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Thermoacoustic waves along the critical isochore
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Near the liquid-gas critical point, thermal disturbances can generate sounds. We study the acoustic emission
over four decades of reduced temperatures [defined as ε = (T − Tc)/Tc, with Tc the critical temperature] along
the critical isochore, under linear and nonlinear temperature perturbations, respectively. We identify various
thermoacoustic behaviors by numerically solving the governing equations. It is shown that a homogeneous
thermoacoustic-wave pattern dominates in the linear case, largely independent of ε; whereas under the nonlinear
perturbation, variation in ε could lead to severe wavefront deformation. The strong nonlinear effect is found to
be of a transient nature because, in due time, both cases tend to converge in terms of the energy yield of the
adiabatic process.
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I. INTRODUCTION

Thermomechanical interaction is common in compressible
fluids at fixed volume. It is predicted that, if heat is added into
a confined fluid, the warmed boundary layer will expand and
adiabatically compress the rest of the fluid due to the constant
total volume. The compression ultimately leads to nearly
homogeneous increases in pressure and temperature in the
bulk of the fluid. On a shorter time scale, the physical process
can be interpreted by the emergence of thermoacoustic-wave
motion. In other words, the local temperature change due to
the supplied heat can cause transient fluctuations in pressure
and density as well on account of the large compressibility;
these fluctuations emit sounds. The resulting sound waves,
whose propagation is isentropic in nature, then raise the bulk
temperature and pressure gradually as they are transmitted
in the fluid. An extensive body of literature was devoted to
this topic regarding various gases [1–5]. Numerous
experiments in gases at room temperature confirmed that
acoustic waves could actually be generated as a result of
thermal disturbances via this process [6,7]. The effect of
thermoacoustic waves on global thermal relaxation, however,
was found to be of very limited importance in ordinary
gases, in comparison with other mechanisms of heat transport
[2]. Near the gas-liquid critical point (CP), fluid properties
exhibit drastic changes. In particular, both the isothermal com-
pressibility [κT = ρ−1(∂ρ/∂P )T ] and the isobaric thermal-
expansion coefficient [αP = −ρ−1(∂ρ/∂T )P ] diverge, and
the thermal diffusivity (D = λ/ρCP ) goes to zero. The
thermomechanical effect, therefore, becomes physically more
relevant as the CP is neared, to an extent that the dynamics
of thermal equilibration can be fundamentally altered as a
result. The acceleration of thermalization was first noticed
in a microgravity experiment [8], in which the observed
time to complete temperature homogenization in supercritical
SF6 turned out to be, quite remarkably, several orders of
magnitude less than the ideal heat conduction model predicted.
Several groups [9–12] proposed theoretical analyses aimed at
rationalizing this anomalous result. The collective conclusion
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attributed the critical speeding-up to the so-called “piston
effect” (PE), which in essence can be viewed as a special
case of thermoacoustic coupling. In the close vicinity of the
CP, the entropy-based heat transfer matters only inside an
ultrathin thermal boundary layer due to the vanishing thermal
diffusivity. The extreme compressibility, on the other hand,
elevates the thermoacoustic effect to the dominant factor in the
bulk temperature homogenization, which is akin to an adiabatic
heating effect. As the sound quickly reverberates inside the
fluid cell, the temperature change inside the boundary layer can
be shared throughout the fluid in an extremely efficient fashion.
According to Onuki and co-workers [9,10], the physical time
to achieve thermal relaxation close to the CP is represented by
the PE time scale,

tPE = tD

(γ − 1)2 = D−1L2

(γ − 1)2 . (1)

Here, tD = L2/D is the typical diffusion time, with L
the characteristic length of the fluid. Since the denominator
of the above relation, which includes the adiabatic index
γ (namely, the ratio of the specific heats γ = CP /CV ),
shows a much stronger critical divergence than the numerator,
tPE consequently goes to zero on approaching the CP. The
existences of the PE and many of its interesting features have
since been verified experimentally, in different near-critical
fluids [13–19].

