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A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied.
The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping
probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on
observation time for intermediate times. Because of its simplicity, the theory also requires modest computational
requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach
the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory
is applied to three practical cases in which the degree of order in confinement varies. The three systems include
diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes,
and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular
dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small
fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD
simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the
values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage
hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the
theory are not simply fitted values but correspond to real properties of the physical system.

DOI: 10.1103/PhysRevE.83.011120 PACS number(s): 05.40.Fb, 68.43.Jk, 83.10.Rs

I. INTRODUCTION

Atomic and molecular diffusion is a fundamental transport
process in fluids. In recent years, the transport of chemical
species through nanoscale pores, tubes and channels has
become very important in many areas [1] and an increasing
number of materials with such configurations are being
produced and applied. [2] As a result, there has been an
increase in experimental and theoretical interest to investigate
diffusion processes in nanoscale confined geometries. [3,4]
Confinement restricts and complicates molecular motion.
Molecular diffusion in bulk fluids follows the Einstein relation,
[5] in which the mean square displacement (MSD), a single-
particle autocorrelation function, is linearly proportional to
observation time, in the infinite-time limit. It has been shown
that in macroscopic pores, this conventional diffusion is
maintained. [6] Taken to an extreme, confinement can result in
MSDs which do not obey the Einstein relation, such as those
exhibited in one-dimensional hard-rod theory [7] or in small
cylindrical pores in which particle passing is not observed.
[4,8] Even in confined systems that obey Einstein’s relation,
there are physical phenomena that arise due to confinement,
such as percolation, [9] in which irregular confinement blocks
some paths for transport, resulting in a reduction of the
diffusion coefficient. In this regime of three-dimensional
systems with nanoscale confinement, there is the particular
challenge of relating the observed diffusivity to the structure of
the material. To date, investigations of this structure-property
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relationship are performed on a case-by-case basis. It is the
intention of this work to demonstrate that a straightforward
incorporation of confinement into random-walk theory is
capable of quantitatively describing diffusion in systems with
nanoscale confinement, across a broad range of disparate
materials.

Molecular-level simulation is an ideal tool for developing
a fundamental molecular-level understanding of structure-
property relationships. The advantage of molecular simulation
lies in the fact that one has complete access to every trajectory
of every atom at every instant in time, which can be analyzed
in a broad variety of ways to gain insight into the system.
Molecular dynamics (MD) simulations are routinely used to
study diffusion in systems with nanoscale confinement, such
as adsorbates in nanoporous adsorbents like zeolites and metal
organic frameworks, [10] gases in polymeric membranes, [11]
ions in solid conductors, [12] and many other applications. The
primary drawback of (MD) simulation is that one is limited
to systems that are small relative to macroscopic systems
(typically on the order of 106 or fewer atoms) and for short
durations (typically on the order of 10 ns or less). Thus,
diffusion phenomena that occur on larger length or time scales
remain outside the domain of MD simulations.

Integrated multiscale modeling algorithms allow one to
describe the physics of transport across a range of time scales
using multiple techniques, in which the spatial and/or temporal
resolution varies. For example, in one of the applications
described below, the MD simulation of a hydrated proton
exchange membrane [13] (PEM) employs a time step of 0.1 fs
(10−16 s) in order to capture the vibration of chemical bonds
in the system. However, the MD simulations extend only for
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ELISA M. CALVO-MUÑOZ et al. PHYSICAL REVIEW E 83, 011120 (2011)

2 ns, which is insufficient to reach the infinite-time limit
of the Einstein relation from which self-diffusivities can be
extracted. For the same system, confined-random-walk (CRW)
simulations fitted to the short-time MD results generate MSDs
out to 100 ns (10−7 s), which does reach the Einstein limit. Thus
we cover nine orders of magnitude in time with an integrated
multiscale modeling algorithm that combines MD and CRW
simulations.

Random-walk (RW) theory and simulation have been
used routinely to model diffusion processes. The simple
isotropic random-walk model (SRW) is, indeed, the basis of
most of the diffusive processes. A large body of work has
accumulated concerning the properties of such processes, and
very detailed information is available. [14,15] The traditional
SRW considers that movements are uncorrelated and unbiased,
that is, the location after each step taken in the random walk is
only dependent on the location in the previous step, the process
is Markovian with regard to the location, [16] and the direction
moved in at each step is completely random. Assuming
that movement in any direction is allowed, this process is
essentially Brownian motion and such models produce the
standard diffusion equation. However, as mentioned before,
some systems show anomalous dynamical behavior, especially
in short and intermediate observation times. Through numer-
ous approaches (fractional Brownian motion, [17] generalized
diffusion equations, [18] Langevin equations, [19] generalized
Langevin equations, [20] generalized master equations, [21]
generalized thermostatistics, [22] fractional equations [23]),
the extension of random-walk theory has created a very rich
tool, rich enough to be able to describe certain dynamic
features of complex systems. Regarding diffusion in confined
geometries, continuous-time random-walk models provide
explanations for a variety of physical phenomena. Montroll
and Shlesinger [24] give a good review of the general theory
of random walks. Random walks have also been modified by
simply introducing repelling, reflecting, or absorbing barriers.
[25] Nevertheless, to the best of our knowledge, a simple theory
of confined diffusion applicable to a large number of different
materials that does not entail high computational expenses has
not been reported.

