+1 [from

Eq. (1)] and by taking α = 1 − α∗, we conclude that the width
in the GM scales as [18]

w ∝ �α where α = 1

1 + ν
. (9)

For the MVI one should consider ν = 4/3, which corresponds
to the critical exponent of the correlation length for the
universality class of the standard percolation transition, as in
the case of the diffusion front. Therefore one expects that the
exponent given by Eq. (9) will be α = 3/7 � 0.428. In fact,
by using the MVI interface, Eqs. (1) and (9) have been verified
to hold in recent work [18,32]. Indeed, for the case of a model
with two control parameters [32] the results are independent of
which parameter is used for tuning the percolation transition.

The exponent entering in the scaling law of the number of
particles of the MVI (NMVI), as yielded by the GM, is expected
to be the same as that for the diffusion front [Eq. (2)], since it
is not possible to measure the number of particles in units of
the immunity. Then, we have

NMVI

Ly
∼ �−αN

where αN = 1

1 + ν
. (10)

Again using ν = 4/3, one has αN = 3/7 � 0.4286.
By using the GM one can study not only the percolation

transition underlying the model, but also IPTs, as in the case
of the irreversible continuous phase transition of the FFMIT.
In fact, from the snapshot of Fig. 1(a) one can see that both
the active phase (on the left-hand side of the sample) and the
absorbing phase (on the right-hand side of the sample) coexist
in the same simulation. In order to study IPTs one needs to
define another interface, capable of capturing this kind of phase
transition, in the same way as the MVI detects the percolation
transition.

The interface that captures the active-absorbing transition
(no matter the order of the transition) has a very simple
definition: It is given by the set of sites {xj ,j = 1, . . . ,Ly}
belonging to the absorbing green phase that are in contact
with the active phase, but are located on the rightmost side of
the sample [18]. This interface is a single-valued interface, so
we call it the SVI.

Figure 1(d) shows the SVI, represented by the dark sites.
On the right-hand side of the SVI one has only green trees,

defining the absorbing cluster. On the left-hand side of the
SVI one has the active phase, but in Fig. 1(d) all states are
represented by the same color (for the sake of clarity). Also,
Fig. 1(d) shows the mean position of the SVI, represented by
the black vertical line.

The average immunity undergone by the sites belonging to
the SVI (gSVI) is given by

gSVI = 1

Ly

Ly∑
j=1

g(xj ). (11)

Note that the gSVI can be identified with the critical point of the
active-absortive transition gc [18], as in the case of the MVI,
where gMVI corresponds to the percolation threshold.

The width of the SVI is given by

wSVI =

√√√√√ 1

Ly

Ly∑
j=1

[g(xj ) − gSVI]2. (12)

In recent work [18] we have already shown that the SVI
also scales according to Eq. (9), for both first- and second-
order IPTs. However, now one should consider the suitable
exponent that controls the correlation length divergence of
the transition in question, as we considered ν = 4/3 for the
standard percolation transition. The second-order IPT of the
FFMIT belongs to the directed percolation universality class,
and the exponent that should be considered in Eq. (9) is
ν⊥ = 0.733(4) [33,34] because it governs the divergence of
the correlation length perpendicular to the interface. So, one
gets αSVI = 0.577. Also, for both the MVI and the SVI, the
exponent α of Eq. (9) governs the convergence of gp and gc,
respectively, to the critical points.

Summarizing, by using the GM, for both the percolation
transition and for the IPTs one has

wx ∝ �αx

, (13)

gx
c = gx

∞ + Ax�
αx

, (14)

αx = 1

1 + νx

, (15)

where Ax is a constant and gx
∞ is the extrapolated value of the

control parameter at the transition. For the MVI the exponent
νx is the exponent of the correlation length of standard
percolation in d = 2 dimensions, νMVI = ν = 4/3, and for the
SVI it is the exponent of the correlation length of the directed
percolation universality class in d = 2 + 1 dimensions, νSVI =
ν⊥ = 0.733. These correlation length exponents govern the
correlations along the direction perpendicular to the interface,
in agreement with the arguments discussed in the context of
Eq. (4). Note that for the case of νMVI one does not need to
distinguish between ν‖ and ν⊥, as in the case of νSVI, due to
the isotropy of the standard percolation cluster.

In Table I we present the expected values for the exponents
αMVI, αSVI, and αN , and the corresponding correlation length
exponents that have to be used in Eq. (15). We also quote the
universality class of the underlying transition.