As yet, a majority of the research efforts to understand
the PE have been focused on its impact on the long-term
thermodynamic equilibration, with acoustic characters con-
veniently filtered out from the process. For instance, extensive
research has found that density inhomogeneities caused by
rapid thermal equilibration appear to unwind diffusively and
slowly [20,21]. Moreover, the extremely high Rayleigh and
Grashof numbers near the CP have drawn a lot of interest
as well, prompting ample studies on the interaction between
gravity-induced natural convection and the PE [22–28]. By
contrast, less attention has been directed to examining the
acoustic process very close to the CP, which is considered
to be the driving mechanism behind the PE [29–31]. Only
recently did Miura et al. [32] make the first ever experimental
observation of the thermally induced acoustic emission. In this
paper, we intend to illustrate the evolution of thermoacoustic
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waves across a wide range of temperatures on the critical
isochore in the phase diagram, with application of realistic
thermophysical properties. On the acoustic time scale (denoted
by ta = L/c, with c the sound velocity), the thermoacoustic
transients generated by linear and nonlinear temperature
perturbations are investigated numerically. It is shown that
the distance to the CP plays a twofold role in the development
of the acoustic field. In the case of the linear perturbation,
the influence of the thermodynamic properties of the fluid is
mostly confined to regulating the wave strength; whereas in the
nonlinear case, more interesting features related to the degree
of criticality are unveiled of the thermoacoustic process.

In Sec. II, the problem formulation and the numerical
method employed are introduced. Also presented is the
mathematical modeling of the various thermal perturbations of
interest, whose effects on the thermoacoustic-wave generation
are obtained and analyzed for a wide range of reduced
temperatures [defined as ε = (T − Tc)/Tc, with Tc the critical
temperature] in Sec. III. Finally, the paper is summarized in
Sec. IV.

II. PROBLEM UNDER STUDY

A. The governing equations

We use the full hydrodynamic approach to study the
thermoacoustic effect in critical fluids. Mass conservation is
represented by the continuity equation,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

where ρ is the fluid density and v is the velocity vector.
The fluid motion is described by the Navier-Stokes equation

written for a compressible, viscous, and Newtonian fluid,
which reads

∂ (ρv)

∂t
+ ∇ · (P G + ρv ⊗ v − 2ησ ) = 0. (3)

Here P is the pressure, G is the metric tensor, and ⊗ is
the notation for the tensor product. The shear stress tensor
σ (preceded by the shear viscosity η) denotes the effect of
viscous dissipation in the fluid. Note that the bulk viscosity is
omitted here. The robust divergence of the bulk viscosity near
the CP has been shown to give rise to a second physical regime
of the PE [33,34]. On the acoustic time scale, additionally,
we have demonstrated that large viscous stresses within the
boundary layer are responsible for complex reflection patterns
of thermoacoustic waves [35]. The crossover between the
classical PE regime and the viscous regime was predicted to
occur at ε � 2 × 10−4 for a 10-mm cell filled with CO2 [33],
and at ε � 5 × 10−4 for a 1-mm enclosure filled with 3He [34].
The lower bound of the dimensionless temperatures considered
herein, ∼4 × 10−4, falls in a similar vicinity of the CP. We
thus expect minimal impact from the bulk viscosity on the
relaxation process.

The evolution of entropy in the fluid is described, in the
nonconservative form, by

ρT
ds

dt
= λ∇2T + 2ησ : σ , (4)

where s denotes the specific entropy, λ is the thermal
conductivity, and d/dt ≡ ∂/∂t + v · ∇ is the material derivative.

The colon denotes the double tensor contraction. Because of
the extremely high compressibility near the CP, the dependence
of s on pressure needs to be taken into consideration. Hence,
the left-hand side of Eq. (4) is expanded by

ρT
ds

dt
= ρT

[(
∂s

∂T

)
P

dT

dt
+

(
∂s

∂P

)
T

dP

dt

]

= ρCP

dT

dt
− ρ (CP − CV )

κT

αP

dP

dt
. (5)

Substituting Eq. (5) into Eq. (4), we arrive at

ρCv

dT

dt
= λ∇2T + 2ησ : σ − ρ

(
Cp − Cv

)
αP

∇ · v. (6)

It should be noted that the third term on the right-hand side
of Eq. (6) represents an extra adiabatic temperature change
that results from the acoustically driven fluid motion, through
which kinetic energy is transformed into thermal energy.

In deriving Eq. (6), a real-fluid equation of state has been
used,

δP = 1

ρκT

δρ + αP

κT

δT . (7)

The preceding relation is deemed more appropriate in the
neighborhood of the CP than the van der Waals equation of
state since it can provide reliable details of the critical fluid
behavior.

Equations (2), (3), and (6), supplemented by Eq. (7),
constitute the system of governing equations that describe the
momentum and energy transport near the CP across different
physical time scales. Faced with the onerous challenge of
seeking appropriate solutions to these complicated equations,
we resort to a high-order finite-difference method. The numer-
ical scheme is based on the explicit MacCormack method,
onto which a flux-corrected transport (FCT) algorithm is
incorporated to reduce spurious numerical oscillations [36]. In
addition, we adopt a theory proposed by Poinsot and Lele [37]
to improve the accuracy of numerical simulation near bounding
walls.

