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Finite-temperature liquid-quasicrystal transition in a lattice model
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We consider a tiling model of the two-dimensional square lattice, where each site is tiled with one of the
16 Wang tiles. The ground states of this model are all quasiperiodic. The systems undergoes a disorder to
quasiperiodicity phase transition at finite temperature. Introducing a proper order parameter, we study the system
at criticality and extract the critical exponents characterizing the transition. The exponents obtained are consistent
with hyperscaling.
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It has been known for a while that the two- or three-
dimensional space may be tiled by ordered but aperiodic
tilings, in addition to periodic lattice structures [1]. This
aperiodic order is realized in nature by certain alloys, called
quasicrystals [2,3], which are believed to exhibit in thermal
equilibrium aperiodic crystalline order [4,5], i.e., long-range
positional order lacking any periodicity. Aperiodic tiling mod-
els exhibiting long-range positional order are extensively used
to analyze quasicrystals at zero or finite temperature [6–8].
However, understanding of the transition region between the
disordered (fluid) phase and the quaicrystal phase is still
incomplete.

Here we consider a model of interacting tiles on a square,
two-dimensional, lattice. The model has been previously
studied in Refs. [9,10]. Each site of the square lattice is
tiled with a tile, characterized by four labels attached to its
edges. The labels take one of possible six labels (or colors).
The interaction is with nearest neighbor tiles, and the bond
energy is zero if the labels of both neighboring edges match,
or one otherwise. It was found by Ammann [1] that if one
limits the allowed tiles to a group of 16 tiles (out of all the
possible 64 tiles), then all zero energy states of the model (also
known as perfect tilings) are nonperiodic. The 16 Ammann
tiles are presented in Fig 1. The perfect tilings are then the
ground states of this system. Their nonperiodicity can be
shown using a mapping of the six tile labels into one of two
symbols: S for labels {1,2} and L for labels {3,4,5,6}. Since
all Ammann tiles have labels belonging to the same set (S
or L) on both horizontal (vertical) edges, the mapping thus
classifies the 16 tiles into four types according to their set
along each axis: {1} S-S, {2,3,4,5} S-L, {6,7,8,9} L-S, and
{10,11,12,13,14,15,16} L-L. Identifying the symbols S and L

with the short (S) and long (L) Fibonacci tiles, it follows from
the properties of the Ammann tiles that any perfect tiling is
mapped into a two-dimensional square Fibonacci tiling [11],
thus aperiodic.

The finite temperature behavior of this tiling model was
studied numerically in Ref. [9]. The model has multiple ground
states (uncountable infinite number for the infinite plane), all
are aperiodic, and thus its dynamics upon fast cooling was
suggested to be a model for glassiness. The lattices studied in
Ref. [9] were in the range 8 � N � 32 (N being the lattice
linear size) with free boundary conditions. Numerical results
supported the existence of a phase transition, measured by
a growing peak in the specific heat, and the transition was
concluded to be of second order. Recently [10], it was shown

that the phase transition observed in Ref. [9] is a disorder
(fluid) to quasicrystal transition. Phase-transition analysis
in Ref. [10] followed an analytical approach supported by
numerical simulations. The transition was studied using the
overlap of a configuration with a ground state γ . The fraction
of tiles in a configuration c matching a ground state γ is
denoted φ(c,γ ). The overlap, normalized by its averaged over
all ground states ψ(c) = ∫

φ(c,γ ) dλ(γ ), is then thermally
averaged to yield Qβ :

Qβ(γ ) = 1

Z

∫
φ(c,γ )e−βH (c)

ψ(c)
, (1)

where the integration is over configurations c (ensemble
averaging), H (c) is the energy of the configuration, and Z is the
partition function Z = ∫

exp[−βH (c)]. The high-temperature
limit of Qβ is, by normalization, 1.