Let us also define the absorbing cluster as the cluster
composed of all sites on the right-hand side of the SVI, as
one can see in Fig. 1(d). On the other hand, the percolating
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TABLE I. Expected values for the exponents αMVI, αSVI, and αN ,
and the corresponding correlation length exponent ν that has to be
used in order to evaluate α according to Eq. (15). The last column
indicates the universality class of the underlying transition: SP stands
for standard percolation and DP stands for directed percolation.

α = 1
1+ν

ν Universality

αMVI 3/7 4/3 SP
αN 3/7 4/3 SP
αSVI 0.577 0.733 DP

cluster can be seen in Fig. 1(c), and it is composed of sites
belonging to the land and the lakes and islands inside the land.
The density profiles of these clusters are given by the fraction
of the occupied sites for each column [ρ(x)]. By using Eq. (5),
these profiles can be expressed in terms of the immunity.
Henceforth we call these profiles simply the cluster density
[ρ(g,�)], and we denote the absorbing cluster density by ρabs

and the percolating cluster density by ρperc.
It is worth noting that from the cluster density ρ(g,�) one

can obtain the mean localization of the SVI and MVI (that is,
gc or gp, respectively), and their fluctuations (that is, the widths
wSVI and wMVI, respectively). That function, for finite �,
varies smoothly within the interval 0 � ρ(g,�) � 1 and tends
to the Heaviside step function in the limit � → 0, so that it is
not critical at gc. These properties and the validity of Eqs. (13)
and (14) allow us to summarize the expected scaling behavior
of ρ, namely (see, for example, Ref. [24])

ρ(g,�) = φ[(g − gc)/�α], (16)

where φ is a scaling function. This equation implies that for
g = gc the cluster density should be independent of �, and
that the curves corresponding to different gradients should
cross each other at a fixed point ρ∗ = ρ(gc,�) = φ(0).

Summing up, we have shown that by using the GM one can
obtain the exponent α by measuring w versus � [Eq. (13)],
and the transition point by determining ρ∗. Furthermore, it
can be verified that the scaling ansatz [Eq. (16)] is working
out consistently just by collapsing the curves for the cluster
density (obtained for different values of �) in a single function
φ, by using the measured values of gc and α.

Interestingly, we will also show that this kind of analysis,
based on Eq. (16), is very general for studying phase
transitions. In fact, we have already shown that it is valid
for the characterization of first- and second-order IPTs in the
Ziff-Gulari-Barshad (ZGB) model [18], and in the present
work it is applied to the FFMIT, for both the percolation
transition and the second-order IPT.

III. MONTE CARLO SIMULATIONS AND RESULTS

The gradient method was applied to the FFMIT by using
lattices with periodic boundary conditions in the vertical
direction and open boundary conditions in the horizontal
direction, where the gradient of immunity is established,
according to Eq. (5). The FFMIT is defined so that each site
of a square lattice of size Lx versus Ly can be in one of three
states: occupied by a green tree, a burning tree, or empty.
Each run starts with a random distribution of trees and empty
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FIG. 2. (a) Log-log plots of wMVI (circles) and wSVI (triangles)
as a function of the gradient (�), for p = 0.102. (b) Log-log plot of
NMVI/L (squares) vs the gradient (�), as obtained for p = 0.102.

sites. During each time step, all sites are updated in parallel,
as a cellular automaton, according to the rules defined in the
Introduction, with f = 0. For the simulations we consider that
Lx = Ly = L, and we applied a constant gradient � = 1/L.

Figure 2(a) shows the log-log plots of the width of both the
MVI (wMVI) and the SVI (wSVI) as a function of the gradient
(�), for p = 0.102. These data are consistent with power-law
dependences, as expected according to Eq. (13). From a
preliminary fit we obtained the exponents αMVI ≈ 0.3583 and
αSVI ≈ 0.5305, both far from the expected values αMVI =
0.4286 and αSVI = 0.577 (see Table I). Figure 2(b) shows the
log-log plot of the normalized number of particles belonging
to the MVI (NMVI/L) as a function of the gradient (�),
for p = 0.102. From Eq. (10), the linear fit of the data gives
αN ≈ 0.4586, in poor agreement with the expected value
αN = 0.4286 (see Table I).