In this work, we develop a theory of confined diffusion
that describes the general features observed in the dynamics
of atoms and/or molecules diffusing through materials with
nanoscale confinement using the fewest number of parameters
necessary to capture the essential physics. We begin with
the conventional random-walk theory for systems without
confinement, which depends only on the variance of the
Maxwell-Boltzmann distribution, and then add two parameters
that capture confinement: a cage size and a cage-to-cage
hopping probability. As discussed below, the CRW theory and
simulation generate three regimes of behavior in the short,
intermediate, and long time scales. Because of its simplicity,
the theory has modest computational requirements and is thus
able to simulate systems with very low diffusivities for a
sufficiently long time to reach the infinite-time regime where
the MSD is linearly proportional to the observation time.

The MD-CRW approach is applied to three practical cases
in which the degree of order in confinement varies. The
three systems include diffusion of (i) polyatomic molecules
in metal organic frameworks (MOFs), (ii) water in proton

exchange membranes, and (iii) liquid and glassy iron. In the
first system, the MOF is a rigid, crystalline adsorbent, in which
the porous network is completely regular. In the second system,
there is a nanoscale aqueous domain that interpenetrates the
hydrophobic polymer phase. The aqueous domain through
which water diffusion occurs is composed of irregularly shaped
and irregularly connected water clusters. In the third system,
glassy iron, there is no second component; each iron atom
finds itself within a transient cage composed of neighboring
iron atoms. The purpose in studying three systems is twofold.
First, it demonstrates the broad applicability of the MD-CRW
simulation approach. Second, it underscores the common
physics governing confined diffusion in each of these three
disparate systems. For all three cases, the CRW simulations
are parametrized based on the short-time MSD of the MD
simulations and are capable of quantitatively describing all
of the observed short-time behavior. Furthermore, the CRW
simulations are run for a sufficiently long time to generate
MSDs in the linear regime, from which the self-diffusivity
can be reliably regressed, with a small fraction of the
computational expense associated with MD simulations.

II. THEORY

The intent of the theory of confined diffusion developed
and applied herein is to describe the general features observed
in the dynamics of atoms and/or molecules diffusing through
materials with nanoscale confinement using the fewest number
of parameters necessary to capture the essential physics. To
this end, we begin with the conventional random-walk theory
for systems without confinement and then add two parameters
that capture confinement. For systems without confinement,
a three-dimensional Gaussian random walk is described by
a series of steps in which a direction for each particle
is chosen randomly and the velocities are sampled from
the Maxwell-Boltzmann (MB) distribution. [14,26] For the
unconfined system, there is only one independent parameter
and it is the variance of the MB distribution. It is important
that diffusing particles do not interact; each individual random
walk is independent of all others. From an analysis of the
mean square displacement, an averaged single-particle auto-
correlation function can be defined as

XMSD(τ ) = 〈|ri(t + τ ) − ri(t)|2〉, (1)

where ri (t)is the position of particle i at time t and τ is an
observation or elapsed time. The angled brackets indicate an
average over both particles i and time t. The Einstein relation
relates the self-diffusion coefficient of the particles to the MSD
in the infinite-time limit,

D = 1

2d
lim

τ→∞
XMSD

τ
, (2)

where d is the dimensionality of the system.
In a RW simulation, a single step has an average displace-

ment �r , and each step has a time associated with it, �t . These
parameters are related to the temperature through the first and
second moments of the MB distribution with variance σ 2

v ,

σ 2
v = kBT

m
, (3)
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〈v〉 = 〈�r〉
�t

=
√

8kBT

πm
, (4)

〈v2〉 =
〈( 〈�r〉

�t

)2
〉

= 3kBT

m
, (5)

where kB is the Boltzmann constant, T is the temperature,
m is the mass of the diffusing particle, and 〈v〉 is the
mean speed. Thus, in a RW simulation one can generate
the MSD as a function of τ and obtain the self-diffusivity
in Eq. (2), specifying only the MB distribution. Furthermore,
the diffusivity from an unconfined three-dimensional (3D) RW
simulation is given by

D0 = σ 2
v �t

2
. (6)

This expression provides a limiting value of the diffusivity
in the absence of confinement and is hereafter referred to as
the intrinsic diffusivity of the unconfined system. As a note,
in an unconfined system, the RW theory is not capable of
reproducing the very short-time ballistic motion of particles,
in which the MSD is proportional to τ 2, because the ballistic
regime is limited to time scales before the first collision and the
RW theory models Brownian motion that occurs after many
collisions.

