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We study a percolation problem on a substrate formed by two-dimensional XY spin configurations using
Monte Carlo methods. For a given spin configuration, we construct percolation clusters by randomly choosing
a direction x in the spin vector space, and then placing a percolation bond between nearest-neighbor sites
i and jwith probability pij = max(0,1 − e

−2Ksx
i
sx
j ), where K > 0 governs the percolation process. A line of

percolation thresholds Kc(J ) is found in the low-temperature range J � Jc, where J > 0 is the XY coupling
strength. Analysis of the correlation function gp(r), defined as the probability that two sites separated by a
distance r belong to the same percolation cluster, yields algebraic decay for K � Kc(J ), and the associated
critical exponent depends on J and K . Along the threshold line Kc(J ), the scaling dimension for gp is, within
numerical uncertainties, equal to 1/8. On this basis, we conjecture that the percolation transition along the Kc(J )
line is of the Berezinskii-Kosterlitz-Thouless type.
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I. INTRODUCTION

The XY model is formulated in terms of two-dimensional
spins �s normalized as |�s| = 1 residing on the sites of a lattice.
The reduced Hamiltonian of the XY model (already divided by
kBT , with kB the Boltzmann constant and T the temperature)
reads as

H = −J
∑

〈ij〉
�si · �sj , (1)

where the sum is over all nearest-neighbor pairs, and J > 0 is
the ferromagnetic coupling strength. The spins are labeled by
their site numbers.

It is known from the Mermin-Wagner-Hohenberg-Coleman
theorem [1] that there can not exist spontaneous long-range
order as long as J is finite in Eq. (1) because thermal fluc-
tuations are strong enough to destroy the order. Nevertheless,
the system undergoes a phase transition [2–4] as the coupling
strength J increases. This type of transition is of infinite order
and is known as the Berezinskii-Kosterlitz-Thouless (BKT)
transition. For J < Jc, the spin-spin correlation function
decays exponentially, and the spins form a plasma of vortices;
but for J > Jc, the spin-spin correlation function decays
algebraically with an exponent depending on J , and the
spin configurations contain bound vortex-antivortex pairs.
Transitions of the BKT type occur in various kinds of
systems. The XY -type of transition is related by duality to
roughening transitions in solid-on-solid and related models [5].
Apart from the XY model, BKT transitions are found, among
others, in vertex models [6], models of crystal surfaces [7],
the antiferromagnetic triangular Ising model [8], string
theory [9], network systems [10], superfluid systems [11],
and superconducting systems [12]. These models may involve
long- or short-range interactions.
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It is also known that certain observables of statistical
models are equivalent or closely related to properly defined
geometric quantities. For instance, the Potts model can
be exactly mapped onto the random-cluster model [13],
and the susceptibility χ of the former is related to the cluster-
size distribution of the latter; a similar situation applies to the
Nienhuis O(n) loop model [14] and the equivalent spin model
[15]. The Mott-to-superfluid transition in the Bose-Hubbard
model can be characterized by the winding number of the
world lines of the particles [16]. The geometric percolation
[17] process has been employed to study percolation on
critical substrates, such as the Ising model [18–21], the Potts
model [22–24], the O(n) model [25], and even quantum Hall
systems [26].

In this paper, we study the percolation problem on the sub-
strate of the XY model (1). There is still some freedom in the
choice of the percolation criterion. For instance, one may place
percolation bonds between all neighboring XY spins if their
orientations differ less than a given angle called the “conduct-
ing angle”. This problem was recently investigated by Wang
et al. [27]. Here, we use a different criterion. For a given spin
configuration, we choose a randomly oriented Cartesian refer-
ence frame (x,y) in the two-dimensional spin space, and place
bonds between nearest-neighbor pairs, say sites i and j , with a
probability

pij = max
(
0,1 − e−2Ksx

i sx
j

)
, (2)

where K > 0 parametrizes the percolation problem. Note that,
for K = J , these percolation clusters reduce to those formed
by the cluster simulation process of the XY model as described
in Sec. II.