To account for the infinite number of ground states, Koch
and Radin defined the quantity qRK:

qRK(β) = −
∫

Qβ(γ ) ln[Qβ(γ )] dλ(γ ), (2)

and then qRK(β � βc) = 0. Analytical calculation showed that
qRK vanishes identically for sufficiently high finite tempera-
tures. Numerical simulations were then used to show qRK does
not vanish for low temperatures, thus proving the existence
of a transition. Simulations presented in Ref. [10] employed
fixed boundary conditions corresponding to a specific ground
state σ . Then, the overlap of the configuration with the
chosen ground state σ was used to approximate qRK at low
temperatures, where it is expected to contribute dominantly.
Looking at system sizes 32 � N � 256, they concluded that
the transition is of third or higher order. In addition, it
was suggested that the transition has no renormalization
fixed point.

Square Fibonacci quasicrystals are known to exhibit distinct
delta-function peaks in the Fourier transform, in a similar
fashion to the peaks observed in a crystalline solid [11].
We therefore suggest using the weights of these distinct
peaks to define an order parameter for the disorder-to-
quasicrystal transition, one that is simpler and easier to
access numerically then qRK. Many frequencies show a peak,
and all are irrational and related to the “golden mean”
τ = (1 + √

5)/2. The wavevector chosen for this study is
�k0 = ((τ − 1)/τ,(τ − 1)/τ ), but results are similar for all

011123-11539-3755/2011/83(1)/011123(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.011123


Z. ROTMAN AND E. EISENBERG PHYSICAL REVIEW E 83, 011123 (2011)

4
1 2

5

1
6 4

1

4
1 1

6

6
1 2

3

2
5 4

1

6
4 6

4

3
5 5

6

5
6 6

4

3
5 3

5

5
6 3

5

5
6 5

6

6
4 5

6

Tile 1 (S/S)

Tiles 2-5 (S/L)

Tiles 6-9 (L/S)

Tiles 10-16 (L/L)

1
2 1

2

5
2 2

3

2
3 5

2

2
3 6

1

FIG. 1. (Color online) The 16 Ammann tiles. The four rows
correspond to the four types of tiles (see text).

related frequencies. The (complex) order parameter is then
the amplitude of the peak at �k0:

q =
∫

ei �k0·�r δσ�r ,1
�dr. (3)

Tile 1 is chosen for simplicity, as it is the only tile that is the
only one of its type, i.e., it is the only tile with both edges being
S edges. Similar results are obtained using any other type, e.g.,
tiles 2–5, 6–9, or 10–16.

In this paper we present numerical simulations for
10 � N � 400 and free boundary conditions. We start by
presenting the details of our numerical calculation. All simu-
lations start from a ground state and then are thermalized at the
desired temperature. Thermalization during cooling was found
to be significantly less efficient. We first conducted a series of
relatively short [106 Monte Carlo Steps (MCS)] runs in order to
determine relaxation and autocorrelation times. We found that
even for the largest system studied (L = 400), the relaxation
time did not exceed 106 MCS. Accordingly, we discarded
from all runs the first 1.6 × 106 MCS. Autocorrelation times
of the order parameter were found to be much longer then
those for energy and increased as much as 5 × 104 MCS
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FIG. 2. (Color online) Binder cumulant of the tiling model. The
collapse of crossings for various lattice sizes signals the location of
the critical point.
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FIG. 3. (Color online) Order parameter measurements performed
at T1 and T2. Power-law behavior is fitted, L = 10 is excluded from
the analysis. Fitted exponents are 0.28 and 0.33.

for the largest system. The statistical measurement error was
estimated based on the splitting of the measured time series
into 10 parts. Each part was at least 100-fold longer than the
measured autocorrelation, and thus we considered these parts
as independent samplings of the variable’s equilibrium distri-
bution. To account for multiple ground states and to ensure
good coverage of phase space we repeated the analysis for at
least three different runs starting from different ground states
for each temperature and lattice size. The measured variables
were then averaged over all runs, and the error estimated based
on the scatter among measurements along the runs as well as
between different runs. Finite-size-scaling analysis was used
to calculate the critical temperature and critical exponents
of the phase transition. As expected, the error bars depend
strongly on lattice size L, and thus we used weighted least
square fits in order to fit the data to the finite-size-scaling
forms and estimate the critical exponents. Error bars in fitted
exponents are based on errors supplied by the fitting procedure,
as well as robustness tests against removal of extremal
points.
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FIG. 4. (Color online) Susceptibility χ fitted to a power-law
behavior at T1 and T2. Fitted exponents are 1.44 and 1.36.
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FIG. 5. (Color online) Measurements of Q′ for T1 = 0.4211.
Fitted exponent is 0.99.