The results to be presented in Sec. III are obtained with
the use of a fine uniform mesh of �x = 5 × 10−6 m and
a matching time step of �t = 2 × 10−10 s, through which
particularly high spatial and temporal resolution can be
realized. In [31,35], we conducted similar numerical studies
of the sound generation both close to and far from the CP, in
which quantitative comparisons with available experimental
data were made and showed excellent agreement.

B. Modeling of the thermal perturbations

Consider near-critical nitrogen confined in a one-
dimensional (1D) cell (L = 10 mm) that is enclosed by two
solid walls. It should be noted that the use of the critical
parameters of nitrogen is by no means restrictive. To closely
examine the energy conversion involved in the thermoacoustic
process (Sec. III C), we will include partial results obtained
for near-critical CO2 for comparison, from which a general
pattern can be seen.
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TABLE I. Fluid properties for nitrogen with varying ε along the critical isochore.

εa Cv(kJ K−1 kg−1) γ (-) λ(W m−1 K−1) αP (K−1) κT (kPa−1) η(μPa s) c(m s−1)

3.96 × 10−4 1.871 1001.610 0.198 2.826 × 101 1.718 × 10−1 18.773 136.411
3.96 × 10−3 1.693 101.780 0.087 2.556 × 100 1.549 × 10−2 18.800 144.814
3.96 × 10−2 1.154 11.960 0.048 1.799 × 10−1 1.071 × 10−3 19.061 188.794
3.96 × 10−1 0.854 2.524 0.037 1.356 × 10−2 7.941 × 10−5 21.571 318.538
1.58 × 100 0.794 1.660 0.048 3.097 × 10−3 1.906 × 10−5 28.761 527.156

aCritical coordinates of nitrogen: Tc = 126.192 K, ρc = 313.3 kg/m3.

At t = 0, the fluid is at rest and in perfect thermal
equilibrium. The initial conditions are thus given by

T (x,t = 0) = Ti = Tc(1 + ε),P (x,t = 0) = Pi,
(8)

ρ(x,t = 0) = ρi = ρc,u(x,t = 0) = 0,

where x refers to the space variable and u is the 1D fluid
velocity. The subscript c indicates the critical state. In the
present work, to demonstrate the influence of the initial
distance to the CP on the acoustic emission, the simulation
is carried out for a total of 37 different ε values, spanning from
order 10−4 to 1 along the critical isochore. Across such a wide
range of temperatures, the thermophysical parameters vary
considerably (see Table I). For each ε, the fluid is subjected to
two different forms of external thermal disturbances, namely,
the boundary heating and internal source heating. In what
follows, we present their definitions in detail.

1. The internal source heating

As Fig. 1(a) shows, a thin continuous heat source located
at x = L/2 releases its energy at times t > 0. The width of the
source is δ = 25 μm (which is grossly exaggerated in the figure

FIG. 1. (Color online) Schematics of the geometry of the fluid
cells. At t > 0, in (a) a constant heat input of qs is released into the
fluid through a heat source located at x = L/2. The width of the
source, δ = 25 μm, is small compared with the length of the cell, L =
10 mm. Both walls are thermally insulated. In (b) a constant heat flux
of qb is applied at the left boundary, while the right wall is thermally
insulated.

for illustration purposes). Correspondingly, to the right-hand
side of the energy equation (6) should be added a generation
term, in the form of

qs (x,t) = �f (x) H (t) , (9)

where � = 20 W/cm3 is the amplitude of the energy input
per unit volume per unit time and H(t) is the Heaviside
step function. The spatial configuration of the heat source is
described by a dimensionless piecewise equation f(x), which
is defined as

f (x) =
{

1 if (L − δ) /2 � x � (L + δ) /2

0 otherwise.
(10)

Both the left and right walls are impermeable and thermally
insulated at all times, so

∂T

∂x
(x = 0,t) = 0, u(x = 0,t) = 0,

(11)
∂T

∂x
(x = L,t) = 0, u(x = L,t) = 0.

The problem configuration resembles the immersed film
heater used in Miura et al.’s experiment [32]. As a result, the
simulated thermoacoustic waves based on such a setup exhibit
similar features to the experimental observations obtained
therein, as will be seen in Sec. III.