However, a careful inspection of Figs. 2(a) and 2(b) reveals
a systematic curvature that suggests the occurrence of finite-
size effects. In order to overcome this effect we defined L-
dependent effective exponents according to

αx
L(L) =

ln
(

wx (L)
wx (rL)

)
ln(r)

, (17)

where x ≡ MVI, SVI, and N , and r is a real number.2 In
Fig. 3(a) we show plots of αMVI

L (L), αSVI
L (L), and αN

L (L) versus
L, for p = 0.102 (we took r = 2). The horizontal dashed lines
represent the expected values for αMVI, αSVI, and αN . Clearly,
the values of the effective exponents [αx

L(L)] converge to the
expected values for L → ∞. Therefore we can use a finite-size
correction of the form

αx
L(L) = αx ± Bx

(
1

L

)�x

, (18)

where again x ≡ MVI, SVI, and N ; while �x are corrections
to scaling exponents, and Bx are positive constants. It should be
mentioned that the finite-size correction proposed in Eq. (18)
has already been used in the measurements of the roughness

2If one considers Lx �= Ly , the correct side length to be taken into
account in Eq. (17) is Lx .
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FIG. 3. (a) Plots of αMVI
L (L) (circles), αSVI

L (L) (triangles), and
αN

L (L) (squares) vs L, for p = 0.102 [data obtained by taking r = 2
in Eq. (17)]. The solid lines show the fit of the data obtained by
using Eq. (17). (b) Plots of αMVI

L (L) (circles), αSVI
L (L) (triangles), and

αN
L (L) (squares) vs L−�x , with �MV I = 0.8308, �SV I = 0.5687, and

�N = 0.9945, as obtained from the fit of Fig. 3(a). For both figures
the horizontal long-dashed line represents the exact value for αMVI

and αN , and the horizontal dashed line represents the exact value for
αSVI (see Table I).

exponent in the diffusion front [27] and in a ballistic deposition
model [35]. From the fit of the data shown in Fig. 3(a) we obtain
the values of �x . So, a plot of αx

L(L) versus L−�x , as shown in
Fig. 3(b) for p = 0.102, gives us αMVI = 0.437(11), αSVI =
0.574(5), and αN = 0.420(8), all of them in good agreement
with the exact values (see Table I).

In Fig. 4 we show plots of αMVI, αSVI, and αN as calculated
for different values of p. Empty symbols represent values
obtained with the finite-size correction of Eq. (18) and full
symbols represent those obtained without the correction. The
excellent agreement with the exact values confirms the validity
of the proposed finite-size correction of Eq. (18). The stronger
finite-size corrections observed for p = 0.102 could be due to
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FIG. 4. (a)–(c) Plots of αMVI, αSVI, and αN , respectively, as
calculated for different values of p. Empty symbols correspond to
the values obtained by using the correction of Eq. (18), while full
symbols correspond to the raw values obtained from fits as shown
in Fig. 2. The horizontal lines represent the exact value for αMVI (a),
αSVI (b), and αN (c) (see Table I).
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FIG. 5. (a) and (c) show plots of the absorbing cluster density
(ρabs) and the percolating cluster density (ρperc), respectively, vs
g(x), as obtained for samples of different side. The insets of (a)
and (c) show the dependence of the intersection point g∗

c and g∗
p ,

respectively, between curves of consecutive gradients (�1 and �2)
with �∗ ≡ (�1 + �2)/2. The extrapolated values of g∗

c and g∗
p

obtained by means of a linear fit of the insets were gc = 0.5613(8) (in
excellent agreement with a previous result, gc = 0.5614 [17], shown
by the horizontal dashed line) and gp = 0.3470(2). The vertical
dashed lines in (a) and (c) show the extrapolated values of gc and
gp , respectively. (b) and (d) show scaled plots of the data shown in
(a) and (c), respectively. More details in the text.

the closeness to the p = 0 point. For this value of p trees cannot
grow anymore and the behavior of the model is qualitatively
different.

As discussed in Sec. II, by using the gradient method one
can also obtain the critical point (gc) and the percolation
threshold (gp) from the absorbing cluster density (ρabs) and the
percolating cluster density (ρperc), respectively. In Fig. 5(a) we
show ρabs, whereas in Fig. 5(c) we present ρperc; both figures
were obtained for p = 0.5. For the case of ρabs [Fig. 5(a)]
one observes a common intersection point (g∗

c ) for all the
profiles evaluated for different values of L (i.e., different
gradients). A more careful inspection allows us to calculate
the intersection points between profiles of consecutive sizes,
which extrapolate to the critical point gc = 0.5613(8), as
shown in the inset of Fig. 5(a), in excellent agreement with
a previous result, gc = 0.5614 [17]. According to Eq. (16)
one can obtain data collapse of ρabs just by rescaling the
horizontal axis by (g − gc)�−αSVI