In order to determine the critical temperature, we analyzed
the Binder cumulant [12]:

Q = 1 − 〈|q|4〉
〈3|q|2〉 , (4)

where 〈· · ·〉 denotes ensemble average. Crossings of Q for
system sizes 10 � N � 100, presented in Fig. 2, show no
significant finite size effects within our accuracy. The relatively
large error estimates due to the long relaxation processes allow
for a moderate accuracy in fixing the critical temperature,
which is estimated to be Tc = 0.4216(5) (here and elsewhere
in this paper the number in parentheses is the uncertainty in
the last digit). The critical temperature found is in agreement
with previous estimates: Tc = 0.42(1) [9] and βc = 1/Tc ≈
2.4 [10]. We then studied larger lattices at two temperatures
near criticality, T1 = 0.4211 and T2 = 0.4222. Finite size
scaling of thermodynamic quantities at Tc provides estimates
for the critical exponents. In this paper we verify that the
critical exponents obtained for T1 and T2 are similar, in
order to ensure that our inaccuracy in Tc does not take us
out of the critical regime for the lattice sizes studied. The
order parameter |q| is expected to scale as 〈|q|〉(L) ∼ L−β/ν .
Figure 3 presents numerical results from measurements at T1

and T2 and fits to the power-law form. Based on the two
fits we estimate β/ν = 0.30(3). Similarly, the susceptibility
defined by

χ = N2(〈|q|2〉 − 〈|q|〉2)

T
(5)

was also measured at T1 and T2 and fitted to the scal-
ing form χ ∼ Lγ/ν (Fig. 4). Estimation of γ /ν from the
two fits leads to γ /ν = 1.40(5). Note that these two in-
dependent measurements satisfy the hyperscaling relation
2β/ν + γ /ν = d.

In order to estimate the critical exponent ν, we studied
the derivative of the binder cumulant (Q) with respect
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FIG. 6. (Color online) Specific heat measurements at T1 and T2.
Data are well fitted by a logarithmic function. For comparison, best
power-law fits are presented in the inset, yielding exponents 0.23
and 0.25.

to the inverse temperature β. Based on finite-size-scaling
arguments,

Q′ = ∂Q

∂β

∣∣∣∣
T =Tc

(6)

is expected to diverge like L1/ν . It is easy to see that this
derivative is obtained from the energy and order-parameter
moments in the following form:

Q′ = 2〈q4〉〈q2E〉/〈q2〉 − 〈q4E〉 − 〈q4〉〈E〉
3〈q2〉2

. (7)

Measurements presented in Fig. 5 indeed show a power-law
behavior of Q′(N ), and the exponent estimated is 1/ν =
1.05(15). This value for ν is consistent with measurements
of the specific heat:

Cv = 〈E2〉 − 〈E〉2

N2T 2
, (8)

which are best fitted by a logarithmic growth (Fig. 6), i.e.,
α = 2 − dν = 0, or ν = 1. The results are consistent with the
analysis performed in Ref. [9], leading to ν = 1.6(5).

In conclusion, we show that the use of the Bragg peak
allows for an analysis of the disorder to quasicrystal transition
in a two-dimensional lattice model based on Ammann tiles.
The transition occurs at a finite temperature and is of a second
order. Critical exponents were measured and shown to satisfy
hyperscaling relations. This model is therefore suitable for
study of the critical emergence of quasiperiodic order.

We are grateful to Ron Lifshitz for important discussions
and insightful comments and to Hans Koch for providing
useful information regarding the numerical simulations as well
as a critical reading of the manuscript.
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