2. The boundary heating

Let us now consider, for times t > 0, a constant heat flux qb =
100 W/m2 imposed on the left end of a 1D slab, whereas the
right boundary stays thermally insulated. The problem setup is
shown in Fig. 1(b). The boundary conditions are summarized
as follows:

−∂T

∂x
(x = 0,t) = qb

λ
, u(x = 0,t) = 0,

(12)
∂T

∂x
(x = L,t) = 0, u(x = L,t) = 0.

Near the CP, particularly large temperature gradients tend
to form within the thin boundary layer where thermal diffusion
is restrained. One thus expects to find approximately

− ∂T

∂x

∣∣∣∣
x=0

� T (x = 0,t) − Tin

χT

, (13)

where χT � (Dt)1/2 denotes the effective thickness of the
thermal boundary layer. On the acoustic time scale, the size
of the thermal boundary layer could be extremely small. For
instance, at ε = 3.96 × 10−4, the layer thickness is calculated
to be only 8.22 × 10−2 μm at t = 20 μs. Note that in most
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circumstances, it is reasonable to assume that the diffusion
layer grows as (Dt)1/2 uniformly over different time scales
[10], but in the viscous regime (corresponding with ε � 1),
the growth of the boundary layer might cease after reaching the
PE time scale [33]. We avoid this region to remove potential
ambiguities.

In the above relation, Tin is the temperature at the edge of the
boundary layer, whose variation in early times is considered
very small compared with the boundary temperature increase,
and consequently can be omitted. Thus, with the assumption
Tin � Ti , Eq. (13) becomes

− ∂T

∂x

∣∣∣∣
x=0

� T (x = 0,t) − Tin

χT

� T (x = 0,t) − Ti

χT

. (14)

Substituting Eq. (14) into the boundary condition (12) and
differentiating with respect to t leads to

∂T

∂t

∣∣∣∣
x=0

= qb

2
√

ρCP λt
, (15)

whose discretized form is employed in our simulation to
evaluate the boundary temperature variation [38].

Since thermal diffusion is predominant inside the boundary
layer, it is instructive to draw an analogy—as far as the
boundary-layer response is concerned—with pure heat con-
duction. It is illustrated in the appendix that the temperature
inside the boundary layer indeed evolves somewhat differently
depending on the disturbances, as is suggested in the various
analytical solutions. We show in the following that the internal
source heating and the boundary heating described above
engender in the fluid inherently different thermal perturba-
tions. As a result, the acoustic emission varies notably between
the two situations.

III. RESULTS AND DISCUSSION

A. Acoustic emission under the internal source heating

Figure 2(a) shows the temperature ramps at the center of
the cell (x = L/2) for different initial reduced temperatures
ε under the internal source heating. The horizontal axis has
been normalized by the acoustic time ta to accommodate the
different thermoacoustic-wave speeds at the different distances
to the CP (which are roughly equal to the speeds of sound c).
Note that, because the setup is spatially symmetrical, hereafter
we redefine ta = L/(2c) in the case of the internal source
heating [see Fig. 1(a)].

As the figure shows, the energy injected at the source
leads to a nearly linear temperature rise with time for all ε

considered. Analogous boundary-layer behavior can be found
in the case of pure diffusion (see the appendix). As thermal
diffusion continues to weaken nearing the CP, the heat input
appears to induce less pronounced temperature variation as
ε decreases. On the other hand, even a small temperature
perturbation, due to the diverging compressibility, can in turn
result in significant local mechanical imbalance. In Fig. 2(b),
we plot the pressure variations at various ε during the same
period of time. In sharp contrast to the linear temperature
increase, the pressure at x = L/2 appears to experience a
quasistep jump. Specifically, the rapid pressurization caused
by the heating is found to quickly stabilize at a level higher than
that in the rest of the fluid, whereby a steady pressure gradient
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FIG. 2. Temporal evolutions of (a) temperature, (b) pressure,
and (c) density at the cell center (x = L/2) under the internal
source heating. Solid curve: ε = 3.96 × 10−4; dashed curve: ε =
3.96 × 10−3; dotted curve: ε = 3.96 × 10−2; dashed-dotted curve:
ε = 3.96 × 10−1; dashed-dotted-dotted curve: ε = 1.58 × 100. The
horizontal axes have been scaled by ta = L/(2c). Notice that the
temperatures rise linearly with time at the source in (a).

across the boundary layer is created at the locus of heating.
Notice that the curves for small ε appear particularly “noisy”
with small-scale oscillations, the reason for which is still
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unclear. One possible explanation is that as the compressibility
grows near the CP, the fluid becomes generally unstable, which
might in turn increase the risk of possible numerical errors.

