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Critical dynamics of nonconserved N-vector models with anisotropic nonequilibrium perturbations
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We study dynamic field theories for nonconserving N -vector models that are subject to spatial-anisotropic
bias perturbations. We first investigate the conditions under which these field theories can have a single length
scale. When N = 2 or N � 4, it turns out that there are no such field theories and, hence, the corresponding
models are pushed by the bias into the Ising class. We further construct nontrivial field theories for the N = 3
case with certain bias perturbations and analyze the renormalization-group flow equations. We find that the
three-component systems can exhibit rich critical behavior belonging to two different universality classes.
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I. INTRODUCTION

Classification of the universality exhibited by systems with
macroscopic degrees of freedom, both at and away from
equilibrium, is one of the main objectives that has been pursued
in statistical physics ever since the advent of scaling theory
and renormalization-group (RG) framework. The universality
classes of nonequilibrium systems are far less understood,
unlike those at equilibrium, in spite of having identified many
nonequilibrium classes such as the absorbing phase transitions
[1], growing surfaces [2], self-organized criticality [3], driven
diffusive systems [4], and so on.

Constructing classes of infrared-stable field theories by
taking a scaling limit of microscopic models is a formidable
task, even at equilibrium. Hence, probing known field theories
by various perturbations and following the induced instabili-
ties, if any, is an alternative that can provide invaluable insights
toward any classification.

Near-equilibrium critical dynamics is extensively studied
and effectively captured by time-dependent Landau-Ginzburg
(LG) models as categorized by Hohenberg and Halperin [5].
Recent studies have explored the effects of nonequilibrium
perturbations on various dynamic universality classes [6–11].
They not only include perturbations about the LG energy
functionals but also genuine nonequilibrium perturbations
about the critical dynamics. The detailed-balance violating
perturbations turn out to be relevant in the conserved systems
[4,8,12]. On the other hand, it is well established that the kinetic
Ising systems of Model-A class (in Hohenberg-Halperin
classification) are stable against local dynamic perturbations,
even if they violate detailed-balance conditions, provided that
the symmetries are preserved [6,13]. Bassler and Schmittmann
(BS) further found that the spatially anisotropic perturbations,
in spite of not respecting the Z2 symmetry, can not destabilize
the dynamic class of nonconserved kinetic Ising models, which
are described by a single-scalar order-parameter field [7]. This
naturally brings forth the issue of whether the irrelevance of
such spatially anisotropic perturbations pervades throughout
Model-A systems or is only restricted to a subset, like those
describable by a scalar order parameter. It was presumed that
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the N -component systems, such as kinetic Ising models, might
also be robust to such perturbations [8,14]. We find that, upon
investigating the role of spatially anistropic perturbations on
N -component Model-A systems, this is not the case.

The structure of this paper is as follows: In Sec. II, we
construct the N -component Model-A system with anisotropic
nonequilibrium perturbations, and then address the possibility
of constructing a field theory with a single characteristic length
scale. We show that, unless N = 3, the system should belong
to the Ising class, which is confirmed numerically for the case
of N = 2. In Sec. III, we analyze N = 3 systems using the
renormalization-group techniques. In Sec. IV, we summarize
the results.

II. PERMUTATION-SYMMETRIC N-VECTOR DYNAMIC
CRITICAL FIELD THEORIES

In this section, we construct nonconserving N -vector
models subject to spatial-anisotropic perturbations and find
the interactions consistent with a single length scale.

We consider the following class of N -vector models driven
by a nonconserved Langevin dynamics:

∂tφa(x,t) = Fa(φ(x,t)) + ηa(x,t), (1)

with

Fa(φ) = (∇2 − r)φa + Eabc

2
φb∂‖φc − Gabcd

3!
φbφcφd, (2)

where the indices a, b, c, and d run from 1 to N , the
summation over repeated indices is assumed, and ηa(x,t)
denotes the Gaussian noise with zero mean and
variance 〈ηa(x,t)ηb(x′,t ′)〉 = 2T δabδ(x − x′)δ(t − t ′). Since
φbφcφd = φdφbφc and so on, we assume that, without any
loss of generality, Gabcd is invariant under all permutations
of {b,c,d} (Gabcd = Gadbc, for example). The couplings Eabc

introduce spatial anisotropy in the x‖ direction. The spatial-
anisotropic perturbations, often referred to as the bias, are
straightforward generalizations of the bias perturbation in the
BS model [7]. Note that the above G and E interaction terms
are the most general marginal perturbations at d = 4.

It should be remarked that, if Fa(φ) is derivable from a
functional S[φ], namely, Fa(φ)(x) = −δS[φ]/δφa(x), then
(under certain conditions) the system exhibits equilibrium
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behavior at large times. Any term that is not derivable
from a functional when included will not allow the system
to equilibrate; hence, it shall be referred to as genuine
nonequilibrium perturbation. Unlike most of the G terms, the
E terms are genuine nonequilibrium perturbations and can lead
the system to a variety of nonequilibrium states.

We now investigate which of the interactions are consistent
with a field theory with a single characteristic length scale in
the long-time limit. We shall find such interactions by first
demanding that the set of equations (1) are invariant under any
permutation of the field components, and then demanding the
existence of a single length scale.

A. Permutation-symmetric interactions

Let P̂ be an operator transforming Langevin equations in
such a way that P̂ ∂tφa ≡ ∂tφPa and

P̂Fa(φ) ≡ (∇2 − r)φPa + 1

2

∑
bc

EabcφPb∂‖φPc

− 1

3!

∑
bcd

GabcdφPbφPcφPd

= (∇2 − r)φPa + 1

2

∑
bc

EaP−1bP−1cφb∂‖φc

− 1

3!

∑
bcd

GaP−1bP−1cP−1dφbφcφd, (3)

where P is a permutation of field components {1, . . . ,N} �→
{P1, . . . ,PN} with P−1 to be its inverse. Since a permutation-
symmetric theory demands that Eq. (1) should be invariant
under P̂ , that is, P̂Fa = FPa , the coupling constants should
satisfy EPabc = EaP−1bP−1c and GPabcd = GaP−1bP−1cP−1d or,
equivalently,

Eabc = EPaPbPc, Gabcd = GPaPbPcPd (4)

for all P’s and a, b, c, and d.
The permutation symmetry in the dynamics will restrict

the number of independent G couplings to seven, which are
denoted as

G1111,G1112,G1122,G1123,G1222,G1223,G1234. (5)

The notation G1111 refers to those couplings Gabcd , where
all the indices b, c, and d are the same as a, and G1112 is
used when one of the indices b, c, and d is different from a,
and so on. Recall that, by construction, Gabcd is assumed to
be invariant under all permutations in {b,c,d}. If any of the
indices of a coupling constant are greater than N , then that
coupling constant is understood to be zero. Likewise, there are
five allowed bias couplings:

E111,E112,E121,E122,E123. (6)

Although the permutation symmetry does not require that
E112 = E121, it does demand that E123 = E132.