Confinement is incorporated in the RW theory through the
addition of two parameters: a cage size Rcage and a cage-to-
cage hopping probability pcage. In our confined-random-walk
theory, the particles themselves have no volume and originate
at the center of a cage, which is assumed to be spherical. Each
particle engages in a conventional random walk until its dis-
placement from its original position is greater than Rcage. At the
end of a step in which a particle has stepped beyond a cage, that
move is accepted with probability pcage. If the move was unsuc-
cessful, the particle is reflected back into the original cage, such
that the net length of its trajectory is maintained. If the move
is successful, the particle now resides in a new spherical cage
with a center located at a distance Rcage from the edge of the
original cage and lying along a vector collinear with the parti-
cle’s trajectory. The successful and unsuccessful cage-to-cage
moves are shown schematically in Fig. 1. As clearly indicated
in the schematic of a successful move, overlap of the new cage
and the old cage will always occur except when the trajectory
of the particle is perfectly parallel to the local radial vector.

FIG. 1. Schematic of unsuccessful and successful cage-to-cage
moves. On the left, an unsuccessful move is reflected back into the
original cage, maintaining the length of the trajectory. On the right, a
successful move puts the particle in a new cage with center located a
distance Rcage along the vector of the trajectory.

Once a successful cage-to-cage move occurs, the particle is
only aware of the position of the center of the current cage.

The placement of the new cage was chosen to ensure that
any cage-to-cage move results in the particle always residing
within the confines of the new cage. While the trajectory of
the particle is pointed toward the center of the new cage after
a successful cage-to-cage move, in the next step the direction
of the move is once again randomly selected, which mitigates
any bias introduced by this choice of new cage position.

While this model is extraordinarily simple, it is capable of
reproducing a range of behavior from completely confined
to completely unconfined diffusion. It yields intermediate
behavior due to confinement and infinite-time diffusivities,
if run for a sufficiently long time. Furthermore, we show
below that after being parametrized to the short-time MSDs
obtained from MD simulations, it is capable of quantitatively
capturing the intermediate- and long-time dynamic behavior
of three diverse applications, in which the degree of order in
confinement varies. The three systems include diffusion of
(i) polyatomic molecules in metal organic frameworks,
(ii) water in proton exchange membranes, and (iii) liquid and
glassy iron.

III. SIMULATION METHODS

A. Confined-random-walk simulations

The confined random walk simulations were implemented
in a serial code written in FORTRAN90. The variance of
the Maxwell-Boltzmann distribution, the time scaling constant
�t , the cage size Rcage, and a cage-to-cage hopping probability
pcage were provided as inputs. Two hundred particles were
simulated to demonstrate the general capabilities of the theory
(Figs. 4 and 5) and 1000 particles were simulated when
parametrizing the model in the three applications. The number
of steps used in the simulations varied from 104 to 107 and
depended strongly on the parameters input into the simulation.
The goal was to simulate sufficiently long to reach the
infinite-time limit required by the Einstein relation, so that
self-diffusivities could be obtained from Eq. (2). As pcage

decreased, the time required to reach this limit increased. The
MSDs were generated after the simulation was completed from
a file containing positions of the particles at periodic intervals.
In all simulations, at least 1000 points along the trajectory were
saved. From simulations one could only obtain statistically
reliable MSDs of about half of the time of the simulation,
before the diminishing amount of data in the correlation
function rendered the rest of the MSD unacceptably noisy [27].
Therefore we calculated the self-diffusivity coefficients in a
range of observation times running from tsim/4 to tsim/2, where
tsim is the simulation duration. The nonzero lower limit was
needed to omit information prior to the infinite-time limit.

B. Molecular dynamics simulations

The CRW theory is compared to three systems, for which
MSDs are available from MD simulations. The first system is
of an explosive, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine,
CAS no. 121-82-4), adsorbed in an isoreticular metal organic
framework, IRMOF-1. The structures of RDX and IRMOF-1
are shown in Fig. 2. [28] The cages are cubic in shape with
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FIG. 2. (Color online) Structures of RDX (on the left) and
IRMOF-1 (on the right). Color legend: blue, N; red, O; gray, C;
white, H; maroon, Zn.

octahedral zinc-carboxylate complexes at the vertices and
benzene rings along the edges. The dimension of the cage
is 12.92 Å. IRMOF-1 has been synthesized and characterized.
[29] Xiong et al. have previously simulated RDX in IRMOF-
1, [30] IRMOF-10, [31] and other IRMOFs. [32] Similar
dynamic behavior of RDX is observed for all IRMOFs and
for the purposes of this demonstration, we use the results
from IRMOF-1 [32]. The simulations were performed across
a temperature range from 300 to 600 K, in order to obtain an
activation energy for cage-to-cage diffusion.

