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Equivalence of replica and cavity methods for computing spectra of sparse random matrices
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We show by direct calculation that the replica and cavity methods are exactly equivalent for the spectrum of an
Erdős-Rényi random graph. We introduce a variational formulation based on the cavity method and use it to find
approximate solutions for the density of eigenvalues. We also use this variational method for calculating spectra
of sparse covariance matrices.
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I. INTRODUCTION

Random matrix theory is a discipline with a wide range of
physical applications and many beautiful mathematical results
[1]. One of the aspects that makes the problem extremely
complex is the fact that real physical systems are embedded
in three-dimensional Euclidean space. Their Hamiltonian is
often a random matrix, but the randomness is constrained in a
highly nontrivial way.

The constraints are relatively less severe in the atomic
nucleus, where the three dimensionality of physical space is
of secondary importance. Hence the spectacular success of
the early works in random matrix theory, due to Wigner [2,3]
and Dyson [4]. On the other hand, the fundamental constraint
arising from the two-body character of the interaction within
the (model of an) atomic nucleus induces several drastic
changes [5–9]. Most importantly, the density of states is not
a semicircle, as suggested by Wigner, but rather it follows a
Gaussian shape. Therefore, sharp band edges are missing, and
Lifschitz tails develop. For the current state of the problem,
see, e.g., the review [10].

An even more complicated situation arises in all random
extended systems, such as disordered or amorphous semi-
conductors, where we must take into account the Euclidean
constraints. Perhaps the easiest of these constraints is the
sparsity of the Hamiltonian matrix, which is due to the finite
range of interactions. If we forget the even more severe
complications due to the precise number of spatial dimensions
(in reality one, two, or three), we are left with the problem of
determining the spectrum of a random sparse matrix.

An important breakthrough was achieved using the replica
method, which was introduced in the context of random
matrices in Ref. [11]. Rodgers and Bray, in their classic
work [12], solved the problem in the sense that they found
an integral equation for a quantity from which the density
of states is readily obtained. Unfortunately, that equation still
resists all attempts for an exact analytic solution. In Ref. [12],
two approximative solutions were found: first, in the form
of a series expansion, whose leading term coincides with the
Wigner semicircle law; and, second, using a nonperturbative
argument, introduced earlier in Ref. [13], the shape of the
Lifschitz tails in the density of states was found.

*slanina@fzu.cz

The replica method for treating spectra of sparse matrices
was further developed [14–28]. In particular, the variational
formulation of the replica equations [19,20,27] enabled gen-
erating self-consistent approximations, namely, the effective
medium approximation (EMA), which is analogous to the
coherent potential approximation used for electrons in random
potential. In these approximations, Lifschitz tails in the
spectrum are absent. Further sophistication of the method
consists of the single defect approximation (SDA), which
obtains the Lifschitz tail in the form of an infinite sequence of
delta peaks.

The complexity of the problem becomes evident when we
compare these results with the density of states obtained by nu-
merical diagonalization of large sample matrices [27,29–33].
The Lifschitz tail is smooth, while the bulk of the density of
states is the combination of a continuous component with a set
of delta peaks. The most marked of these peaks is at the origin,
others at eigenvalues z = ±1, ±√

2, etc. All these structures
should emerge from the solution of the Rodgers-Bray integral
equation, but EMA, as well as SDA, misses all of them. The
set of delta peaks was studied separately in Refs. [20,32], but
a theory that would combine naturally both these peaks and
the continuous component is still unavailable.

More recently, spectra of sparse matrices encoding the
structure of random graphs were studied successfully using
the cavity approach (see, e.g., Ref. [34]). It is based on the
fact that large random graphs are locally isomorphic to trees.
This was used, e.g., in Refs. [35–37] to calculate spectra of
adjacency matrix and Laplacians on complex networks. In
Refs. [35,36], a “self-consistent” version of SDA was used to
obtain the asymptotic shape of the Lifschitz tails, which decay
as a power law in the case of scale-free networks. In Ref. [37]
a more sophisticated calculation led to an integral equation
similar to Rodgers and Bray’s [12], from which the asymptotics
of Lifschitz tails is found. The cavity method provides an easy
way [33] to obtain the Wigner semicircle law, as well as the
Marčenko-Pastur law for a spectrum of covariance matrices.
It can be also used as an efficient numerical procedure [33],
reproducing all peculiarities of the density of states, including
Lifschitz tails and delta peaks. The mathematical justification
for the use of the cavity approach can be found in Ref. [38].