The rest of this paper is organized as follows. Section III
presents our numerical results for the critical points of the
XY model on the square as well as on the triangular lattice.
Section IV describes the analysis of the percolation problem
for both lattices, with an emphasis on the determination of the
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universal character of this type of percolation transition. We
conclude with a discussion in Sec. V.

II. ALGORITHM AND SAMPLED QUANTITIES

A. Spin-updating algorithm

We employ efficient Monte Carlo simulations of the XY

model (1) by means of a cluster method [28,29]. We use a full
cluster decomposition [28] as follows:

(1) Choose a randomly oriented Cartesian frame of ref-
erence (x,y) in the spin space, and project the spin along
the x and y axes as �s = sxx̂ + syŷ. Accordingly, the scalar
product in Eq. (1) is written �si · �sj = sx

i sx
j + s

y

i s
y

j , so that the
Hamiltonian separates into two parts as H = Hx + Hy , with
Hx = −J

∑
〈ij〉 s

x
i sx

j and similar for Hy .
(2) Between each pair of nearest-neighboring sites, e.g.,

site i and j , place a bond with probability pij = max(0,1 −
e−2J sx

i sx
j ).

(3) Construct clusters on the basis of the occupied bonds.
(4) Independently for each cluster, flip the x components of

all the spins in the cluster with probability 1/2.

B. Sampled quantities

We sampled several quantities, including the second and
the fourth moments of the magnetization density M2 =
| ∑k �sk|2/V 2 and M4 = | ∑k �sk|4/V 4. These quantities de-
termine the dimensionless Binder ratio [30] as

Qm = 〈M2〉2/〈M4〉, (3)

where V = L2 is the volume. The susceptibility is χ =
V 〈M2〉.

Denoting the size of the ith cluster by Ci , we also
sampled the second and the fourth moments of the cluster
size distribution as

S2 = 1

V 2

∑

i

C2
i and S4 = 1

V 4

∑

i

C4
i . (4)

Accordingly, we define another dimensionless ratio as

Ql = 〈S2〉2
/(

3
〈
S2

2

〉 − 2〈S4〉
)

. (5)

Note that for the Ising model, Ql in Eq. (5) is equal to Qm in
Eq. (3).

Also, the spin-spin correlation gs(r) over distances r =
L/2 and L/4 was sampled. A third dimensionless ratio Qs is
defined as

Qs = 〈gs(L/2)〉/〈gs(L/4)〉 . (6)

In the high-temperature range J < Jc, the spin-spin correlation
decays exponentially, and Qs goes to 0 as L → ∞. At
criticality, however, gs(r) tends to algebraic decay as r−2xh ,
and Qs converges to a nontrivial universal value. In an ordered
state with a nonzero magnetization density, Qs would converge
to 1 instead.

Finally, we define the correlation function gp(r) as
the probability that two sites at a distance r belong
to the same cluster. We sampled gp over distances r =
L/2 and r = L/4. The associated dimensionless ratio is

defined as

Qp = 〈gp(L/2)〉/〈gp(L/4)〉 . (7)

III. CRITICAL POINTS

A. Square lattice

We simulated the XY model on L × L square lattices with
periodic boundary conditions, with system sizes in the range
4 � L � 1024. As usual in Monte Carlo studies, the location
of a critical point can well be determined using a dimensionless
ratio. This is shown in Fig. 1 for the Binder ratio Qm. For
J < Jc, Qm approaches the infinite-temperature value 1/2 as
L → ∞, as expected for a normal distribution of the x and
y components of the magnetization. For J > Jc, Qm rapidly
converges to a temperature-dependent value, as expected in
the low-temperature XY phase.

Making use of the known magnetic scaling dimension xh =
1/8 [4] at the BKT transition, and the logarithmic correction
factor with exponent 1/8 [4,31], we expect that the scaled
quantity χL2xh−2(ln L)−1/8 tends to a constant at the transition
point. The intersections in Fig. 2, which shows this scaled
quantity as a function of J for several system sizes, confirm
this expectation.