Note that if we soften the permutation symmetry to cyclic-
permutation symmetry, then there are a greater number of
allowed coupling constants. We shall later consider dynamic
models with only the cyclic-permutation symmetry.

B. Interactions consistent with a single length scale

In order to identify the couplings that are consistent with a
single length scale (or mass scale), it is convenient to analyze
Eq. (1) in Martin-Siggia-Rose (MSR) formalism [15]. The
MSR action for Eq. (1) is given by

S(φ̃,φ) =
∫

x

[φ̃a(∂tφa − Fa(φ)) − T φ̃aφ̃a]

=
∫

x

[
φ̃a(∂t − ∇2 + r)φa − 1

2
Eabcφ̃aφb∂‖φc

+ 1

3!
Gabcd φ̃aφbφcφd − T φ̃aφ̃a

]
, (7)

where
∫
x

≡ ∫
dtdd x, φ̃a refers to the auxiliary (response) field,

the conventions φa = φa(x,t) and φ̃a = φ̃a(x,t) are used, and
the summation over repeated indices is assumed.

The permutation symmetry in the above-constructed MSR
action (7) with seven G couplings and five E couplings is
only a necessary condition for a single length scale (or mass
scale). However, it is not sufficient since there are other relevant
terms allowed by the symmetry that may get generated during
renormalization, such as φ̃aφ̃b, φ̃aφb, and φ̃a∂

2
‖φb, where a 
=b.

In particular, it is the off-diagonal mass term
∑

a 
=b φ̃aMabφb,
if generated, that will introduce an extra length scale. In fact,
the permutation symmetry will imply that all the diagonal
elements are equal and, similarly, all the off-diagonal elements
are equal. This mass matrix will have two eigenvalues, one
of which is N−1 degenerate. Therefore, the presence of
off-diagonal mass terms in an N -vector model indicates a
crossover of the critical behavior to either that of a scalar
model or to that of a (N−1)-vector model (which itself may
not have a single length scale).

Now the question boils down to which form of the
interactions will avoid the generation of the off-diagonal
mass during renormalization. Before we present more general
symmetry arguments for identifying those interactions, we
shall specify the conditions that are imposed by perturbative
corrections to second order.

At one loop, the E couplings may generate off-diagonal
kinetic terms φ̃a∂

2
‖φb, and the G couplings may generate

off-diagonal mass terms proportional to
∑

c Gabccφ̃aφb. The
off-diagonal mass terms are absent only if the coupling
constants satisfy the trace condition [16]:

∑
c Gabcc = 0 for

a 
= b and N � 2, which, when expressed explicitly, is

G1112 + G1222 + (N − 2)G1223 = 0. (8)

Provided the E couplings have generated nonzero off-diagonal
kinetic terms at one loop, then the two-loop corrections to the
off-diagonal mass are proportional to

∑
c,d Gabcd φ̃aφb. Hence,

for the absence of off-diagonal mass terms, the coupling
constants need to satisfy a further trace condition

2G1122 + 2(N − 2)(G1123 + G1223)

+ (N − 2)(N − 3)G1234 = 0. (9)

Finding further constraints from higher-order correction is
rather cumbersome. Instead, we invoke symmetry arguments
to find the coupling constants that are consistent with a single
length scale. To this end, we define certain parity symmetries
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and then explain how these symmetries can distinguish the
presence or absence of off-diagonal mass. To any finite order,
the effective action will contain terms of the form (ña,na � 0)

N∏
a=1

(φ̃a)ña (φa)na , (10)

suppressing the possible derivatives. If (na + ña) − (nb + ñb)
is even for any pair of a,b, we will define this term
as parity symmetric. If a term is parity symmetric and,
further, n1 + ñ1 is even (odd), this term is said to be even
(odd) parity symmetric. Note that diagonal mass terms are
even parity symmetric and off-diagonal mass terms are not
parity symmetric unless N = 2, in which case they are odd
parity symmetric. Essentially, the diagonal mass terms have
different symmetry from the off-diagonal mass terms. In
the case of N > 2, if the (bare) action contains interaction
terms that are not parity symmetric, then the off-diagonal
mass terms should emerge during renormalization; in the case
N =2, the odd parity symmetric interactions will also generate
off-diagonal mass terms during renormalization.

It is easy to check that, for arbitrary N , the terms associated
with G1111 and G1122 are even parity symmetric, while those
combined with G1123 and G1223 are not parity symmetric. The
couplings G1112 and G1222 generate terms that are not parity
symmetric for N >2, while they generate odd parity symmetric
terms including off-diagonal mass for N = 2. Hence, the
presence of any of the four couplings G1123, G1223, G1112, and
G1222 will generate off-diagonal mass terms, and these terms
should be dropped in order to construct a field theory with a
single length scale. The coupling G1234 is odd parity symmetric
for N = 4, while it will generate terms that are not parity
symmetric for N > 4. Hence, G1234 introduces off-diagonal
mass for any N > 4, but not for N = 4. We shall not pursue
further the N = 4 case because it is not relevant for the effects
of spatial anisotropy,

Similarly, in multicomponent models with bias, the
couplings E111, E112, E121, and E122 are not parity symmetric.
The coupling constant E123 is not parity symmetric for N > 3,
but it becomes odd parity symmetric for N = 3. Since the
off-diagonal mass terms are not parity symmetric for N = 3,
the symmetry embedded in E123 for N = 3 does not allow for
the generation of off-diagonal mass during renormalization.
Hence, E123 is the only coupling constant that does not generate
off-diagonal mass, that too, only when N = 3. We summarize
these results in Table I.

TABLE I. Parity of terms associated with each coupling constant.
N-PS refers to not parity symmetric and E-PS and O-PS refer to even
parity symmetric and odd parity symmetric, respectively.

N N-PS E-PS O-PS

Any N G1123,G1223 G1111,G1122

N = 2 G1112,G1222

N > 2 G1112,G1222

N = 4 G1234

N > 4 G1234

N > 1 E111,E112,,E121,E122

N = 3 E123

N > 3 E123

TABLE II. Allowed multicomponent permutation-symmetric
N -vector field theories with a single length scale.