A very powerful method for computing spectral properties
of random matrices is based on supersymmetry and was
developed in Refs. [39,40] (see also the review [41] and a
recent development in Ref. [42]). Initially, the results of replica
and supersymmetric methods were found to be in conflict,
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which resulted in serious criticism of the replica trick in general
[43]. The density of states of sparse random matrices was
calculated using supersymmetry [44], leading to an equation
that was later [45] shown equivalent to the replica result of
Ref. [12]. However, the correlation of eigenvalues, which was
investigated in Ref. [46] using supersymmetry for the case of
sparse matrices, was not reproduced correctly in the replica
method, until the integral over all saddle points was properly
taken in Ref. [47]. Since then, the replica method regained
its reputation as an equivalent alternative to supersymmetric
methods. This was further supported by a series of papers
[48–50]. Finally, let us mention the works that approach the
density of states by computing the moments exactly [31,51].

In this paper, we show an alternative method to obtain
the Rodgers-Bray integral equation using the cavity approach.
Therefore, we prove exact equivalence of the replica and
cavity methods in this case, which was previously assumed
only on the basis of topological considerations for random
Erdős-Rényi graphs. Moreover, as an important by-product
of this proof, we present a variational formulation of the
problem, which serves as a useful generator of self-consistent
approximations.

II. PROJECTOR METHOD

We shall investigate the spectrum of the adjacency matrix L

of an Erdős-Rényi random graph with N vertices. Therefore,
the probability distribution of the matrix elements factorizes

π (L) =
∏
i<j

[π1(Lij )δ(Lij − Lji)]
∏

i

δ(Lii), (1)

where the probability density for a single off-diagonal element
is

π1(x) =
(

1 − μ

N

)
δ(x) + μ

N
δ(x − 1). (2)

The key ingredient of all subsequent analysis is the resolvent:

R(z) = (z − L)−1 (3)

and its average 〈R(z)〉 over disorder, taken with the distribution
(1). It contains information on the average density of states
(here we assume z on the real axis):

D(z) = lim
ε→0+

1

Nπ
Tr 〈R(z − iε)〉. (4)

In the spirit of the cavity method, we focus on a single
vertex, surrounded by the rest of the graph. To calculate
the diagonal element of the resolvent on this vertex, we use
the projector method, formulated generally in Ref. [52]. For
a different route that also leads to equivalent results, see
Ref. [34]. Let us have an arbitrary projector P and its
complement P C ≡ 1 − P . Then the projected resolvent is [52]

PRP = P

P (z − L)P − PLP C P C

z−L
P CLP

. (5)

We denote the singled-out vertex as i = 0. Let P0 be the
projector to this vertex. Furthermore, denote i = 1,2, . . . ,k

neighbors of the vertex 0 on the graph represented by the
matrix L and denote also a Pi projector to the neighbor i.
Let us use composite indices for other vertices. If ki is the

number of neighbors of i, denote [i,1],[i,2], . . . ,[i,ki − 1] as
the neighbors of vertex i, except the vertex 0. The projectors to
the second neighbors of 0 will be denoted using these indices,
so Pi,i ′ is projector on the vertex [i,i ′]. By analogy, we define
the projectors to third, fourth, etc., neighbors of 0. Note that
on a general graph, some of the projectors may coincide due
to the presence of cycles.

The cavity approach consists of replacing the graph by a
tree, which is locally isomorphic to it, i.e., neglecting all cycles
on the graph. Algebraically, it is equivalent to the assumption
that the complementary projectors can be written as direct
sums of projectors corresponding to separate branches of the
tree:

P C
0 = P(1) ⊕ P(2) ⊕ · · · ⊕ P(k),

P(i)P
C
i = P(i,1) ⊕ P(i,2) ⊕ · · · ⊕ P(i,ki−1),

(6)
P(i,i ′)P

C
i,i ′ = P(i,i ′,1) ⊕ P(i,i ′,2) ⊕ · · · ⊕ P(i,i ′,ki,i′ −1),

...

where P(i)Pi = Pi , P(i,i ′)Pi,i ′ = Pi,i ′ , and so forth.
Using the projectors we define the series of scalar functions

related to the resolvent:

g(z) = P0R(z)P0,

gi(z) = Pi

P0
C

z − L
Pi,

gi,i ′(z) = Pi,i ′
P(i) Pi

C

z − L
Pi,i ′ , (7)

gi,i ′,i ′′ (z) = Pi,i ′,i ′′
P(i,i ′) Pi,i ′

C

z − L
Pi,i ′,i ′′ ,

... .