A complete discussion of the interaction potential and
simulation method is given in the Ref. [30]. Here we provide
a brief summary. For RDX, we employ a nonreactive, fully
flexible, atomistic interaction potential for RDX that takes
features from both Wallis and Thompson as well as Boyd
et al. [33] The RDX intramolecular force field includes bond
stretching, angle bending, torsion, and nonbonded interactions.
The nonbonded interactions include Lennard-Jones interac-
tions and Coulombic interactions, due to a permanent charge
distribution, modeled as point charges at each atom center.
It has been pointed out that there is a significant variation
in the charge distribution of IRMOF-1 depending on the
quantum mechanical calculation method applied [34]. Herein
we have used the results obtained using the Löwdin population
analysis (LPA) method [35]. The atoms of IRMOF-1 are
fixed at their crystallographic coordinates and interact with the
RDX through Lennard-Jones (LJ) and Coulombic interactions,
with parameters from Tafipolsky et al., [36] in which the LJ
parameters are taken from Allinger et al., [37] which is the
same source for LJ parameters used for RDX.

Classical equilibrium MD simulations were performed on
an in-house parallel code written in FORTRAN90 to obtain
configurations and diffusivities of RDX adsorbed in IRMOF-1.
We integrated the equations of motion using the two-time-
step reversible REference System Propagation Algorithm
(r-RESPA) of Tuckerman and co-workers. [38] Intramolecular
degrees of freedom were accounted for in the short-time loop,
with a step size of 0.2 fs. There were ten short steps per
long time step. The temperature was controlled using the
Nosé-Hoover thermostat [39]. We equilibrated the system for 2
ns. Following equilibration, we simulated an additional 8 ns for
data collection. During data production, positions of the center
of mass of the RDX molecules were saved every 5 ps and were
used to calculate the self-diffusivity via the Einstein relation.
Uncertainties in the self-diffusivity are reported as the standard
deviations of the x, y, and z components of the diffusivity.

FIG. 3. (Color online) Cross section from a snapshot of a
molecular dynamics simulation of Nafion (EW = 1144) at 300 K
and a water content of λ = 6. In this snapshot, all atoms except the
sulfur of Nafion have been rendered invisible. Color legend: white,
H; red, O of water; green, O of hydronium ion; orange, S.

The second system simulated is the hydrated proton
exchange membrane Nafion. We have previously reported
diffusion coefficients for water in PEMs as a function of side
chain length, molecular weight, and equivalent weight (EW)
of the polymer [13,40]. Across polymers, the same qualitative
behavior of water dynamics is observed. In this work, we
therefore, examine the diffusion coefficients of water in Nafion
with an EW of 1144 and a degree of polymerization of 15.
The structure of the hydrated Nafion 1144 is shown in Fig. 3.
[28] In this figure, all atoms of Nafion have been rendered
invisible except the sulfur of the sulfonate group, in order to
better visualize the shape of the aqueous domain. Additional
interactive structures and images are available for viewing and
download on an archived site [28]. The diffusion coefficient
of water in Nafion varies strongly with water content. Herein,
we examine water contents ranging from minimally hydrated
to saturated, λ = 3, 6, 9, 15, and 22 H2O/SO3H.

Here again we provide a brief summary of the MD
simulation method and potentials used to generate the MSDs
employed in this work. The potential model for Nafion was
taken from the literature. It is an explicit atom model with
the exception of the CFX groups, which are treated as united
atoms. The potential includes bond stretching, bond bending,
and bond torsion modes. It also includes nonbonded inter-
actions using the Lennard-Jones potential and a Coulombic
interaction. The details of the potential model have been
published in previous studies by other authors. [41,42] Water
is simulated using the TIP3P model [43] with a flexible OH
bond. [42] The model for hydronium ions, H3O+, is from Urata
et al. [44] Classical equilibrium MD simulations of hydrated
Nafion were performed on an in-house parallel code written
in FORTRAN90. The integrator, thermostat, and technique for
capturing diffusivities are analogous to what was done in the
MD simulations of RDX in IRMOFs.

The third system we compare to is liquid and glassy iron.
We use the Johnson potential for interactions [45]. Because
these simulations were much less computationally intensive
than those required for the previous two applications, we
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used a simpler in-house MD serial code with the single-time-
step fifth-order gear-predictor corrector as an integrator [46].
The thermostat was the same. The glassy configuration was
generated by taking an equilibrium configuration of liquid
iron at 3000 K and instantly quenching it to 300 K. After an
equilibration period, the MSD were recorded and analyzed
according to the procedure described above. In contrast to
the previous two applications, these MSDs are not previously
published. In addition, the CRW theory was also applied to
liquid iron at 3000 K.

IV. RESULTS

We organize the results into four sections. In the first
section, we provide a description of the range of capabilities
of the confined-random-walk theory. In the subsequent three
sections, we apply it to each of the three test systems.

A. General predictions of the confined-random-walk Theory

Before applying the confined-random-walk theory to the
three applications, we first present a brief demonstration of
the capabilities of the theory. The purpose of this section is
not only to show that two parameters, a cage size and a cage-
to-cage hopping probability, are indeed capable of capturing
the dynamic behavior from fully confined to fully unconfined
systems, but also to clearly illustrate the effect that changing
either parameter has on the system behavior. An understanding
of the parametric sensitivity of the model in a generic sense
will aid in the interpretation of the results when the theory is
applied to the three target systems.