Components Allowed couplings

N = 3 G1111,G1122,E123

N = 4 G1111,G1122,G1234

N = 2 or N > 4 G1111,G1122

Notice that the off-diagonal mass terms and the off-diagonal
kinetic terms have the same parity symmetry. Therefore, the
coupling constants that do not generate off-diagonal mass will
also not generate off-diagonal kinetic terms, and, hence, the
second trace condition is not applicable. As expected, all the
field theories with a single length scale satisfy the first trace
condition.

To summarize, as shown in Table II, we find that, for N = 2
or N � 4, the only N -vector field theories with a single length
scale are those that do not have any coupling constants other
than G1111 and G1122. In these cases, the bias perturbations
will eventually make the system cross over to the single-scalar
field theory with bias that is studied in Ref. [7]. In the case of
N = 4, the possible single-length-scale theories do not have
any coupling constants other than G1111, G1122, and G1234.
Only in the case of N = 3 is it possible to have a single length-
scale model subjected to bias, where the allowed coupling
constants are G1111, G1122, and E123.

C. Numerical study for N = 2 with bias

In this section, we numerically confirm that an N = 2 model
with bias crosses over to the Ising class.

Consider an O(2)-symmetric model on a two-dimensional
lattice described by the Hamiltonian

H = −
∑
〈n,m〉

�φn · �φm +
∑

n

(
r + 2d

2
φ2

n + u

4

(
φ2

n

)2
)

, (11)

where n is the site index, 〈n,m〉 denotes the sum over
all nearest-neighbor pairs, �φn = (φn,1,φn,2) is a real two-
component vector field, and φ2

n := �φn · �φn. The dynamics of
the field φn,a in the presence of a bias is governed by the
following Langevin equation:

∂

∂t
φn,a = − ∂H

∂φn,a

+ E∂‖
(
φ2

n,a

) + ηn,a(t), (12)

where ηn,a is the white noise with correlation
〈ηn,a(t)ηn′,a′ (t ′)〉 = δnn′δaa′δ(t − t ′) and ∂‖(φ2

n,a) :=
φ2

n+1,a − φ2
n−1,a , where n + 1 and n − 1 refer to the

two nearest neighbors of n along a specified direction. In the
absence of the bias E = 0, the steady state of Eq. (12) is
described by the partition function

Z =
∫ ∞

−∞

(∏
n

2∏
a=1

dφn,a

)
e−2H. (13)

We have taken the two-dimensional square lattice to be of
size L × L with periodic boundary conditions. The values of u

and the bias E are set to unity, i.e., u = E = 1. Equation (12)
is then integrated numerically by employing the Euler method
with �t = 0.0025. The initial condition is taken to be φn,a =
δa,1 for all realizations. The system sizes of L = 26, 27, and 28
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FIG. 1. (Color online) Finite-size scaling collapse using data for
L = 26 (square), 27 (triangle), and 28 (circle). The upper (lower)
straight line, the slope of which is 1

8 (− 7
8 ), indicates the expected

asymptotic behavior of the scaling function up to a multiplication
factor. Inset: Binder cumulants as a function of r for different system
sizes as in the main figure. For comparison, the critical Binder
cumulant for the Ising class is drawn as a straight line.

are considered, and the equilibration time is set to 20 000.
After equilibration, we measured the magnetization �M =∑

n(φn,1,φn,2)/L2 as well as M2 := | �M|2 and M4 := M2
2 at

every five unit times, namely, after every 2000 iterations with
the above-mentioned �t , and then obtained the averages for
all these quantities. The critical point rc is located using the
Binder cumulant

UL = 1 − 〈M4〉
3〈M2〉2

. (14)

The critical exponents β and ν are found from finite-size
scaling by taking the scaling form for

√〈M2〉 to be√
〈M2〉 = L−β/νf [(rc − r)L1/ν]. (15)

The asymptotic behavior of the universal scaling function f is
given by

f (y) →
{
yβ as y → ∞,

(−y)β−ν as y → −∞.
(16)

Numerical results are shown in Fig. 1. The data collapse
with the asymptotic behavior Eq. (16) are in good agreement
with the critical exponents of the two-dimensional Ising
model β = 1

8 and ν = 1 [18]. The critical point is located
at rc = −0.9545 ± 0.0010, as shown in the inset of Fig. 1.
The value of the critical cumulant is also consistent with
that of the Ising model on a square lattice (� 0.6107) [19].
Thus, the model with dynamics [Eq. (12)] clearly shows the
order-disorder phase transition and exhibits critical behavior
unlike its equilibrium counterpart, which can not undergo such
a transition in two dimensions [20].

III. RENORMALIZATION-GROUP ANALYSIS OF N = 3
DYNAMIC FIELD THEORIES WITH

CYCLIC-PERMUTATION SYMMETRY

In Sec. II B, we looked for permutation-symmetric
N -vector field theories with a single length scale. Relaxing
the symmetry to cyclic-permutation symmetry can lead us to
a larger set of such field theories. In this section, we shall

explore the renormalization-group fixed points of this larger
set of dynamic field theories in the case N =3.

By cyclic-permutation symmetry for N = 3, we mean
the invariance of the MSR action under the transformation
CP : 1 → 2 → 3 → 1. Note that CP symmetry distinguishes
G1122 from G1133, and furthermore allows us to include the
term (φa+2∂‖φa+1 − φa+1∂‖φa+2) in Fa(φ). Hence, the MSR
action for the N = 3 dynamic theory with CP symmetry can
be written as

S =
3∑

a=1

∫
x

(
φ̃a[∂t − D(∇2

⊥ + ρ∂2
‖ − r)]φa − T φ̃2

a

+
2∑

i=0

ui

3!
(3 − 2δi0)φ̃aφaφ

2
a+i + epφa+1φa+2∂‖φ̃a

+ emφ̃a(φa+2∂‖φa+1 − φa+1∂‖φa+2)

)
. (17)

Here D and ρ are introduced, anticipating that these coupling
constants flow separately under the RG. The field indices take
modulo-3 integer values, and, hence, φ4 and φ5 mean φ1 and φ2,
respectively. For notational simplicity, we relabel the couplings
as u0 = G1111, u1 = G1122, u2 = G1133, and ep = E123.

If we choose u1 = u2 and em = 0, then the action has full
permutation symmetry, as discussed in Sec. II; for the choice
u1 = u2 = u0/3 and em = ep = 0, it has O(3) symmetry. A
special case, with the choice u1 = u2 and ep = 0, was studied
in Ref. [11].