From (5) and the assumptions (6) we have the chain of
equations for these functions:

g(z) = 1

z − ∑k
i=1 gi(z)

,

gi(z) = 1

z − ∑ki−1
i ′=1 gi,i ′(z)

,

(8)

gi,i ′(z) = 1

z − ∑ki,i′−1

i ′′=1 gi,i ′,i ′′ (z)
,

... .

On a random tree, the degrees k, ki , ki,i ′ are random variables,
and therefore g(z), gi(z), gi,i ′(z), etc., are also random
functions of z. To describe their properties, we define their
generating functions (dependence on z becomes implicit):

G(ω) = 〈e−ω g(z)〉,
G1(ω) = 〈e−ω gi (z)〉,
G2(ω) = 〈e−ω gi,i′ (z)〉,

(9)
G3(ω) = 〈e−ω gi,i′ ,i′′ (z)〉,

... .
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If the graph in question is the Erdős-Rényi random graph, all
the degrees in the corresponding random tree are independent
and distributed according to the Poisson distribution P (k) =
e−μ μk/k!. The average degree μ is the only free parameter of
this model.

Calculation of the generating functions (9) is facilitated by
the integral representation

g(z) = 1

z − ∑k
i=1 gi(z)

=
∫ ∞

0
e−λ[z−∑k

i=1 gi (z)] dλ (10)

and similarly for the other g’s. Assuming for the moment that
k is fixed, we get, after some algebra, the following relation
between G(ω) and G1(ω):

G(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z [G1(λ)]k. (11)

Now we take into account the Poisson distribution of degrees,
which gives

G(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μ[G1(λ)−1]. (12)

Repeating the same steps for further generating functions we
get

G1(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μ[G2(λ)−1]. (13)

Note that the form of the relation between G and G1 is the
same as between G1 and G2 and generally between Gm and
Gm+1 for any m > 0. This is due to the special property of
the Poisson distribution, kP (k)/μ = P (k − 1). For any other
distribution this does not hold.

For an infinitely large tree we suppose that the generating
functions Gm, m = 1,2,3, . . . converge to a common limit, and
we can impose the condition of stationarity G1(ω) = G2(ω).
Therefore, we define a single function γ (ω) = G(ω) − 1, for
which we have a closed equation:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μγ (λ). (14)

It is strictly equivalent to Eq. (18) in Ref. [12] (the Rodgers-
Bray equation), which was obtained using the replica method.
Hence we conclude that the explicit calculation showed the
equivalence of the replica and cavity approaches in the case of
the Erdős-Rényi graph, which is just the situation in which the
Rodgers-Bray equation holds. Note, however, that the direct
computation we used here would fail if the degree distribution
was not Poissonian.

III. VARIATIONAL PROBLEM

The key result (14) can be reformulated in a different way
more appropriate for approximate solution. As a first step, we
define an auxiliary function ρ(ω) = e−ωz+μ γ (ω). Instead of the
single equation (14), we can solve the pair:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

(15)
ρ(ω) = e−ωz+μ γ (ω).

Direct solution of (15) is as difficult as solving (14). However,
we can find a functional, whose stationary point is just defined
by Eqs. (15). We can check explicitly that such a functional is

F[γ,ρ] = −
∫ ∞

0

dω

ω
γ (ω)ρ(ω)

+ 1

2

∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρ(ω)ρ(λ)

+ 1

μ

∫ ∞

0

dω

ω
e−ωz+μ γ (ω). (16)

Note that we derived, within the cavity approach, a result that
is analogous to the functional obtained in Ref. [27] using the
replica trick.