In Fig. 4, we plot the MSD as a function of observation time
on linear and logarithmic scales for a dimensionless system
in which 〈�r〉 = 2.87 × 10−3, �t = 1, Rcage = 1, and the
probability of a successful cage-to-cage hop, pcage, was varied
from 0 to 1. When pcage = 0, the particles are completely
confined within their original cage. When pcage = 1, all cage-
to-cage hops were successful and we recovered the unconfined
RW theory, regardless of the value of Rcage. All of these
simulations were carried out to the infinite-time limit, in
which the MSD was linearly proportional to the observation
time. The CRW theory is able to reproduce the spectrum of
behaviors within the two asymptotes mentioned above. The
expected linear proportionality between the MSD and the
observation time, which is characteristic of a system without
confinement, is seen when pcage = 1. This is clearly indicated
by the corresponding straight line with a slope of unity in the
log-log plot. For the completely confined system (pcage = 0)
no hop was successful. The MSD displays an initial period
of linear behavior, which is due to diffusion within the cage
before the particle interacts with the walls. As particles do
not diffuse beyond the cage, the self-diffusion coefficient in
the infinite-time-limit region must be, and was indeed found
to be, zero. Intermediate behavior was detected when 0 <

pcage < 1. Because of confinement, the MSD vs observation
time curves are not linear at intermediate times. As can be
seen in the linear plots, the long-time slopes (proportional
to the self-diffusivity) decrease as pcage decreases, which is
in agreement with the fact that confinement slows diffusion.
All systems reach the infinite-time-limit regime if run long
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FIG. 4. Impact of cage-to-cage hopping probability pcage. Plot of
the mean square displacement as a function of observation time on
linear (a) and logarithmic (b) scales for a dimensionless system in
which 〈�r〉 = 2.87 × 10−3, �t = 1, Rcage = 1, and pcage is varied
from 0 to 1.

enough, as can be seen in the log-log plot from the common
slope of unity of for all curves with nonzero pcage. The time
required to reach this limit, however, varies depending on the
pcage value. Systems with very low diffusivities (systems with
small cage-to-cage probability) reach the infinite-time limit
more slowly. This dramatic slowing of the diffusion is the
primary reason that computationally intensive techniques such
as molecular dynamics simulations may not alone be able to
generate self-diffusivities in highly confined systems.

Figure 4(b) illustrates that there are three time regimes
for the MSD for systems with nonzero pcage. At the shortest
times, there is a regime in which the confinement has not
yet been felt and the linear behavior is observed with a slope
corresponding to the intrinsic diffusivity of the unconfined
system. The second regime is the intermediate-time regime, in
which confinement is influencing the MSD and the relationship
between the MSD and the observation time is sublinear. The
third regime is the infinite-time limit, in which the MSD is
once again linear with observation time, now with a slope that
corresponds to the effective diffusivity of the confined system.
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FIG. 5. Impact of cage radius Rcage. Plot of the mean square
displacement as a function of observation time on linear (a) and
logarithmic (b) scales for a dimensionless system in which 〈�r〉 =
2.87 × 10−3, �t = 1, pcage = 0.001, and Rcage is varied from
0 to 10.

In Fig. 5, we plot the MSD as a function of observation time
on linear and logarithmic scales for a dimensionless system in
which 〈�r〉 = 2.87 × 10−3, �t = 1, pcage = 0.001, and the
size of the cage, Rcage, is varied from 0 to 10. In the limit
that Rcage approaches infinity, we recover the unconfined
RW theory, regardless of the value of pcage. We observe
that a decrease in the cage size causes a decrease in the
self-diffusivity, again in agreement with the general idea that
confinement slows diffusion.

Figure 5(b) also demonstrates that all MSDs exhibit three
regimes. What can be observed particularly clearly in Fig. 5(b)
is the fact that the duration of the short-time regime (linear
behavior with unconfined diffusivity) is governed by the cage
size. In Fig. 5, for a cage size of 10.0, only the short-time
regime is visible. As the cage size decreases, the duration of
this regime shrinks. In the inset of the linear plot, Fig. 5(a),
one can also see that the general point where the curve “bends
over” increases as the case size increases.

Having examined the impact of pcage and Rcage, we can also
study the impact of temperature on self-diffusion. A change in
temperature changes the variance of the MB distribution and

also changes the intrinsic diffusivity of the unconfined system,
Eq. (6). For many confined systems, diffusion is surface
mediated and there is an activation barrier associated with
a cage-to-cage move. Thus the diffusivity obeys an Arrhenius
temperature dependence,

D = D0 exp

(
− Ea

kBT

)
. (7)

Typically, the cage-to-cage hopping probability contains
the activation barrier,

pcage = c exp

(
− Ea

kBT

)
, (8)

where c is a normalization constant. Thus a change in pcage

could be caused by a change in activation energy (e.g., a
different material) or a change in temperature in the same
material.