The free theory action is given by

S0 =
3∑

a=1

∫
q

ϕ̃a(−q)[−iωt + M(q)]ϕa(q), (18)

where the ϕ are the Fourier-transformed fields

φ̃a(x,t) =
∫

q

exp (−iωt + iq · x)ϕ̃a(q), (19)

φa(x,t) =
∫

q

exp (−iωt + iq · x)ϕa(q), (20)

and q stands for the four-momentum (q,ω); the integral
∫
q

:=
(2π )−(d+1)

∫
dwdd q; and

M(q) = D(q2
⊥ + ρq2

‖ + r), (21)

where q‖ (q⊥) denotes the component of q parallel (perpendic-
ular) to the bias direction. The free propagator is calculated as

〈ϕ̃a(q ′)ϕb(q)〉0 = δabδ̄(q + q ′)
−iω + M(q)

≡ G0(q)δabδ̄(q + q ′), (22)

where 〈· · ·〉0 stands for the average over noninteracting theory
(18), and the delta function δ̄(q + q ′) := (2π )d+1δ(ω +
ω′)δ(q + q ′). Graphical representation of the propagator and
the interaction terms of the action (17) are shown in Fig. 2.

The generating functional of the correlation functions is

Z[J,J̃ ] =
∫

Dφ̃ Dφ exp

(
−S +

∫
x

J̃ · φ̃ + J · φ

)
, (23)
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FIG. 2. Building blocks of the diagrammatic perturbations.
(a) The field with (without) a tilde in the frequency-momentum
domain is represented by a line segment with (without) an arrow
head. (b) The propagator G0(q) is drawn using an arrow head in the
middle. The four momentum of the field ϕ̃a (ϕa) is −q (q). (c) Three-,
four-, and two-leg vertices are depicted with their interaction strength.
The a can be any of {1,2,3} and i ∈ {0,1,2}.

where J · φ = ∑
a Jaφa and J̃ · φ̃ = ∑

a J̃aφ̃a . The cumulants
can be calculated by functional derivative of F [J̃ ,J ] =
ln Z[J̃ ,J ] with respect to the sources such that

Gñ,n(q1, . . . ,qñ; p1, . . . ,pn)

=
〈

ñ∏
i=1

ϕ̃ai
(qi)

n∏
k=1

ϕ̃bk
(pk)

〉
c

=
ñ∏

i=1

δ

δj̃ai
(−qi)

n∏
k=1

δ

δjbk
(−pk)

F [j̃ ,j ]

∣∣∣∣∣
j̃=j=0

, (24)

where j̃ and j are the Fourier transformation of J̃ and J ,
respectively, and the multiplication factor (2π )d+1 is assumed
in the functional derivative with respective to j or j̃ . This
convention will also be used in Eq. (26). For convenience, the

field indices are not written explicitly in Gñ,n. The vertex
functions 
m̃,m can be obtained from Gñ,n by a Legendre
transformation


[ψ̃,ψ] = −F +
∫

q

[j̃ (−q) · ψ̃(q) + j (−q) · ψ(q)], (25)

where

ψ̃a(q) = δF

δj̃a(−q)
, ψa(q) = δF

δja(−q)
. (26)

The fields are written in terms of renormalized fields as

φ̃a = Z
1/2
φ̃

φ̃aR, φa = Z
1/2
φ φaR, Z ≡

√
Zφ̃Zφ, (27)

and the parameters in terms of renormalized parameters as

D = ZD

Z
DR, ρ = Zρ

ZD

ρR, r = Zr

ZD

rRμ2,

u0 = Z0

ZZφ

u0R, u1 = Z1

ZZφ

u1R, u2 = Z2

ZZφ

u2R, (28)

T = ZT

Zφ̃

TR, ep = Zp

ZZ
1/2
φ

epR, em = Zm

ZZ
1/2
φ

emR,

where R in the subscripts stands for the renormalized quantities
and μ is an arbitrary momentum scale. Substituting these
parameters in 
[ψ̃,ψ] gives the generator 
R[ψ̃,ψ] of the
renormalized vertex functions:



a1,...,am+m̃

m̃,m ({qi})

=
m̃∏

i=1

δ

δψ̃ai
(−qi)

m̃+m∏
j=m̃+1

δ

δψaj
(−qj )


R[ψ̃,ψ]

∣∣∣∣∣
ψ̃=ψ=0

.

(29)

The renormalization factors are determined by the follow-
ing set of normalization conditions:


11
1,1(0; 0) = rRμ2, 
11

2,0(q = 0) = −2TR, 
1111
1,3 (qi = 0) = u0R, 
1122

1,3 (qi = 0) = u1R, 
1133
1,3 (qi = 0) = u2R,

∂

∂(iω)

11

1,1(−q; q)

∣∣∣∣
q=0

= 1,
∂

∂(q⊥2)

11

1,1(−q; q)

∣∣∣∣
q=0

= DR,
∂

∂(q2
‖ )


11
1,1(−q; q)

∣∣∣∣
q=0

= ρR, (30)

∂

∂(ik‖)

123

1,2

(
−k;

k

2
,
k

2

) ∣∣∣∣
k=0

= epR,
∂

∂(ik‖)

123

1,2

(
0; −k

2
,
k

2

) ∣∣∣∣
k=0

= emR,

where the momentum conservation for each vertex functions has already been taken into account (so no delta functions are
multiplied). Employing the dimensional regularization with minimal subtraction scheme [17] along with the normalization
conditions above, we obtain the renormalization factors to one-loop order (see Appendix for the details) as follows:

Z = 1 + v2
m

4ε
, ZD = 1 + v2

m

6ε
, ZT = 1 − v2

m

2ε
, Zρ = 1 + 3

4ε

(
v2

m − v2
p

)
,

Zr = 1 + 1

2ε

(
g0 + g1 + g2 + 2v2

m

)
, Zp = 1 + 1

8ε

(
7(g1 + g2) − 3v2

m − 2
vm

vp

(g1 − g2)

)
,

Ze = 1 + 1

8ε

(
3v2

m + 2v2
p + 3

vp

vm

(g1 − g2)

)
, Z0 = 1 + 3g0

2ε
+ 3g1g2

εg0
+ 3v2

m

4εg0

(
g1 + g2 − 2v2

m + 2v2
p

)
, (31)
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Z1 = 1 + g2
2

2g1ε
+ v2

m

4g1ε

[
g0 + g1 − 2

(
g2 + v2

m

)] + 1

ε
(g0 + g1 + g2) + vmvp

4g1ε
[g1 + g2 + vm(3vm − vp)],

Z2 = 1 + g2
1

2g2ε
+ v2

m

4g2ε

[
g0 + g2 − 2

(
g1 + v2

m

)] + 1

ε
(g0 + g1 + g2) − vmvp

4g2ε
[g1 + g2 + vm(3vm + vp)],

where ε = 4 − d; and the dimensionless expansion parameters

gi = AdT

D2√ρ
uiμ

−ε, vs =
(

AdT

D3ρ3/2

)1/2

esμ
−ε/2, (32)

where i = 0, 1, or 2, and s is either p or m; and the convenient geometric factor Ad = 2
(3 − d/2)/(4π )d/2, where 
 here is the
Euler gamma function. Furthermore, we obtain the following RG flow equations to one-loop order:

μ
dg0

dμ
= −g0ε + 3

8
g0

(
4g0 + v2

p

) + 3g1g2 + v2
m

8

[
6(g1 + g2) − 11g0 + 12v2

p − 12v2
m

]
, (33)

μ
dg1

dμ
= g1(−ε+g0+g1+g2) + g2

2

2
+ v2

p

8

(
3g1 − 2v2

m

) + vmvp

4

(
g1 + g2 + 3v2

m

) + v2
m

8

(
2g0−9g1−4g2−4v2

m

)
, (34)

μ
dg2

dμ
= g2(−ε+g0+g2+g1) + g2

1

2
+ v2

p

8

(
3g2 − 2v2

m

) − vmvp

4

(
g2 + g1 + 3v2

m

) + v2
m

8

(
2g0−9g2−4g1−4v2

m

)
, (35)

μ
dvp

dμ
= vp

16

[ − 8ε + 14(g1 + g2) − 22v2
m + 9v2

p

] − vm

4
(g1 − g2), (36)

μ
dvm

dμ
= vm

16

( − 8ε + 13v2
p − 10v2

m

) + 3

8
vp(g1 − g2). (37)

We solve for the RG fixed points numerically and find 72
fixed-point solutions. Out of these, 56 solutions are complex
valued and, hence, being unphysical, are discarded, while the
rest of the fixed points are discussed below. We denote a fixed
point as (g∗

0 ,g
∗
1 ,g

∗
2 ,v

∗
p,v∗

m). After identifying the fixed points,
we analyze the linearized flow equations to find their (local)
stability.

There are four equilibrium fixed points for which the bias
couplings vanish, v∗

p = v∗
m = 0, and the other couplings are as

follows:

Gaussian : g∗
0 = g∗

1 = g∗
2 = 0, (38a)

Ising : g∗
0 = 2

3ε, g∗
1 = g∗

2 = 0, (38b)

Cubic : g∗
0 = 4

9ε, g∗
1 = g∗

2 = 2
9ε, (38c)

Heisenberg : g∗
0 = 6

11ε, g∗
1 = g∗

2 = 2
11ε. (38d)

In the absence of spatial-anisotropic perturbations, the
Heisenberg fixed point is stable for ε > 0 (i.e., d < 4),
while the Gaussian fixed point is stable for d > 4. Note
that, even if the system has only the cyclic-permutation
symmetry, the full permutation symmetry is restored
asymptotically.

In addition to those listed in (38), we find the following
fixed points that also respect the full permutation-symmetric
theory (namely, vm = 0 and g1 = g2):

PG : g∗
0 = g∗

1 = 0, E∗
p = 8

9ε, (39a)

PI : g∗
0 = 4

9ε, g∗
1 = 0, E∗

p = 8
9ε, (39b)

PC : g∗
0 = 2

5ε, g∗
1 = 1

5ε, E∗
p = 4

15ε, (39c)

PH : g∗
0 = 6

13ε, g∗
1 = 2

13ε, E∗
p = 16

39ε, (39d)

where Ep ≡ v2
p. The fixed points are so labeled because

of the structural similarity with the corresponding points in
Eq. (38). Here, we do not distinguish between v∗

p and −v∗
p,

since choosing one of them amounts to choosing the bias
direction. More precisely, changing the sign of bias parameters
{vp,vm} → {−vp, − vm} will not take us to a new fixed point
with different critical exponents.

When all the couplings are tuned off except ep, RG flows
only along the line g0 = g1 = g2 = vm = 0. In this case, there
are two fixed points, Gaussian and PG, and the fixed point
PG is stable (unstable) if ε > 0 (ε < 0). To our knowledge,
this fixed point was not known before in the literature. In the
one-component case N = 1, a similar stable fixed point is
found by Hwa and Kardar [21].

For the choice u1 = u2 = em = 0 in Eq. (17), the one-loop
calculations show that there are four fixed points (Gaussian,
Ising, PG, and PI), where PI is the only stable fixed point for
ε > 0. Although the linear stability analysis alludes to the
existence of a universality class in the (g0,Ep) subspace,
the higher-order loop corrections rule out this possibility.
For instance, adding a φ̃1φ

3
1 vertex to Fig. 6(c), with a = 1,

b = c = c2 = c3 = 2, and c1 = 3, generates g1 at two-loop
order, and, hence, the RG flow pushes the system out of the
(g0,Ep) subspace.

Thus, in the space of all perturbations that preserve the
full permutation symmetry (u1 = u2 and em = 0), there are
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eight fixed points, among which only one is stable; PH is
stable for ε > 0 (d < 4), while the Gaussian is stable for ε < 0
(d > 4). Hence, unlike the N =1 case, the bias perturbations
in the N = 3 case are highly relevant and can lead to a new
universality class.

Let us now also include the vm term, which breaks the per-
mutation symmetry to cyclic-permutation symmetry. Suppose
we first restrict to a subspace with the choice vp = 0 and g1 =
g2, then the action (17) is invariant under the transformation
φ1 ↔ φ2 and em → −em, and hence the symmetry constrains
the RG flow to the (g0,g1 = g2,vm) subspace. For ε > 0, the
fixed points are the equilibrium ones with v∗

m = 0. This special
case was studied earlier in Ref. [11], where, in contrast to our
result, a stable fixed point was found. However, in Ref. [11],
it was numerically observed that the system exhibits chaotic
behavior in the noiseless (zero-temperature) limit. We argue
that this numerical observation is more consistent with our
result than the existence of a stable fixed point. The absence
of a stable fixed point signifies that there is no order-disorder
phase transition. Since the system in the infinite-temperature
limit should be fully disordered and in the zero-temperature
limit, the behavior is also chaotic, there is no ordered
phase in the system (assuming there is, at most, one transition).
We thus expect that there is no phase transition, or in other
words, no stable fixed point, as confirmed by our analysis.

If we do not restrict the study to the (g0,g1 = g2,vm)
subspace and instead explore the space of all coupling
constants, we then obtain the following fixed point:

g∗
0 = 1.49763ε, g∗

1 = −1.86313ε, g∗
2 = 1.12359ε,

(40)
v∗

p = 2.02811
√

ε, v∗
m = 1.06466

√
ε,

which is unstable, and also find three other unstable fixed
points. The other unstable fixed points can be obtained from the
above by taking {v∗

p,v∗
m} → {−v∗

p, − v∗
m} and {g∗

1 ,g
∗
2 ,v

∗
p} →

{g∗
2 ,g

∗
1 , − v∗

p} or {g∗
1 ,g

∗
2 ,v

∗
m} → {g∗

2 ,g
∗
1 , − v∗

m}. Note that the
flow equations are invariant under these transformations.