Using the least-squares criterion, we fitted the quantity
χL2xh−2(ln L)−1/8 data by the formula

χL2xh−2(ln L)−1/8

= a0 +
3∑

i=1

ai(Jc − J )i(ln L)i +
2∑

j=1

rj (Jc − J )j

+ b1/(ln L) + b2L
−1 + b3L

−2, (8)

where the multiplicative and additive logarithmic corrections
have been taken into account. We find that the data for
16 � L � 1024 and 1.100 � J � 1.125 are well described
by Eq. (8). The fit yields Jc = 1.124(3).

For the Ising model, one can prove that χ = V 〈M2〉 =
V 〈S2〉, which exactly relates the thermodynamic quantity χ to
the geometric quantity S2. We thus expect that, in the case of
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FIG. 1. (Color online) Binder ratio Qm vs coupling strength J

for the square lattice. The lines connecting data points are added for
clarity.
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FIG. 2. (Color online) Scaled susceptibility χL2xh−2(ln L)−1/8 vs
coupling strength J for the square lattice, with xh = 1/8. The lower
figure is an enlarged version, and includes data for L = 256 and 512.
The lines connecting the data points are added for clarity.
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FIG. 3. (Color online) Scaled second moment S2L
2xh (ln L)−1/8

of the cluster-size distribution vs coupling strength J . These results
apply to the cluster decomposition of the spin model on the
square lattice. The lines connecting the data points are added for
clarity.
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FIG. 4. (Color online) Ratio Qs = gs(r = L/2)/gs(r = L/4) vs
coupling strength J for the triangular lattice, with gs the spin-spin
correlation. The lines connecting data points are added for clarity.

the XY model, the singularity of S2 coincides with that of χ .
The data for S2L

2xh (ln L)−1/8 (shown in Fig. 3) were fitted by
Eq. (8). This fit yields Jc = 1.120(9), which is consistent with
the result from χ .

There exist already many estimates for the critical point
of the XY model on the square lattice, the latest of which
are Jc = 1.1199(1) by Hasenbusch and Pinn [32], Jc =
1.1198(14) by Butera and Pernici [33], and Jc = 1.1200(1) by
Arisue [34]. Our result for Jc is consistent with these existing
values.

B. Triangular lattice

We also simulated the XY model on the triangular lattice
with periodic boundary conditions for linear system sizes L

in the range 4 � L � 512. The BKT phase transition is
clearly exposed by Fig. 4, which plots the ratio Qs = gs(r =
L/2)/gs(r = L/4) versus the coupling strength J . In the
high-temperature range J < Jc, Qs rapidly approaches zero,
which reflects the absence of long-range correlations; in the
low-temperature range J > Jc, it converges to a J -dependent
value smaller than 1, in agreement with the presence of
algebraically decaying correlations and the absence of a
spontaneous magnetization.

The gs(L/2)L2xh (ln L)−1/8 data near criticality are shown
in Fig. 5. They were fitted by Eq. (8), which yielded
Jc = 0.6833(6). Analogous analyses were performed for
the scaled susceptibility χL2xh−2(ln L)−1/8, leading to Jc =
0.6831(6). Our results for the critical coupling are consistent
with the latest result Jc = 0.6824(8) by Butera and Pernici
[33].

IV. PERCOLATION ANALYSIS

For each spin configuration generated by the Monte Carlo
algorithm, we performed a full decomposition in percolation
clusters, using the randomly oriented Cartesian frame in
the spin space as chosen in the preceding Monte Carlo
step, and then placed bonds between nearest-neighbor pairs
with probabilities pij = max(0,1 − e−2Ksx

i sx
j ). The variable

parameter K > 0 governs the percolation process. While these
percolation clusters are not involved in spin updating, they
reduce to those obtained during the cluster simulations in the