B. Application to diffusion of polyatomic molecules
in metal organic frameworks

The CRW theory was applied in the first place to diffusion of
an explosive, RDX, adsorbed in an isoreticular metal organic
framework, IRMOF-1. This system provides a standard by
which the capabilities of the more coarse-grained CRW theory
can be tested. It is a standard because the MSDs can be
generated out to the infinite-time limit via MD simulation. [30]
Thus we have reliable self-diffusion coefficients from a more
finely resolved technique. Furthermore, the porous network is
rigid and uniform, with well-defined cubic cages with a length
of 12.92 Å. [29] Thus we can judge whether the size parameter
Rcage correctly captures the real size of the confinement.
Furthermore, the MD simulations have been performed over
a range of temperatures, yielding an activation energy for
diffusion of 6.0 kcal/mol. Thus, we can judge whether the
cage-to-cage hop probability captures the activated energy of
the diffusivity, as assumed in Eq. (8).

For each one of the seven available sets of MSD data
(corresponding to temperatures of 300, 350, 400, 450, 500,
550, and 600 K) the CRW theory was applied. We adjusted
pcage, Rcage, and �t in order to obtain a first approximate fit to
the MSD data from the MD simulations. Then, we refined this
set of parameters in a subsequent optimization procedure us-
ing the Limited memory Broyden-Fletcher-Goldfarb-Shanno
method for Bounded problems (L-BFGS-B) method, [47]
which performs a nonlinear multivariate optimization on
bounded variables. In our case, the three variables are bounded:
0 < pcage < 1, 0 < Rcage, and 0 < �t.

Figure 6 shows a comparison between the mean square
displacement from MD simulations and the mean square
displacement obtained with the CRW model for the seven
different temperatures. With the appropriate parametrization,
the agreement between CRW and the MD results is excellent.
The CRW theory is capable of reproducing the diffusive
behavior of RDX in IRMOF-1 in all the studied range of
temperatures. The numerical values of the parameters and the
diffusivities from the MD and CRW simulations are given
in Table I. The average error between the MD and CRW
self-diffusivities is 1.7%. Uncertainties in the self-diffusivity
are reported as the standard deviations of the x, y, and
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FIG. 6. Comparison of the mean square displacement from MD
(symbols) and CRW simulation (lines) for diffusion of RDX in
IRMOF-1 at different temperatures. From the bottom to the top: 300,
350, 400, 450, 500, 550, and 600 K.

z components of the diffusivity. In Table I, we observe that
Rcage is approximately constant with an average of 8.46 Å.
In our attempt to develop the simplest possible theory, all the
cages in the model are assumed to be spherical. IRMOF-1
does not exhibit spherical cages but cubic ones with a length
of 12.92 Å. A sphere that encloses the same volume as a
cube of 12.92 Å has a radius of 8.01 Å. Therefore, it appears
that Rcage, the parameter that represents the dimension of the
confinement space in our theory, shows good agreement with
the size of the physical cage in the material.

In constrast to Rcage, both pcage and D0 depend on
the temperature, as they should via Eqs. (6) and (8),
respectively. There is a qualitative similarity between the
MSDs for RDX in IRMOF-1 (Fig. 6) and the MSDs for
the generic system in which pcage is varied [Fig. 4(a)], because
changing the temperature in the physical system changes the
cage-to-cage hopping probability, as hopping from cage to
cage is an activated process with an Arrhenius temperature
dependence. In Fig. 7, we plot the CRW self-diffusivity as
a function of temperature in an Arrhenius plot. We find an
activation energy for diffusion of 5.7 kcal/mol, as compared to
the value of 6.0 kcal/mol reported by Xiong et al. [30] from the
MD simulations. This temperature dependence predominantly
lies in the cage-to-cage hop probability. The temperature
dependence of D0 is more complicated than what Eq. (6) would
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FIG. 7. Arrhenius plot showing the diffusivities (obtained from
the CRW model) for the RDX–IRMOF-1 system as a function of
temperature.

predict and is a consequence of activated motion between
multiple adsorption sites within each cage, a feature present
in the MD simulations but omitted from the more coarsely
grained CRW level of description.

C. Application to diffusion of water in proton
exchange membranes

The CRW theory was also applied to the diffusion of water
in the PEM Nafion (EW = 1144) at 300 K as a function
of water content. It has previously been reported that the
diffusion coefficient of water in Nafion varies strongly with
water content from both experiment [48] and simulation [13].
Thus, herein we examine different water contents including
from minimally hydrated to saturated, λ = 3, 6, 9, 15, and
22 H2O/SO3H. This system is considerably different from
the one presented above, as it does not present well-defined
physical cages, but amorphous water clusters whose size and
connectivity vary depending on the water content.

For each one of the studied systems, we had mean square
displacement data available from two different molecular
dynamics simulations. The first set of simulations was only
run for short observation times (no longer than 0.37 ns), while
in the second set, MSDs from 0.5 to 1 ns were collected [13].
The infinite-time limit was not reached in any case, due to
computational limitations. In the longer MD simulations, the

TABLE I. Properties of the MD and CRW simulations applied to the diffusion of RDX in IRMOF-1 as a function of temperature. In this
case, the MD simulations were run to the long-time limit and should agree with the diffusivity of the CRW simulations.