The variational formulation of the problem is useful as a
generator of approximations. In Ref. [20] a variational ansatz
was used to derive the density of states in the EMA. Let us see
now how it is obtained in our cavity procedure. If we take the
exponential ansatz for the auxiliary function ρ(ω), namely,

ρ(ω) = e−σ ω, (17)

all integrals in (16) can be performed explicitly, and we can
extremalize the functional with respect to σ and γ (ω). In this
way we find the cubic equation:

σ 3 − z σ 2 + (μ − 1) σ + z = 0. (18)

It is identical to Eq. (23) in Ref. [20] obtained by the replica
method. The solution can be obtained analytically, and the
density of states is extracted using the formula

D(z) = lim
ε→0+

Im
1

π σ (z − iε)
. (19)

We can further improve the calculation by the following
trick, which we shall refer to as the “single-shell approxima-
tion” within this paper. We may formally write the pair of
Eqs. (15) as a set of four equations:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

ρ(ω) = e−ωz+μ γ (ω), (20)

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

ρ(ω) = e−ωz+μ γ (ω).

These equations can be obtained as a condition of stationarity
for the functional:

F1[γ,ρ,γ ,ρ] = −
∫ ∞

0

dω

ω
[γ (ω)ρ(ω) + γ (ω)ρ(ω)]

+
∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρ(ω)ρ(λ)

+ 1

μ

∫ ∞

0

dω

ω
e−ωz(eμ γ (ω) + eμ γ (ω)). (21)

If Eqs. (20) were solved exactly, we would have γ (ω) =
γ (ω) and ρ(ω) = ρ(ω). The same also would hold in the case
of the effective medium approximation, which amounts to
taking the ansatz ρ(ω) = ρ(ω) = e−σ ω, so apparently the set
(20) does not bring any advantage over (15). However, relaxing
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the condition ρ(ω) = ρ(ω) we can get an improvement in an
approximate solution. Indeed, we can take the ansatz

ρ(ω) = e−σ ω (22)

as in EMA but allow ρ(ω) to adjust itself freely so that F1 is
stationary. In this way we introduce an error, because ρ(ω) 
=
ρ(ω) and γ (ω) 
= γ (ω), but we gain a better approximation for
the density of states.

After some algebra, we get the following equation for the
quantity τ = z σ :

z2 = μ + τ + e−μ

∞∑
l=1

μl

(l − 1)!

l

τ − l
. (23)

The fact that the equation depends on z2 means that the
spectrum is symmetric with respect to the point z = 0. For
a general z on the real axis, Eq. (23) can be easily solved
numerically. We find that there are at most two roots with
nonzero imaginary parts (complex conjugate to each other).
Those values of z for which all solutions are real correspond
to gaps in the spectrum. The general picture is that there is
a very narrow gap around z = 0, separating two halves of a
wide band, containing most of the eigenvalues. We can call
this band (not quite precisely) the “bulk” of the density of
states.

In the middle of the bulk, there is a δ-function contribution
just at z = 0, whose weight can be found exactly and is equal
to e−μ. On both sides of the bulk, there are a series of small
side bands separated by gaps. The density of states therefore
has the form

D(z) = e−μδ(z) + Dc(z), (24)

where Dc(z) is a continuous function. The interpretation of the
δ-function is straightforward. It corresponds to single isolated
vertices, whose fraction is just equal to e−μ, and they all
contribute with the same eigenvalue 0.

Some analytical information on the continuous part Dc(z)
can be found from an approximate solution of Eq. (23). For
e−μ � 1 we can find approximately the edge of the gap around
z = 0. We get

Dc(z) � 1

2π z

√
4ψ(μ) z2 − e−2μ, (25)

where we denote

ψ(μ) = e−μ

∞∑
l=1

μl

l! l
= μe−μ

2F2(1,1; 2,2; μ). (26)

We can see that the gap edge is at z0 = 1
2e−μ/

√
ψ(μ).

For the tails, we can calculate analytically the side bands
in an approximation that becomes exact for |z| → ∞. The
computation goes as follows. Each of the side bands can be
identified with one term in the infinite sum over l in (23). The
tails of the spectrum corresponding to large |z| are identified
with large l. In the crudest approximation, the solution is τ � l.
Therefore, we introduce a new variable η by τ = l + η. So (23)

assumes the form

z2 = μ + l + η + e−μ μl

(l − 1)!

l

η

+ e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

l − l′ − η
. (27)

For large l we can expand the infinite series in powers of η and
keep only the lowest terms, so

z2 = μ + l(μ) + l + [1 − �l(μ)] η

+ e−μ μl

(l − 1)!

l

η
+ O(η2), (28)

where

l(μ) = e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

l − l′
,

(29)

�l(μ) = e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

(l − l′)2
.