011124-3



HAO HU, YOUJIN DENG, AND HENK W. J. BLÖTE PHYSICAL REVIEW E 83, 011124 (2011)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.74 0.72 0.7 0.68 0.66

g s
 L

1/
4  (

ln
 L

)-1
/8

J

  8
 16
 32
 64
128
256

FIG. 5. (Color online) Scaled correlation gs(r =
L/2)L2xh (ln L)−1/8 vs coupling strength J for the triangular
lattice, with xh = 1/8. The lines connecting the data points are added
for clarity.

case K = J . To analyze this percolation problem, we sampled
several quantities, including the second and fourth moments
S2 and S4 of the cluster-size distribution, the Binder ratio Ql ,
the correlations gp(r = L/4), gp(r = L/2), and the ratio Qp.
In this section, we describe the numerical results and analyses,
and also an exact result for this percolation problem on the
triangular lattice.

A. Percolation on the square lattice

1. High-temperature range

For tanh K = 1, i.e., in the limit K → ∞, all pairs of
nearest-neighbor spins are connected as long as their x compo-
nents are pointing in the same direction. At zero coupling J =
0, spins at different sites are uncorrelated, so the percolation
process reduces to the standard site-percolation process since
the site occupation probability p = 1/2 may be identified
with the random sign of sx . An unimportant difference is
that this process forms percolation clusters for all the lattice
sites, while the standard site percolation constructs clusters
only for the occupied sites. The site-percolation threshold ps

c

on the square lattice is very close to 0.592746 [35–37], and
thus no infinite percolation cluster can occur at zero-coupling
strength J = 0, even for tanh K = 1. Furthermore, we mention
that the zero-coupling fixed point J = 0 is attractive for the
range J < Jc, which indicates that no percolation transition
can occur for 0 � J < Jc. This is in agreement with the
results in Ref. [24], where a similar percolation problem was
studied in the context of several Potts models. The expectation
that a percolation transition is absent in the disordered phase
of the square-lattice XY model was confirmed by Monte
Carlo simulations that were performed at several couplings
0 < J < Jc. Variation of K did not yield any signs of a
percolation threshold.

2. Low-temperature range

The low-temperature XY phase J � Jc displays alge-
braically decaying spin-spin correlations, which, unlike the
exponential decay at J < Jc, allow the formation of a divergent
percolation cluster for sufficiently large K . We may thus expect
a percolation threshold to occur at a J -dependent value Kc(J ).
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FIG. 6. (Color online) Dimensionless ratio Qp vs the parameter
K inducing the percolation transition. These data apply to the model
on the square lattice, with the spin coupling J = 3.0. The lower figure
is an enlarged version. The lines connecting the data points are added
for clarity.

The existence of a percolation threshold Kc(J ) for J > Jc

is shown by the intersections of the curves in Fig. 6, which
displays Qp as a function of K at J = 3.0 for several L.
These data show that Kc(J = 3.0) ≈ 0.505. For K < Kc(J ),
Qp rapidly approaches zero, as expected from the absence of
long-range correlations of gp(r).

In view of the long-range spin-spin correlations for J � Jc,
we have no reason to expect that the percolation transition
at the threshold Kc(J ) for J > Jc belongs to the uncor-
related percolation universality class. This is supported by
the observation that, at J = Jc, the fractal dimension of
clusters with K = Jc is 2 − xh = 15/8, which is different
from the value 91/48 for critical percolation clusters [38].
A closer look at the plot of Qp versus K (Fig. 6) in-
dicates that, for K � Kc(J ), Qp rapidly converges to a
K-dependent nontrivial value smaller than 1. We propose the
interpretation that, like the thermal transition induced by the
variation of J , the percolation transition induced by K is also
BKT like.

In Fig. 7, we display the correlation gp over a distance
r = L/2 as a function of the linear system size L for several
values of K . This figure shows a dependence of gp on L that
approaches power-law behavior for large L. This suggests that
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FIG. 7. (Color online) Correlation gp(L/2) vs linear system size
L for several values of K , which are shown in the inset. The use of
logarithmic scales displays the approximate power-law dependence
on L. These data apply to the square-lattice XY model at J = 3.0.
The lines connecting the data points are added for clarity.

percolation clusters remain critical for K > Kc. Furthermore
the exponent governing the scaling of gp(r) appears to depend
on K .