The fixed-point analysis tells us that the presence of the em

term will destabilize the N = 3 field theories.

IV. SUMMARY

To sum up, we have studied the effect of spatially
anisotropic perturbations on nonconserved N -vector models.

We first constructed spatially anisotropic N -vector models
that obey Langevin dynamics, and contain the most general
marginal interactions at d = 4. If the dynamics is invariant
under all the permutations of the field components, then the
number of coupling constants can be at most 12 (7 φ4-type
G couplings and 5 bias E couplings). We then argued that
single-length-scale field theories with bias are possible only
for N = 1 or certain N = 3 models. The N = 1 (BS) theory
has been studied earlier [7], where the bias was found to
be marginally irrelevant. For N = 2 or N > 3, we see that
the bias generates off-diagonal mass terms and rules out the
possibility of Langevin field theories with a single length scale.
Hence, the N = 2 models and the generic N > 3 models,
when subjected to bias, should behave like the BS model [7]
in the large-distance limit. We also confirmed this by analyzing
numerically an N = 2 model with bias.

For N = 3 field theories with a single length scale, the full
permutation symmetry allows only one kind of bias coupling
(labeled ep), while the cyclic-permutation symmetry allows
another additional coupling (labeled em). We followed the
renormalization-group flows, up to one-loop order, for the
N = 3 systems that are invariant under cyclic permutations of
the field components. In this case, the coupling-constant space
is five dimensional, with three φ4-type couplings (u0,u1,u2)
and two bias couplings (ep and em); see Eq. (17). We find that,
in the presence of em perturbations, no stable fixed point exists.

Once the em term is thrown away (and u1 = u2 is set), the
system becomes permutation symmetric and has eight fixed
points as given in Eqs. (38) and (39). Only two of the fixed
points are stable: the fixed point PH [see Eq. (39d)] is stable
for ε > 0 (d < 4), while the Gaussian fixed point is stable
for ε < 0 (d > 4). Hence, we find a new universality class
governed by the fixed point PH for N = 3 systems with a
spatial-anisotropic bias.

We also find another universality class when all the coupling
constants except ep are tuned off. In this case, the RG flow does
not generate other couplings and leads to a nontrivial stable
fixed point, denoted PG [see Eq. (39a)].

In general, nonconserved N -vector models are sensitive
to spatial-anisotropic perturbations, and the large-distance
properties are governed by the kinetic Ising class, except for
N = 3. In the case of N = 3, we found two universality classes
governed by PG and PH.
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APPENDIX: ONE-LOOP CALCULATIONS

1. Integrals in dimensional regularization

The list of integrals required for dimensional regularization
[17] are ∫

dd p
(2π )d

( p2
⊥ + ρp2

‖ + r)−2 = Adr
−ε/2

ερ1/2
, (A1)∫

dd p
(2π )d

p2
‖( p2

⊥ + ρp2
‖ + r)−3 = Adr

−ε/2

4ερ3/2
, (A2)∫

dd p
(2π )d

p4
‖( p2

⊥ + ρp2
‖ + r)−4 = Adr

−ε/2

8ερ5/2
, (A3)∫

dd p
(2π )d

p2
2p

2
‖( p2

⊥ + ρp2
‖ + r)−4 = Adr

−ε/2

24ερ3/2
, (A4)

where p2 in the last equation (A4) stands for one of the per-
pendicular components of p and Ad ≡ 2
(3 − d/2)/(4π )d/2

is a geometric factor.
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2. Diagrammatics

Let Vi denote the number of i-legged vertices (see. Fig. 2)
in the loop expansion for 
m̃,m, and let V = V2 + V3 + V4

denote the total number of vertices in a diagram. Since the
number of ϕ fields in the internal integration should be equal
to that of ϕ̃, the number of internal lines I is given by

I ≡ 2V2 + V3 + V4 − m̃ = 2V3 + 3V4 − m. (A5)

If there are L number of loops, then the relation I − V =
L − 1 should hold, and it therefore follows that

V2 = m̃ + L − 1, V3 + 2V4 = m + m̃ + 2(L − 1), (A6)

which, in the case of one-loop calculations, reduce to

V2 = m̃, V3 + 2V4 = m + m̃. (A7)

For notational convenience, we define the following func-
tion that is associated to momentum-dependent 3-legged
vertices:

λ(q1,q2,q3) = iepq1‖ + iem(q2‖ − q3‖), (A8)

and the correlation function

C0(p) = G0(p)G0(−p). (A9)

3. �aa
1,1(−q; q)

The solutions of Eq. (A7) for m̃ = m = 1 are (a) V3 = 0
and V4 = 1 and (b) V3 = 2 and V4 = 0. The corresponding
one-particle irreducible (1PI) diagrams are illustrated in Fig. 3.
Note that none of the diagrams in Fig. 3 can generate off-
diagonal mass terms, as expected from our general arguments.
The loop integrals for Fig. 3 are

(a) = T (u + u1 + u2)
∫

p

C0(p) = −Dr
u + u1 + u2

2
Bε, (A10)

(b) = −2T

∫
p

G0(p − q)C0(p)[λ(q,p − q, − p)λ(−p + q,p, − q) + λ(q, − p,p − q)λ(−p + q, − q,p)]

= −
(

iωe2
m + Dq2

⊥
e2
m

6
+ Dρq2

‖
3

4

(
e2
m − e2

p

) + Dre2
m

)
Cε + · · · , (A11)

where

Bε = AdT

D2√ρε
r−ε/2, Cε = AdT

D3ρ3/2ε
r−ε/2, (A12)

and the ellipsis contains the finite parts that shall be dropped
in the minimal-subtraction (MS) scheme that we adopt.
In the remainder, the integrals are evaluated in the MS
scheme.