So, for each l large enough, we have two “bubbles” of
a nonzero density of states. The two bubbles are symmetric
to each other with respect to the origin. The “bubbles” are
separated by gaps, so each “bubble” has well-defined lower
and upper edges, zl− and zl+, respectively. For large l the
approximate form of the “bubble” is given by the solution of
a quadratic equation in η, so

Dl(z)

� |z|
π

{
[1 − �l(μ)]

e−μ l μl

(l − 1)!
−

[
z2 − μ − l − l(μ)

2

]2}1/2

×
{

e−μ l μl

(l − 1)!
+ (z2 − μ− l)l + [1 − �l(μ)](l)2

}−1

. (30)

The width of the bubble zl+ − zl− approaches zero for
l → ∞. This justifies considering η as a small parameter in
the expansion (28). For large l the “bubbles” have a semicircle
shape, and their weight is

Wl =
∫ zl+

zl−
Dl(z) dz � 1

2
e−μ μl

l!
. (31)

We recognize the Poisson distribution with mean μ. This
reflects the Poisson distribution of degrees of the random
graph. The factor 1/2 stems from the fact that we have two
bubbles for each l. The center of the bubble corresponding to
l is at zl = √

l + μ + l(μ); thus the distance between two
successive bubbles is zl � (4zl)−1/2. Hence we deduce the
approximate density of states in the tails, for |z| → ∞:

Dtail(z) � e−μ |z| μz2

�(z2 − 1)
� e−μ

√
2π

(
eμ

z2

)z2

. (32)

This is the shape of the Lifschitz tail, which was already
obtained by Refs. [12] and [20].

To assess the quality of the approximations used, we
compare the results arising from EMA [Eq. (18)], from the
single-defect [20,33], and single-shell [Eq. (23)] approxima-
tions with an average density of states obtained by numerical
diagonalization of sample matrices. In Fig. 1 we can see the
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z
0.110−2

0.25

0.2

0.15

z

D
(z

)

420−2−4

0.3

0.2

0.1

0

FIG. 1. (Color online) Density of states for the adjacency matrix
of an Erdős-Rényi graph, with average degree μ = 3. The solid line
shows the result of the numerical diagonalization of a matrix of size
N = 1000, averaged over 75 000 random realizations. The dotted line
is the result of an effective medium approximation, the dot-dashed
line is the single-defect approximation, and the dashed line is the
single-shell approximation. In the inset, a detail of the density of
states around the center of the band is plotted in semilogarithmic
scale.

spectrum for μ = 3 and matrices of size N = 1000 averaged
over 75 000 realizations. We can clearly identify the delta
peaks, as well as the complicated shape of the continuous
part of the spectrum near the center of the bulk. Interestingly,
both EMA and the single-shell approximations are very good
if we are neither close to the center nor at the tails of the
spectrum. Close to the center, the shape of the density of
states is rather complex, as shown in the inset in Fig. 1.
There is a shallow depression, followed by a divergence at
z = 0. The form of the singularity at z = 0 seems to be
close to a logarithmic divergence, although the data do not
provide decisive evidence. None of the three approximations
reproduce this singularity. EMA and SDA are constant around
z = 0, while the single-shell approximation exaggerates the
depression around z = 0 to such an extent that a spurious gap is
created. This is an artifact of the approximation. However, the
delta peak at the origin is, correctly, present in the single-shell
approximation.

A similar comparison also was done at the tail of the density
of states. We can see in Fig. 2 a detail of the same data as shown
in Fig. 1. Note that, for any finite N , the density of states is not
mirror symmetric with respect to the line z = 0, because the
average value of the off-diagonal elements of the matrix L is
strictly positive. Only in the limit N → ∞ does the spectrum
become symmetric. The single largest eigenvalue is split off
the rest of the spectrum [53], and the small bump in the positive
tail corresponds to this effect. In the limit N → ∞ this bump
would vanish, as the weight of the single largest eigenvalue
becomes negligible compared to the rest of the spectrum.