Next, we fitted the gp(r = L/2) data at J = 3.0 by

gp = L−2xh (g0 + g1L
−1 + g2L

−2), (9)

where xh is the associated scaling dimension. The terms with
g1 and g2 describe the finite-size corrections, and the correction
exponents are simply set at −1 and −2, respectively. The
results are shown in Table I.

We conjecture that the fractal dimension 2 − xh of
the percolation clusters at Kc(J ) assumes the exact BKT
value with xh = 1/8. This conjecture is based on the BKT-like
behavior of the percolation transition in the low-temperature
range, and on the numerical evidence for xh obtained from
the correlation gp(r = L/2) in Table I. First, the percolation
in the low-temperature range seems to be BKT like. Second,
the fit results for the scaling dimension xh, when interpolated
to Kc as given in Table II, yield a value close to 1/8. The
data for the scaled quantity gp(r = L/2)L1/4(ln L)−1/8, shown
in Fig. 8 for J = 3.0, confirm the existence of intersections,
apparently converging to the same value of K as those in
Fig. 6. Furthermore, we found that the data for gp(r = L/2) in

TABLE I. Results for the scaling dimension xh at J = 3.0 for
various values of K for the square lattice. Parameters Lmin and Lmax

are the minimum and the maximum system size between which the
Monte Carlo data of gp are included in the fit.

K 3.0 1.8 1.2 0.9 0.72

Lmin 20 20 16 16 12
Lmax 400 400 400 400 400
xh 0.02916(2) 0.0345(6) 0.0412(6) 0.0492(6) 0.0590(6)

K 0.60 0.555 0.525 0.510 0.495

Lmin 16 16 16 16 16
Lmax 400 400 400 400 400
xh 0.0751(6) 0.0857(6) 0.0990(6) 0.1108(6) 0.1290(8)
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FIG. 8. (Color online) Scaled correlation gpL1/4(ln L)−1/8 over a
distance r = L/2 vs K for various linear system size L shown in the
inset. These data apply to the square-lattice XY model at J = 3.0.
The lines connecting the data points are added for clarity.

the interval 0.47 � K � 0.515 at J = 3.0 are well described
by Eq. (8) for finite sizes in the range 32 � L � 400. This
fit yields an estimate for the percolation threshold at Kc(J =
3.0) = 0.504(8).

We also performed simulations at J = 2.4, 1.8, 1.4, and
1.2, and observe a behavior similar to that described above for
J = 3.0. On the basis of a fit of the gpL1/4(ln L)−1/8 data by
Eq. (8), we obtain the associated percolation thresholds, which
are shown in Table II. Next, we fitted Eq. (9) to the gp(r = L/2)
data at various points (J,K) for J � Jc and K � Kc(J ). The
results are shown in Table III.

In addition, we carried out simulations at J = 1.12, very
close to the thermal critical point Jc = 1.124(3). The ratio
Qp(K) appears to behave similarly as in Fig. 6, which
suggests a BKT-like percolation transition. The estimated
threshold Kc = 1.120(9) agrees with the critical point Jc. This
fits well with the continuation of the Kc(J ) line in Fig. 9.
Further, the numerical result for the fractal dimension of the
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FIG. 9. (Color online) Phase diagram of the square-lattice XY

model in the J -K parameter space. The horizontal line represents
the thermal BKT transition, and the diagonal line applies to K = J ,
where the percolation clusters are just those formed by the cluster
algorithm. The line connecting the data points is added for clarity.
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TABLE II. Percolation threshold Kc(J ) for various values of the XY coupling strength J .

Square J 3.0 2.4 1.8 1.4 1.2 1.12

Kc 0.504(8) 0.553(5) 0.646(9) 0.785(9) 0.946(8) 1.120(9)

Triangular J 2.2 1.8 1.4 1.0 0.8 0.6824

Kc 0.300(3) 0.310(1) 0.356(4) 0.424(9) 0.520(9) 0.675(9)

percolation clusters at K = Jc is consistent with the BKT value
2 − xh = 15/8.