, as conclusively shown in
Fig. 5(b). In the same way, for ρperc [Fig. 5(c)] the extrapolation
of the intersection points tends to the percolation threshold
gp = 0.3470(2). Furthermore, for the percolation transition
one can also obtain excellent data collapse of the profiles by
scaling the horizontal axis by (g − gp)�−αMVI

[Fig. 5(d)], as
expected from Eq. (16). For different values of p we obtain
a similar behavior (not shown here for the sake of space), for
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FIG. 6. Phase diagram for the FFMIT as obtained by using
the GM. Circles represent the active-absorbing transition (note
the excellent agreement with standard results from the epidemic
method from Ref. [17], shown as triangles) and squares represent
the transition between an active nonpercolating phase and an active
percolating phase. More details in the text.

both the absorbing cluster density and the percolating cluster
density.

Alternatively, with the GM one can also obtain the critical
points, gc and gp, from the mean position of the SVI and the
MVI, respectively, by using Eq. (14). In fact, we have recently
used that procedure for both the FFMIT and ZGB models [18].
However, the collapse of the cluster density is a more sensitive
method to obtain the critical points.

By using the GM, the density of percolating particles at
the percolation threshold is obtained from the location of
the MVI, as in the case of the diffusion front [19]. For
the FFMIT we found that the density of green trees as a
function of g [θgreen(g)] is independent of the lattice size in
the region of the percolation transition. Therefore from the
extrapolated value of gp (obtained previously by the collapse
of the cluster density) one obtains the density of green trees
at the percolation transition [θp = θgreen(gp)]. For all values of
p studied (0.102 � p � 1.0) we obtained θp = 0.58(1), close
to the random percolation threshold (θc � 0.5927 [28]).

Figure 6 shows the complete phase diagram for the FFMIT,
where besides the usual active-absorbing transition of the
model [14,17], we can see a geometrical transition between
an active nonpercolating phase and an active percolating
phase, as obtained from the GM. The critical line {gc} and
the percolating line {gp} shown in the phase diagram, as a
function of p, were obtained from the intersection points of
both ρabs and ρperc, as we have already shown for p = 0.5 in
Figs. 5(a) and 5(c). For the sake of comparison, in Fig. 6 we
show the results of the active-absorbing transition obtained by
means of the epidemic method (gc = 0.5003 for p = 0.102,
gc = 0.5614 for p = 0.5, and gc = 0.5762 for p = 1.0 [17]),
all of them in excellent agreement with the results obtained
from the GM [gc = 0.4997(10) for p = 0.102, gc = 0.5613(8)
for p = 0.5, and gc = 0.5752(8) for p = 1.0].

So far, the results presented here were obtained near the
critical points gc and gp, which are the intervals where the
interfaces SVI and MVI are located. However, we assert that
a range of the immunity away from the SVI can also be used
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FIG. 7. Comparison of the density of burning trees for the FFMIT
calculated according to the standard simulation method (circles) and
by using the GM (L = 512 dashed line, L = 1024 long-dashed line,
and L = 4096 continuous line), for p = 0.5. The critical immunity
(gc) obtained with the GM is indicated by the arrow. The vertical
lines correspond to the mean immunity at the location of the SVI
(gSVI) for the different lattice sides (L = 512 dashed line, L = 1024
long-dashed line, and L = 4096 continuous line). The inset shows
the behavior of the density of burning trees, empty sites, and green
trees, as obtained by using the GM, for the whole range of immunity
(L = 4096 and p = 0.5).

in order to gather further important data, usually obtained by
using the standard simulation method.

In this way, Fig. 7 shows the density of burning trees for
the FFMIT as a function of the immunity g, for p = 0.5, as
obtained by using the GM (lines) and the standard simulation
method often employed to study IPTs (circles). In the case of
the standard simulation, each point of the figure corresponds to
different simulation runs, whereas for the gradient method the
data shown in the figure were obtained in a single simulation
(for each lattice size, of course). The vertical lines correspond
to the mean immunity of the SVI (gSVI) for different lattice
sizes, and to the location of the critical point (gc), as obtained
from the GM. From Fig. 7, we observe that for values of g

smaller than the location of the SVI (g < gSVI), the density of
burning trees is independent of the calculation procedure. Of
course, gSVI becomes closer to gc when the gradient decreases,
i.e., for larger values of the lattice side L, as expected. The
inset of Fig. 7 shows (for p = 0.5) the density of burning
trees, empty sites, and green trees, as obtained with the GM,
and for the whole range of immunity.