As shown in Fig. 2, we can see that the single-shell
approximation is superior to both EMA and SDA in the
tail region, from two aspects. First, the spurious band edge
of EMA and SDA is shifted toward larger |z|, so that the
interval in which D(z) is well reproduced is wider. Second,
the single-shell approximation also displays nonzero density
of states in some regions of the Lifschitz tails, although, instead
of exhibiting a smooth behavior everywhere, the density of
states is concentrated in “bubbles.” The gaps separating the
“bubbles” are again artifacts of the approximation, to the

z

D
(z

)

−3.6−3.8−4−4.2−4.4

10−2

10−3

10−4

10−5

FIG. 2. (Color online) The detail of the left tail of the den-
sity of states shown in Fig. 1. The solid line shows the re-
sult of numerical diagonalization, the dotted line is the result
of effective medium approximation, the dot-dashed line is the
single-defect approximation, and the dashed line is the single-shell
approximation.

same extent as the sharp band edge is an artifact of EMA and
SDA. On the other hand, it is an important improvement over
SDA [20]. The delta peaks of SDA are widened into continuous
bands in our approach. In fact, this is to be expected, because
the single-shell approximation can be rightly interpreted as
a self-consistent version of SDA. Therefore, it should be
better than SDA in principle, although this a priori judgment
may turn out to be incorrect in practice, as the single-shell
approximation is better than SDA sometimes (in the tail) but
worse elsewhere (around z = 0).

Finally, let us note that similar “bubbles” at the tails were
also seen in approximations derived using the replica method
by Ref. [21] for the Laplacian of a random graph and by
Ref. [25] for sparse covariance matrices.

IV. COVARIANCE MATRICES

Another application of the method presented here is
investigation of sparse covariance matrices. They can be
considered as arising from a bipartite graph where edges
connect vertices from the set A with vertices from the set
B. We denote the size of the sets NA and NB , respectively.
In the thermodynamic limit, NA → ∞, NB → ∞, we fix
the ratio α = NA/NB constant. In the bipartite analog of
an Erdős-Rényi random graph, the degrees of vertices in A

and B follow Poisson distributions with average degree μA

and μB , respectively, where μB/μA = α. The problem has a
long history, starting with the work of Marčenko and Pastur
[54], and was investigated recently by the replica method in
Ref. [25].

The adjacency matrix of the bipartite graph has the form

L =
(

0 MT

M 0

)
, (33)

where the first block of indices corresponds to set A, and
the second block to set B. We define the contraction, or
covariance, matrix CA = MT M , which acts solely in the
set A (and similarly CB = MMT , which acts solely in the
set B). The spectra of the matrices L, CA, and CB are
closely related. We define DA(z) = limε→0+ Im

∑
i∈A[(z −

iε − L)−1]ii/(NA π ) as the partial density of states of L
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restricted to the set A and DCA(z) = limε→0+ Im
∑

i∈A[(z −
iε − CA)−1]ii/(NA π ) as the density of states of the correlation
matrix CA. It can be easily shown that

DCA(z) = 1√
z
DA(

√
z). (34)

This relation remains in force also after averaging over the
randomness in the matrix M . Therefore, to calculate the
average density of states of the covariance matrix CA it is
enough to investigate the matrix element 〈[(z − L)−1]ii〉 for
any i ∈ A. To this end, we define the generating functions

γA = 〈e−ω[(z−L)−1]ii 〉 − 1 for i ∈ A,
(35)

γB = 〈e−ω[(z−L)−1]jj 〉 − 1 for j ∈ B.

The further procedure follows closely that of the previous
section. Finally, we get a set of four coupled equations,
very similar to the set we encountered in the single-shell
approximation:

γA(ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρB(λ),

ρB(ω) = e−ωz+μA γB (ω),
(36)

γB(ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρA(λ),

ρA(ω) = e−ωz+μB γA(ω).

We can easily check that the solution of these equations makes
the following functional stationary:

FAB[γA,ρA,γB,ρB]

= −
∫ ∞

0

dω

ω
[γA(ω)ρA(ω) + γB(ω)ρB(ω)]

+
∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρA(ω)ρB(λ)

+
∫ ∞

0

dω

ω
e−ωz

(
1

μA

eμA γB (ω) + 1

μB

eμB γA(ω)

)
. (37)

For an approximate solution of Eqs. (36) we use again a
variational ansatz. In analogy with EMA, we assume the
following form:

ρA(ω) = e−σA ω,
(38)

ρB(ω) = e−σB ω.