The results in Tables II and III are summarized in Figs. 9
and 10, respectively.

B. Percolation on the triangular lattice

1. Matching property

The matching property [39,40] plays an important role in
the determination of the site-percolation thresholds of several
two-dimensional lattices; here we briefly review this subject.
For a given planar lattice P ≡ (V,B), where V is the set of
lattice sites and B is the edge set, one does the following:
(1) Select parts of the faces of P , and fill in all the “diagonals”
in those faces. This yields the lattice L ≡ (V,B + A), where
A represents the set of all added diagonal edges. (2) Select
the faces that are not picked up in step (1), and fill in all
the diagonals in these faces. One then has the lattice L∗ ≡
(V,B + A∗), with A∗ the set of diagonals drawn in step (2).
Lattices L and L∗ are matching to each other; note that L
andL∗ may be nonplanar. Since no “diagonal” can be filled in a
triangle, the triangular lattice is self-matching. It can be shown
that, for the site-percolation problem, the cluster numbers per

site κ(p) and κ∗(1 − p) on a pair of matching lattices L andL∗
satisfy

κ(p) − κ∗(1 − p) = φ(p), (10)

where p is the site-occupation probability and φ(p) is a
finite polynomial (it is termed “matching polynomial”). Equa-
tion (10) indicates that, if the cluster-number density κ on the
lattice L exhibits a singularity at a site-occupation probability
p, the same singularity will also occur in κ∗ on L∗ at 1 − p.
Together with the plausible assumption that there is only
one transition, the matching argument yields that the per-
colation threshold is pc = 1/2 for all self-matching lattices
like the triangular lattice; further, it requires that φ(p =
1/2) = 0, which is indeed satisfied by the result [40] φ(p) =
p(1 − p)(1 − 2p) for self-matching lattices. An important
feature of the matching argument is that it is still valid in
the presence of interactions, as long as these interactions
are symmetrical under the interchange of occupied and
unoccupied sites.

2. Percolation at tanh K = 1

As mentioned in Sec. IV A 1, the case tanh K = 1, J = 0
in this percolation process corresponds with the case p = 1/2

TABLE III. Results for the scaling dimension xh at various points (J,K) for the square lattice.

J = 3.0 K 3.0 1.8 1.2 0.9 0.72
xh 0.02916(2) 0.0345(6) 0.0412(6) 0.0492(6) 0.0590(6)
K 0.60 0.555 0.525 0.510 0.495
xh 0.0751(6) 0.0857(6) 0.0990(6) 0.1108(6) 0.1290(8)

J = 2.4 K 2.4 1.44 1.2 0.96 0.84
xh 0.03748(5) 0.0460(6) 0.0491(6) 0.0560(6) 0.0628(6)
K 0.72 0.648 0.60 0.576 0.552
xh 0.0719(6) 0.0821(6) 0.0925(6) 0.1010(6) 0.1151(6)

J = 1.8 K 1.8 1.26 1.08 0.9 0.81
xh 0.05282(5) 0.0614(6) 0.0672(6) 0.0759(6) 0.0832(6)
K 0.72 0.684 0.666 0.648
xh 0.0954(6) 0.1028(6) 0.1069(6) 0.1140(6)

J = 1.4 K 1.4 1.19 0.98 0.854 0.798
xh 0.07386(5) 0.0805(6) 0.0915(6) 0.1033(6) 0.1125(6)
K 0.784 0.77 0.756
xh 0.1157(6) 0.1202(6) 0.1250(6)

J = 1.2 K 1.8 1.44 1.2 1.14 1.08
xh 0.0798(6) 0.0873(6) 0.09610(6) 0.0988(6) 0.1028(6)
K 1.02 0.96
xh 0.1084(6) 0.1159(6)