4. �11
2,0(−q,q)

There are two solutions for Eq. (A7) with m = 0 and m̃ = 2:
{V3 = 2, V4 = 0} and {V3 = 0, V4 = 1}. However, the latter
solution does not yield any 1PI diagram. Hence, there is only

aa

aa

bb

−q

−q

q

q

p− q

−p

−pp

a± 1

a∓ 1

(a) (b)

FIG. 3. One-loop diagrams for 
aa
1,1(−q; q). The internal momen-

tum which should be integrated out is denoted by p. The value of b

can be 1, 2, or 3.

one diagram that is depicted in Fig. 4. The one-loop correction
to 
11

2,0(−q,q) is

−4T 2
∫

p

C0(p)2|λ(0,p, − p)|2 = −T e2
mCε. (A13)

5. �123
1,2 (q1; q2,q3)

When m̃ = 1 and m = 2, there are two solutions for
Eq. (A7): {V3 = 1, V4 = 1} or {V3 = 3, V4 = 0}. For each
set of solutions, two different 1PI diagrams can be drawn.
For V2 = V3 = V4 = 1, the diagrams are given in Figs. 5(a)
and 5(b), while the diagrams for the other solution are given
in Figs. 5(c) and 5(d). We now calculate these diagrams one
by one.

For Fig. 5(a), depending on the values of {b,c,a1,a2}, four
different combinations are possible: (a1) b = 2 and c = 3, and
either {a1 = 1, a2 = 2} or {a1 = 2, a2 = 1}; and (a2) b = 3
and c = 2, and either {a1 = 1, a2 = 3} or {a1 = 3, a2 = 1}.

1

2

3

FIG. 4. One-loop diagram for 
11
2,0(−q,q).
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Let us define the following operation O, which transforms the
momenta and coupling constants of the diagram:

O = {q2 ↔ q3, u1 ↔ u2, em → −em}. (A14)

Due to the cyclic symmetry, the result for (a2) can be readily
achieved by operating O to (a1). Since

(a1) = −2T u1

∫
p

G0(p − q3)C0(p)[λ(−p + q3, − q3,p)

+ λ(−p + q3,p, − q3)] = −3

4
iepq3‖u1Bε, (A15)

we get

(a) = (a1) + (a2) = −3

4
iepBε(q3‖u1 + q2‖u2). (A16)

For Fig. 5(b), either {a1 = 2, a2 = 3} or {a1 = 3, a2 =
2} should be satisfied. Note that the interaction strength

for ϕ̃2ϕ2ϕ
2
3 is u1 and that for ϕ̃3ϕ3ϕ

2
2 is u2. Hence,

we get

(b) = −2T

∫
p

G0(p + q)C0(p)[u1λ(−q1,p + q1, − p)

+u2λ(−q1, − p,p + q1)]

= −iq1‖[(u1 − u2)em − 2(u1 + u2)ep]
Bε

4
. (A17)

For Figs. 5(c) and 5(d), it is convenient to introduce

Id (p; q1,q2) = C0(p)G0(p − q2)G0(p + q1), (A18)

Ie(p; q2,q3) = C0(p)G0(p − q2)G0(−p − q3). (A19)

It is easy to see that either {b = 2, c = 3} or {b = 3, c = 2}
should be satisfied in Fig. 5(c). Thus,

(c) = 2T

∫
p

Id (p; q1,q3)λ(−q1, − p,p + q1)λ(−p − q1,p − q3, − q2)λ(−p + q3,p, − q3)

+2T

∫
p

Id (p; q1,q2)λ(−q1,p + q1, − p)λ(−p − q1, − q3,p − q2)λ(−p + q2, − q2,p)

= −iepq1‖Cε

e2
m − e2

p

8
+ iemq2‖Cε

(em − ep)2

16
− iemq3‖Cε

(em + ep)2

16
. (A20)

For Fig. 5(d), we get

(d) = 2T

∫
p

Ie(p; q2,q3)λ(−q1, − p − q3,p − q2)λ(−p + q2,p, − q2)λ(p + q3, − q3, − p)

= − iepq1‖Cε

e2
p − e2

m

8
+ iemq2‖

1

16
(em + ep)(5em + 3ep)Cεiemq3‖

1

16
(em − ep)(5em − 3ep)Cε. (A21)

(a) (b)

(c) (d)

b

b

b c

c

c

a1 a1

a2 a2

11
1

1

1

1

2

2

2

3

3

3

FIG. 5. One-loop diagrams for 
123
1,2 (q1; q2,q3). For the external

line with index i, set the momentum to −qi and use the momentum
conservation at each vertex point. (a) If a1 = 1 (a2 = 1), then a2 =
b (a1 = b). Since b can be either 2 or 3, there are four different
diagrams with this form. (b) Either {a1 = 2, a2 = 3} or {a1 = 3, a2 =
2}. (c) Either {b = 2, c = 3} or {b = 3, c = 2}. (d) There is a unique
diagram.

6. �1111
1,3 (q1; q2,q3,q4)

For m̃ = 1 and m = 3, there are three solutions for
Eq. (A7): {V3 = 0, V4 = 2}, {V3 = 2, V4 = 1}, or {V3 =
4, V4 = 0}. There are eight different types of 1PI diagrams
as shown in Fig. 6. Although the basic structure of diagrams
is same for any 
1,3’s, the mathematical expression for 
1111

1,3

is different from 
1122
1,3 (q1; q2,q3,q4). Hence, we evaluate them

separately; 
1111
1,3 is done in this section, while 
1122

1,3 is done in
the next. Note that 
1133

1,3 can be found easily by applying O to

1122

1,3 . As a result of the normalization conditions, we will set
qi = 0 from now on.

The diagrams for 
1111
1,3 in Fig. 6 satisfy the condition b =

c = d = 1. For the diagram in Fig. 6(a), a1 should be equal to
a2, and can take the values 1, 2, or 3. Hence, the contribution
from this diagram is

(a) = −6T
(
u2

0 + 2u1u2
) ∫

p

G0(p)C0(p)

= − 3

2

(
u2

0 + 2u1u2
)
Bε. (A22)
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(a) (b) (c) (d)

(e) (f) (g) (h)
a

a

aa

a

a

a

a
b

b

b

b

bb

bb

c

c

cc

c

c

cc a1

a1

a1

a1

a1

a1 a1

a1

a2

a2

a2

a2

a2 a2

a2 a2

a3
a3

a3a3

a3

a3

a3

a4 a4

1 1

11
1

11

1

FIG. 6. One-loop diagrams for 
1abc
1,3 (q1; q2,q3,q4).