The insertion of (38) in (37) produces finally two uncoupled
cubic equations for σA and σB . The equation relevant for us is

z σ 3
B + [(1 − α)μA + α − 1 − z2] σ 2

B

+ (μA α + 1 − 2α) z σB + z2 α = 0, (39)

where we used α = μB/μA. The average density of states
for the covariance matrix CA is found considering the first
equation of (36) and the relation (34); thus

DCA(z) = 1

π
√

z
lim

ε→0+
Im

1

σB(
√

z − iε)
. (40)

ζ

D
C
A
(ζ

)

3.532.521.510.50

1

0.8

0.6

0.4

0.2

0

FIG. 3. (Color online) Density of states for the correlation matrix
based on a sparse adjacency matrix, for α = 0.3. The average degree
is μA = 3 (dash-dotted line), 5 (dotted line), and 50 (dashed line). The
full line is the Marčenko-Pastur density (41), i.e., the limit μA → ∞.

The solution can be obtained analytically, but we shall not
show the formula here. However, we can check that in the
limit μA → ∞ with α and ζ = z/μA fixed we get

DCA(ζ ) = 1

2πα ζ

√
[(1 + √

α)2 − ζ ][ζ − (1 − √
α)2], (41)

which is the Marčenko-Pastur (MP) density of states [54].
In Fig. 3 we show the density of states as function of ζ =

z/μA for several values of μA, as found by the solution of (39).
We can see that the approach to MP density is rather slow. We
found that the difference can be considered small only at about
μA � 50.

V. CONCLUSIONS

We considered a random graph of large size N → ∞
of two types: first, a “classical” Erdős-Rényi graph, and,
second, a random bipartite graph. We calculated the density
of eigenvalues for adjacency matrices of these graphs. In the
case of the bipartite graph, the final result was the density of
states of the covariance matrix, defined by a contraction of the
adjacency matrix.

Our contribution to the problem of spectra of sparse random
matrices consists of showing that the cavity approach, i.e.,
approximation of the random graph by a random tree, is exactly
equivalent to the calculation by the replica method in the
thermodynamic limit. Furthermore, we demonstrated how the
cavity calculation can be formulated as a variational problem,
similar to but substantially simpler than the variational formu-
lation arising from the replica method. At minimum, we do not
need to consider the possibility of replica-breaking solutions,
which are known to exist and contribute to the finite-size
corrections [47]. We can interpret it also in the following
manner. Since we are working directly with an infinite-size
system, N = ∞, the physics behind the replica-breaking states
has no effect.

The variational formulation introduced here is a very
practical starting point for approximations. The exponential
ansatz leads to results identical to the effective-medium
approximation studied earlier [20]. However, using our varia-
tional scheme, the approximation can be easily improved by
what we call a “single-shell approximation.” It produces the
Lifschitz tail in the density of states in the form of a series of
“bubbles.” We are able to calculate the weight and distance of
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the bubbles. Hence we arrive at average density of states in the
tail, which is identical to the result of Rodgers and Bray [12].
Furthermore, we applied the method also to the spectra of
sparse covariance matrices, where we easily derived a formula
generalizing the Marčenko-Pastur density of states.

The variational formulation introduced here can be used not
only as a generator of approximations, but also as a basis of
numerical methods. Indeed, there is no principal obstacle for
numerical extremalization of the functional of two variables.
This contrasts with the variational methods based on the
replica trick, where the replica limit n → 0, involving analytic
continuation, must be done after extremalization, which makes
the method numerically unfeasible.

We believe that the method can also be applied for other
types of random graphs. We must, however, admit a serious
limitation of our method, which is the Poisson distribution
of degrees of the graph. Therefore, it is, for example,
not applicable directly for graphs with a power-law degree
distribution. We believe that the roots of this limitation lie
quite deep. For example, to the best of our knowledge, there
is no replica calculation available for random graphs defined

by their degree sequence only. On the other hand, there are no
results from the cavity method for those random graphs with a
power-law degree distribution, for which replica calculations
do exist, like those of Ref. [23]. The point is, that for a
Erdős-Rényi graph, it is well established that the local topology
is isomorphic to a random tree. For a graph with a general
degree sequence, not obeying Poisson statistics, this may or
may not be true. The question of equivalence or not of the
replica and cavity methods is intimately related to the question
of local isomorphism to a tree, which is rather complex and
not solved in general. Hence, a successful treatment of such
cases by both the replica and cavity methods in parallel would
require, very probably, completely novel ideas.
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