J = 1.12 K 3.0 2.5 2.0 1.5 1.21
xh 0.0784(3) 0.0821(3) 0.0876(4) 0.0984(5) 0.1108(3)
K 1.18 1.15
xh 0.1132(3) 0.1162(5)
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FIG. 10. (Color online) Scaling dimension xh for percolation
clusters at various points (J,K) for the square lattice. The values of J

are shown in the inset. The horizontal line is located at xh = 1/8 and
corresponds with the critical line Kc(J ). This figure indicates that the
scaling dimension xh depends on K as well as on J , and approaches
1/8 for K → Kc(J ). The lines connecting the data points are added
for clarity.

for the standard-site percolation. The standard-site-percolation
threshold for the triangular lattice is pc = 1/2; thus, the
percolation threshold of this percolation problem at J = 0
is tanh K = 1.

Since the matching argument is independent of the coupl-
ing J , and no spontaneous symmetry breaking occurs in
the two-dimensional XY model, tanh K = 1 describes a
critical line for finite J . Further, we expect that, in the
high-temperature range J < Jc, the percolation transition is
in the universality class of standard uncorrelated percolation,
since there is no long-range spin-spin correlation.

Figure 11 shows the data for the ratio Ql , which is
defined by Eq. (5) on the basis of the size distributions
of the percolation clusters. For J > Jc, Ql approaches a
J -dependent value that is clearly smaller than 1. This implies
the absence of an infinite cluster that occupies a finite fraction
of the whole lattice. The singularity at the thermal transition
point Jc is reflected by the jump that develops near Jc ≈
0.68.
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FIG. 11. (Color online) Ratio Ql vs coupling strength J for the
triangular lattice at tanh K = 1. The lines connecting the data points
are added for clarity.
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FIG. 12. (Color online) Ratio Qp vs coupling strength J on the
triangular lattice at tanh K = 1. The lines connecting the data points
are added for clarity.

Figure 12 shows the data for the ratio Qp. For J < Jc,
Qp converges to a universal value Qpc ≈ 0.95 [note that
this value differs from Qpc = 0.872776(3) [41] for standard
percolation on the triangular lattice, due to the difference
mentioned in the first paragraph of Sec. IV A 1]. For J > Jc,
Qp approaches a J -dependent value smaller than 1; we
thus expect that the correlation gp(r) decays algebraically
rather than exponentially. The thermal transition at Jc is
reflected by the rapid variation of Qp near Jc ≈ 0.68 for
large L.

The data for the scaled correlation gp(L/2) at tanh K = 1
are shown in Fig. 13 as a function of J , with xh = 5/48 for the
uncorrelated percolation universality. The convergent behavior
for J < Jc as a function of L confirms that the transition in this
range belongs to the standard percolation universality class.
The intersections roughly represent the thermal transition
point Jc.

3. Percolation at tanh K �= 1

Following similar procedures as in Sec. IV A, we obtain
a percolation line Kc(J ) in the low-temperature range J >

Jc for the triangular lattice. For J < Jc, we do not find a
percolation threshold at finite values of K . The numerical
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FIG. 13. (Color online) Scaled correlation gp(L/2)L2xh vs cou-
pling strength J for the triangular lattice at tanh K = 1, with xh =
5/48, which applies to the uncorrelated percolation universality class.
The lines connecting the data points are added for clarity.
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FIG. 14. (Color online) Phase diagram in the J -K parameter
space for the XY model on the triangular lattice. The horizontal line is
the thermal BKT transition, and the diagonal line is for K = J , where
the percolation clusters are just those formed by the Monte Carlo
cluster algorithm. In addition, there is a percolation line for J < Jc

at tanh K = 1, outside the range of this figure. The line connecting
the data points is added for clarity.

results are shown in Table II and Fig. 14. It is observed that
the percolation in the range J > Jc is also BKT like, with
a fractal dimension 2 − xh = 15/8 at Kc(J ), and a scaling
dimension xh depending on parameters K and J in the range
K > Kc(J ). This is consistent with the results for the square
lattice in Sec. IV A.