For Figs. 6(b), 6(c), and 6(d), either {a1 = 2, a2 = a3 = 3}
or {a1 = 3, a2 = a3 = 2} should be satisfied. Hence,

(b) = 6T

∫
p

[u2λ(0,p, − p)λ(p,0, − p)

+u1λ(0, − p,p)λ(p, − p,0)]Ie0(p)

= − 3

4
em[(u1 + u2)em + (u2 − u1)ep]Cε, (A23)

(c) = 6T

∫
p

[u2λ(0,p, − p)λ(p,0, − p)

+u1λ(0, − p,p)λ(p, − p,0)]Id0(p) = 1

2
(b),

(A24)

(d) = 6T

∫
p

[u2λ(0,p, − p)λ(−p,p,0)

+u1λ(0, − p,p)λ(−p,0,p)]Id0(p)

= 1

2
(b) − 3

4
(u1 − u2)emepCε, (A25)

where Ie0(p) = Ie(p; 0,0) and Id0(p) = Id (p; 0,0).
For Figs. 6(e) and 6(f), either {a3 = 2,a2 = a1 = 3} or

{a3 = 3, a2 = a1 = 2} should be satisfied. Hence,

(e) = 12T

∫
p

[u2λ(−p,p,0)λ(−p,0,p)

+u1λ(−p,0,p)λ(−p,p,0)]Id0(p)

= 3

8
(u1 + u2)

(
e2
m − e2

p

)
Cε, (A26)

(f) = 6T

∫
p

[u2λ(p,0, − p)λ(−p,0,p)

+u1λ(−p,p,0)λ(p, − p,0)]Ie0(p)

= 3

8

[
2(u2 − u1)emep + (u1 + u2)e2

m

+ (u1 + u2)e2
p

]
Cε. (A27)

For Figs. 6(g) and 6(h), we introduce, for notational
convenience,

If (p) ≡ G0(p)3G0(−p)2, Ig(p) ≡G0(p)4G0(−p). (A28)

The nonvanishing contribution occurs when either {a1 = a4 =
2, a2 = a3 = 3} or {a1 = a4 = 3, a2 = a3 = 2}. Hence, we
obtain

(g) = −12T

∫
p

If (p)λ(−p,p,0)λ(−p,0,p)

[λ(p,0, − p)λ(0,p, − p)

+ λ(p, − p,0)λ(0, − p,p)]

= 9e2
m

(
e2
m − e2

p

)
Dε, (A29)

(h) = −12T

∫
p

Ig(p)λ(−p,p,0)λ(−p,0,p)

×[λ(−p,0,p)λ(0, − p,p)

+ λ(−p,p,0)λ(0,p, − p)] = 1

3
(g), (A30)

where Dε = Cε/(8Dρ).

7. �1122
1,3 (q1; q2,q3,q4)

For Fig. 6(a), the loop integral is always
∫
p

G0(p)C0(p). We
therefore have to decide which interaction terms are involved
in the diagrams. If a = 1 and b = c = 2, then a1 equals to a2

and can take any index. If a = b = 2 and c = 1, then either
{a1 = 1, a2 = 2} or {a1 = 2, a2 = 1} should be satisfied.
Hence,

(a) = −
(

u2
1 + u0u1 + u2u1 + u2

2

2

)
Bε. (A31)

For Figs. 6(b), 6(c), and 6(d), either { a = 1 and b = c = 2 }
or { c = 1 and a = b = 2} is required. If a = 1 and b = c = 2,
then either { a1 = 2, a2 = a3 = 3 } or { a1 = 3, a2 = a3 = 2}
should be satisfied. If c = 1 and b = a = 2, then it follows
that a1 = 3, a2 = 1, and a3 = 2. Hence,

(b) = 2T

∫
p

Ie0(p){u2λ(p, − p,0)[λ(0, − p,p)

+ 2λ(0,p, − p)] + u0λ(0,p, − p)λ(p,0, − p)}
= −1

4
em[(u0 − u2)em + (u0 + u2)ep]Cε, (A32)
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(c) = 2T

∫
p

Id0(p)[u2λ(p, − p,0)λ(0, − p,p)

+ 2u1λ(p, − p,0)λ(0,p, − p)

+u0λ(0,p, − p)λ(p,0, − p)]

= −3

8
em[(u1 + u2)em + (u2 − u1)ep]Cε, (A33)

(d) = 2T

∫
p

Id0(p){u2λ(−p,0,p)[λ(0, − p,p)

+ 2λ(0,p, − p)] + u0λ(0,p, − p)λ(−p,p,0)}

= −1

8
em[(u0 − u2)em − (u0 + u2)ep]Cε. (A34)

For Fig. 6(e), there are three possible cases: {a = 1, b =
c = 2}, {b = 1, a = c = 2}, or {c = 1, a = b = 2}. If a = 1
and b = c = 2, then either {a1 = a2 = 1, a3 = 3} or {a1 =
a2 = 3, a3 = 1} should be satisfied. If c = 1 and b = a = 2,
then it follows that a1 = 2, a2 = 1, and a3 = 3. If b = 1 and
c = a = 2, then it follows that a1 = 1, a2 = 2, and a3 = 3.
Hence, we obtain

(e) = 4T

∫
p

Id0(p){λ(−p,0,p)[u1λ(−p,0,p)

+u2λ(−p,p,0) + u0λ(−p,p,0)]

+u1λ(−p,p,0)2} = 3

8
(u1 + u2)

(
e2
m − e2

p

)
Cε.

(A35)

For Fig. 6(f), out of the three possible cases that appear
in the case 6(e), {a = 1, b = c = 2}, {b = 1, a = c = 2}, and
{c = 1, a = b = 2}, the last two cases are identical, and it is
therefore sufficient to consider only two possibilities. In the
case {a = 1 and b = c = 2}, either {a1 = a2 = 1, a3 = 3} or
{a1 = a2 = 3, a3 = 1} should be satisfied. In the case {c = 1
and b = a = 2}, it follows that a1 = 2, a2 = 1, and a3 = 3.
We thus obtain

(f) = 2T

∫
p

Ie0(p){λ(−p,0,p)[2u1λ(p, − p,0)

+u0λ(p,0, − p)] + λ(p, − p,0)λ(−p,p,0)}
= 1

8

[
2(u0 − u2)emep + (u0 − 2u1 + u2)e2

m

+ (u0 + 2u1 + u2)e2
p

]
Cε. (A36)

Both Figs. 6(g) and 6(h), we have two possibilities: either
{a = a4 = 1, b = c = a1 = 2, a2 = a3 = 3} or {a = b =
a3 = 2, c = a2 = 1, a1 = a4 = 3}. Hence, we obtain

(g) = −4T

∫
p

If (p)λ(−p,p,0)λ(p, − p,0)[λ(0,p, − p)

× λ(−p,p,0) + λ(0, − p,p)λ(−p,0,p)]

= 3e2
m(em − ep)2Dε, (A37)

(h) = −4T

∫
p

Ig(p)λ(−p,p,0)λ(−p,0,p)[λ(0,p, − p)

× λ(−p,p,0) + λ(0, − p,p)λ(−p,0,p)]

= e2
m

(
e2
m − e2

p

)
Dε. (A38)
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