CRW theory MD simulations
T (K) D0 (10−8) (m2/s) Rcage (Å) pcage D (10−9) (m2/s) D (10−9) (m2/s)

300 0.037 8.10 1.20 × 10−3 0.06 ± 0.01 0.056 ± 0.005
350 0.12 8.50 5.40 × 10−3 0.28 ± 0.03 0.276 ± 0.006
400 0.35 8.07 1.89 × 10−2 0.89 ± 0.08 0.94 ± 0.03
450 0.61 8.60 3.72 × 10−2 2.0 ± 0.3 2.0 ± 0.1
500 0.91 9.35 6.00 × 10−2 3.4 ± 0.3 3.5 ± 0.3
550 1.35 8.60 8.20 × 10−2 5.2 ± 0.5 5.12 ± 0.08
600 1.94 8.03 1.04 × 10−1 6.4 ± 0.4 6.5 ± 0.2
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TABLE II. Properties of the MD and CRW simulations applied to the diffusion of water in Nafion as a function of water content. In this
case, the MD simulations were not run to the long-time limit.

CRW theory MD simulations
λ D0 (10−9) (m2/s) Rcage (Å) pcage D (10−9) (m2/s) D (10−9) (m2/s)

3 0.32 2.7 8 × 10−4 0.044 ± 0.003 0.041 ± 0.007
6 0.910 6.9 3 × 10−3 0.31 ± 0.01 0.26 ± 0.05
9 1.75 12.5 3 × 10−3 0.64 ± 0.01 0.58 ± 0.06
15 2.66 17.5 6 × 10−3 1.3 ± 0.1 1.2 ± 0.2
22 3.24 22.5 7 × 10−3 1.73 ± 0.07 1.7 ± 0.2

exponent XMSD ∝ τm fell in a subdiffusive range of 0.6 to 0.8.
In this application, we fitted the CRW theory only to the
short-time simulations. Thus, the comparison of the CRW
theory and the MSDs in the range from 0.5 to 1 ns is a
prediction and explicitly not a fit.

The CRW parameters and the self-diffusivities of water
from CRW and MD simulations are reported in Table II. Note
that the MD simulations did not reach the long-time limit and
there is some error associated with these self-diffusivities due
to this shortcoming. From Fig. 8, we see immediately that
we are able to model the short-time MSDs from MD very
well. The CRW simulations thus parametrized yield MSDs
in the 0.5 to 1 ns time range in excellent agreement with the
longer MD simulations. Furthermore, the CRW simulations
are carried out for much longer times, up to 100 ns, where the
linear long-time behavior is reached. We note in Table II that
there is not a great difference between the self-diffusivities
extracted from the linear behavior of the CRW simulations
and from the sublinear regime of the longer MD simulations.
Regardless, there is a great deal of additional confidence in
the CRW diffusivities now that it has been shown that they
have been obtained in a limit rigorously corresponding to the
Einstein relation.

There is great interest in characterizing the size and connec-
tivity of the aqueous domain in PEMs. Various models have
been proposed to describe this network [49]. Here, the CRW
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FIG. 8. Comparison of the mean square displacement from MD
(symbols) and CRW simulation (lines) for diffusion of water in Nafion
1144 with different levels of hydration. From the bottom to the top
λ = 3, 6, 9, 15, and 22 H2O/SO3H.

theory provides a characteristic dimension of the aqueous
cluster size based on a dynamic property, the self-diffusivity
of water, Rcage. The cage size increases with increasing water
content, which is completely reasonable on a physical basis.
Fourier transform of the water-water pair correlation function
in hydrated Nafion generates characteristic periodicity with
a characteristic dimension of 20–30 Å for λ = 3 to 6, [13]
which includes the dimension of both the hydrophobic and
hydrophilic phases. Whether the volume of these cages cor-
responds quantitatively to average volumes of water clusters
in the PEM, as was the case for diffusion in the MOFs, is
a subject requiring further analysis of the morphology of the
aqueous domain from experiment and simulation. However,
at this point, it remains a promising possibility. The CRW
simulations also provide a probability of cage-to-cage hopping
as a function of water content. Again, we believe that this
may provide a crucial piece of evidence in understanding
the fundamental mechanisms for the dependency of water
diffusion in PEMs. Further analysis, while not the subject of
this paper, is under way.

Throughout this work, we have attempted to minimize
the number of parameters used in the CRW theory. Fixing
the pore shape to spherical and having a single pore size
resulted in one parameter to characterize pore size. Were we
to allow a distribution of pore sizes and shapes, we would
require additional parameters. Since we were able to capture
the dynamic behavior of water in Nafion—a system where
there clearly is a distribution of pore sizes and pore shapes in
the real material—with a single-parameter model, we felt there
was no justification for the needless introduction of additional
parameters. That a single size parameter can describe the MSD
behavior in this application also indicates that capturing the
polydispersity in the pore size and shape is not a critical
element in understanding and modeling the system.