Finally, for the region of immunity away from the SVI one
can reproduce the results of the standard simulation procedure
for the order parameter of the second-order IPT, given by the
density of burning trees (θf ). In fact, for a fixed p, and rather
close to the critical point gc, the order parameter behaves as

θf ∼ (gc − g)β, (19)

where the critical exponent β = 0.583(4) corresponds to the
directed percolation universality class in 2 + 1 dimensions
[34].

Figure 8 shows a double-log plot of θf versus the deviation
of the control parameter (gc − g) for different gradients. It
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FIG. 8. Log-log plot of the order parameter θf for the FFMIT
as obtained by using the GM vs the deviation gc − g of the control
parameter (p = 0.5). A linear fit gives a slope 0.57(1), which is shown
by a full line for the sake of comparison.

is clear that for each gradient there is an interval where the
order parameter becomes independent of the gradient. This
interval corresponds to values of g smaller than the location
of the SVI. By considering the region where size effects are
absent (g < gSVI), we can fit a line that gives an estimate of the
critical exponent β = 0.57(1), in agreement with the expected
value. Of course, other stationary values, usually obtained with
standard simulations, can also be measured in this interval.

IV. CONCLUSION

We present and discuss the results of a detailed study of
the phase transition exhibited by a forest-fire model with
immune trees, performed with the aid of the recently proposed
“gradient method” for the study of IPTs [18]. By focusing the
attention on the interface between the absorptive phase (i.e.,
the region of the sample fully covered by trees that corresponds
to high values of the immunity) and the active phase (i.e., a
region where the coexistence of trees, fire, and empty sites is
observed for low immunity) one can study the active-absorbing
transition of the model. In fact, it is shown that a single-valued
interface (SVI) captures the directed percolation behavior
characteristics of the second-order IPT of the model. By
calculating the SVI one can evaluate the critical immunity
and by studying the width of the SVI one can evaluate
(after suitable corrections to scaling) the roughness exponent
αSVI = 1/(1 + ν⊥), where ν⊥ is the perpendicular correlation
length exponent for the directed percolation (DP) universality
class. On the other hand, a multivalued interface (MVI)
captures the standard percolation features of the active phase
where a percolation transition is observed and characterized.
Here, from the MVI one can obtain the critical percolation
threshold. Also, for the width of the MVI, as well as for the
number of particles of the MVI, one can evaluate (again after

suitable corrections) the exponents αMVI = αN = 1/(1 + ν),
where ν is the correlation length exponent for the standard
percolation universality class. Note that in this case one does
not need to distinguish between ν‖ and ν⊥, as in the case of
DP due to the isotropy of the standard percolation cluster.
It is worth mentioning that the exponents αSVI, αMVI, and αN ,
calculated for the whole range of p (0.102 � p � 1.0), are
in fact independent of p, in agreement with the robustness
of the concept of universality. Furthermore, we show that the
analysis of the cluster density allows us to locate the critical
immunity, not only for the DP transition, but also for the
standard percolation transition. We also show that the collapse
in a single curve of the cluster density obtained for samples of
different side, is a more sensitive method, in order to obtain
the critical points, than the mean location of the MVI and
SVI, as early proposed [18]. Moreover, these cluster densities
can nicely be collapsed by applying simple scaling arguments
and by using the determined values of the relevant roughness
exponents.

Besides, by means of the GM one can also reproduce
the results of the standard simulation procedure. Particulary
by analyzing the dependence of the order parameter on the
immunity it is possible to evaluate the order parameter critical
exponent β, in excellent agreement with the expectations for
the DP universality class.

Finally, the gradient method allows us to draw the whole
phase diagram of the system, for all range of p, which,
besides the usually directed percolation transition, exhibits
an additional transition. This transition lies within the active
phase that is divided into two subphases: the active percolating
and the active nonpercolating ones.

It is worthwhile to mention the interesting work of
Caldarelli et al. [36] which outlines the relationship between
statistical properties of real wildfire spreading and the hull
of the percolation cluster of ignited sites, in a percolation
model proposed to mimic the dynamics of fire spreading. We
think that this challenging topic is of great interest in order to
understand the behavior of actual systems in nature, and that
within this context the proposed GM would become a powerful
tool.

Summing up, by means of numerical simulations and
by developing scaling arguments we show that the gradient
method is a useful tool for the study of the interplay between
standard percolation transitions and IPTs, allowing for their
complete characterization. Furthermore, the method allows for
the simultaneous study of all the phases involved in a unified
fashion and in a single simulation run, which, by the way, is
an enormous advantage as compared with standard methods.
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