V. DISCUSSION

Since spins in the same cluster formed during the simula-
tions must have x components of the same sign, the absence
of a spontaneous magnetization [1] in the XY model means
that the density of the largest cluster in the thermodynamic
limit is also restricted to be zero, at least for finite values of
J . The same restriction thus applies to percolation clusters
formed with K = J in Eq. (2), and it must also hold for
K < J . The absence of a nonzero density of the largest
percolation cluster is in agreement with the interpretation of
the percolation transitions for K < J described in Sec. IV as
BKT like.

The results presented in Sec. IV A for the square lattice
include a line Kc(J ) of percolation thresholds for J > Jc.
Also, for J = Jc, K > Jc, there is a line of percolation
thresholds, analogous to those found for the Ising [20] and
the Potts [22] models. The result that the percolation clusters
remain critical in the whole region J > Jc, K > Kc(J ) is,
however, markedly different from the Ising and Potts cases.
Furthermore, we found that, as can be seen from the data points
for J = 1.12 ≈ Jc in Fig. 10, the magnetic exponent depends
on K along the latter line, which is thus a “nonuniversal”
line of percolation transitions, where the bond dilution field
parametrized by K is truly marginal. The existence of a BKT
transition induced by varying K at the point K = J = Jc

corresponds with a marginally relevant bond-dilution field
in the K < Jc direction. The absence of a percolation line
Kc(J ) for J < Jc is in agreement with the argument given in
Sec. IV A.

As mentioned earlier, for the triangular lattice with
J < Jc, the line tanh K = 1 is critical, and belongs to the
standard-percolation universality class. The continuation of
the tanh K = 1 line to J � Jc is also critical (in the sense that
the correlation functions display algebraic decay), but with a
J -dependent critical exponent.

In order to obtain some more information on the depen-
dence of the present percolation problem on the coordination
number z, we also simulated the z = 18 equivalent-neighbor
XY model on the triangular lattice, which has equal nearest-,
second-nearest-, and third-nearest-neighbor interactions. The
procedure outlined in Sec. III yielded an estimate of the thermal
transition at Jc = 0.162(2). As expected, a Monte Carlo
analysis of the percolation problem with z = 18 showed the
existence of a critical line Kc(J ) in the high-temperature phase
J < Jc belonging to the standard-percolation universality
class. When J approaches Jc, the Kc(J ) line bends toward
large values of K . This suggests that the Kc(J ) line ends at
K → ∞ for J = Jc. For K > Kc(J ), there is clear evidence
for the existence of a percolation cluster with a finite density
in the limit of large L.

In the low-temperature range J > Jc, we found, just as
for the models with nearest-neighbor interactions, a BKT-like
transition line Kc(J ), as in Figs. 9 and 14. In spite of the
relatively large coordination number z = 18, no evidence is
found for a percolation cluster of a nonzero density, even
at tanh K = 1. Although the spin-spin correlations in the
algebraic XY phase for J > Jc stimulate the percolation
transition in the sense that it occurs at smaller values of K when
J increases, it also appears that they obstruct the formation of
a percolation cluster with a nonzero density.

Aside from the rule based on Eq. (2), other procedures for
placing bonds may be applied. For instance, as mentioned
in the Introduction, Wang et al. [27] placed percolation
bonds between neighboring XY spins if their orientations
differ less than a given threshold, and found percolation
transitions in the uncorrelated percolation universality class for
all XY couplings. Another possibility is to place percolation
bonds with probabilities given, instead of Eq. (2), by pij =
max(0,1 − e−2K�si ·�sj ). In that case, we expect percolation
transitions similar to those of Ref. [27], including transitions
in the low-temperature range J > Jc of the XY model. Indeed,
a preliminary Monte Carlo analysis of this problem [42]
confirms the existence of such transitions in the universality
class of uncorrelated percolation.

Finally, we remark that recently a percolation problem was
formulated on the basis of the O(n) loop configurations [25].
Since the XY model is equivalent with the O(2) model,
another way thus arises to introduce percolation in XY -type
models. Although this seems to be a very different approach,
it reproduces our result that a marginally relevant dilution field
exists at the BKT transition.
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