D. Application to the diffusion of liquid and glassy iron

Finally, we applied the CRW model to diffusion of liquid
iron at 3000 K and glassy iron at 300 K. In contrast to the
previous two applications, these MSDs are not previously
published. The MSD from MD and CRW simulations at
300 K are shown in Fig. 9. The CRW parameters and the self-
diffusivities of Fe from CRW and MD simulations are reported
in Table III. The MSDs for the MD and CRW simulations at
3000 K are linear and consequently are not shown. There is
no evidence of confinement present in liquid iron at 3000 K.
However, the glassy iron does show significant confinement.
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FIG. 9. Comparison of the mean square displacement from MD
(symbols) and CRW simulation (lines) for diffusion of glassy iron at
300 K.

Dense random packing of hard spheres is commonly used
as first-order structural models. [50] of glassy metals. Atoms
vibrate within a cage of tightly packed neighbors and only
certain circumstances generate a momentary change in the
structure that allows some of them to move and diffuse.
A collective molecular rearrangement (a chain reaction flow
event) occurs due to thermal fluctuations [51]. The diffusivities
of these systems are typically very small, which severely
hinders obtaining the self-diffusivity coefficients using MD
simulations. Analyses of the MSDs by simulations and by
various theories yield a family of curves qualitatively similar
to those shown in Fig. 4(b), where the variation of pcage has
been replaced directly with temperature [52].

We note that the MSDs from MD simulation end at 0.1 ns.
In order to reach the linear regime, the CRW simulations were
run for 18 ns, where the slope of the double logarithmic plot
of the MSD vs observation time was 0.95 ± 0.02. In this
long-time regime, a value of (4.0 ± 0.1) × 10−13 m2/s was
obtained for the self-diffusivity coefficient of Fe in the glassy
state at 300 K. It is worth noting that MD simulations describe
a glass formed by an instantaneous quench and are too short
to capture key relaxation processes in the glass; therefore, the
glass structure within which we calculate the MSD is not fully
relaxed. This leads to a greatly overpredicted diffusivity in
the glassy state by MD simulations (and faithfully reproduced
by the CRW simulations) relative to experiment [53]. Thus,
in contrast to the other two applications, the prediction of
the diffusivity of glassy iron is not quantitative. However,
the qualitative similarity in confined diffusion remains valid.
The cage size at 300 K is 0.22 Å. It is important to realize
that this is the radius of a cage in which the point particle
moves in the CRW simulation. A cage size for a finite-volume

TABLE III. Properties of the MD and CRW simulations applied
to the diffusion of iron at 3000 K (liquid) and 300 K (glass).

System D0 (m2/s) Rcage (Å) pcage DCRW (m2/s)

Liquid iron 5.9 × 10−9 — 1.0 (5.8 ± 0.3) × 10−9

Glassy iron 7.6 × 10−11 0.22 1.35 × 10−4 (4.0 ± 0.1) × 10−13

system would require adding the radius of the particle to this
cage size. For Fe, this would correspond to a cage radius of
1.53 Å. We note that in network-forming glasses like silica, one
observes a maximum in the MSD at intermediate times [54].
The simplest CRW theory as formulated in this paper is not
capable of nonmonotonic behavior in the MSD as a function
of observation time.

V. CONCLUSIONS

In the present work, we have developed and implemented
a general theory for diffusion in the presence of nanoscale
confinement. It is based on a traditional random-walk theory
to which two parameters that capture confinement have been
added, a cage size and cage-to-cage hopping probability. The
model is extraordinarily simple; however, we have shown
that it is capable of reproducing a range of behavior from
completely confined to completely unconfined diffusion and
it yields intermediate behavior due to confinement. The CRW
theory captures the correct nonlinear dependence of the mean
square displacement on observation time for intermediate
times. It requires modest computational requirements and is
thus able to simulate systems with very low diffusivities for
a sufficiently long time to reach the infinite-time-limit regime
where the MSD is linearly proportional to the observation time.

The CRW theory was applied to three systems. The applica-
tion to the diffusion of RDX in IRMOF-1 demonstrated that the
CRW is capable of quantitatively reproducing self-diffusivities
obtained from MD simulation. Furthermore it demonstrated
that the cage size parameter has a physical correspondence
to the actual cage size in the IRMOF-1 material. Second,
it demonstrated that temperature-dependent properties, such
as the activation energy for diffusion, can also be accurately
reproduced by the CRW simulations.

The application of the CRW theory to the diffusion of water
in Nafion demonstrated that the CRW theory fit to short-time
MSD data is capable of faithfully reproducing longer-time
MSD data. This feature is useful for systems where the
dynamics are sufficiently slow that reaching the Einstein limit
for the diffusivity is not feasible via MD simulation alone.
The CRW also generated cage size and cage-to-cage hop
probabilities for water in Nafion as a function of the degree
of hydration. These parameters may provide insight into the
morphology of the hydrated membrane.

The application of CRW theory to the diffusion of glassy
Fe demonstrated the breadth of potential applications and the
ability to estimate very small diffusivities.
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