Shown in Fig. 2(c) are the density variations at x = L/2
resulting from the obvious local pressure buildups [Fig. 2(b)].
Driven by the pressure difference, the fluid starts to flow. As
ε diminishes, the expansion becomes markedly stronger. It
can be observed that the density at the heat source declines
at a growing rate with smaller ε, which is indicative of
the increasing thermomechanical interplay on approaching
the CP. It should also be noted that, for the time duration
considered herein, the heat input seems to have caused mostly
minute deviations from the initial equilibrium. By virtue of
the equation of state (7), as the pressure remains more or
less unchanged [Fig. 2(b)], the temperature-density interaction
that is free of noticeable nonlinear effects [Fig. 2(a) and 2(c)]
suggests that the boundary layer manages to stay within the
critical isochore.

The pressure and density fluctuations [Figs. 2(b) and 2(c)]
are capable of generating thermoacoustic waves. In Fig. 3, we
draw the temperature distributions at t = ta/2 with various ε.
Note that two sound waves of equal strength, traveling in
opposite directions, should be emitted from the source in
accordance with the symmetrical configuration. For the sake of
simplicity, we only show the results in the right half of the fluid
cell. It is apparent from the figure that the thermoacoustic-wave
features dominate at the early stage of the process. The
outstanding temperature gradients located at x/L = 0.75,
which is notably far from the thermal boundary layer, divide
the cell into a wave region and an undisturbed region. From
extremely close to the CP (ε = 3.96 × 10−4) to some distance
off (ε = 1.58 × 100), the thermoacoustic waves all assume the
shape consisting of a precipitous wavefront and a long flat tail,
which complies with the steady pressure surges at the heat
source [Fig. 2(b)].
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FIG. 3. Spatial temperature profiles at t = ta/2 for various initial
reduced temperatures under the internal source heating. Solid curve:
ε = 3.96 × 10−4; dashed curve: ε = 3.96 × 10−3; dotted curve: ε =
3.96 × 10−2; dashed-dotted curve: ε = 3.96 × 10−1; dashed-dotted-
dotted curve: ε = 1.58 × 100. The horizontal axis has been scaled
by L. Homogeneous square waveforms can be clearly observed.
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FIG. 4. Spatial pressure profiles at various times under the inter-
nal source heating, for (a) ε = 3.96 × 10−4 and (b) ε = 1.58 × 100.
Solid curve: t = 0.5ta ; dashed curve: t = 1.0ta ; dotted curve: t =
1.5ta ; dashed-dotted curve: t = 2.0ta ; dashed-dotted-dotted curve:
t = 2.5ta . The horizontal axes have been scaled by L. The arrows
denote the direction of the wave propagation.

The distance to the CP seems to affect only the wave ampli-
tude under the linear temperature perturbation. The subsequent
propagation of the thermoacoustic waves is shown in Fig. 4,
for ε = 3.96 × 10−4 and 1.58 × 100, respectively. With regard
to the relevant acoustic features, the results obtained at the
different initial conditions are almost indistinguishable. The
bulk pressure, as is suggested in the figure, rises bit by bit
through the repeated acoustic transversals between the walls.
It is noteworthy that the results reported here exhibit a strong
resemblance with the experimentally observed thermoacoustic
waves [32], which have been successfully verified analytically
and numerically, notably under the assumption of internal
source heating [30,35].

B. Acoustic emission under the boundary heating

Recall that through the use of Eq. (15) in modeling the
boundary heating, we essentially assign a nonlinear thermal
load at x = 0 that grows as t1/2. In Fig. 5(a) is shown explicitly
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FIG. 5. Temporal evolutions of (a) temperature, (b) pressure, and
(c) density at the left boundary (x = 0) under the boundary heat-
ing. Solid curve: ε = 3.96 × 10−4; dashed curve: ε = 3.96 × 10−3;
dotted curve: ε = 3.96 × 10−2; dashed-dotted curve: ε = 3.96 ×
10−1; dashed-dotted-dotted curve: ε = 1.58 × 100. Here the horizon-
tal axes have been normalized by ta = L/c. In addition, the results
for the temperature variations are presented on a log-log scale. Note
that the boundary temperatures show a growth as t1/2 in (a). Strong
nonlinear effects can be observed in the pressure variations in (b) and
the density variations in (c) in connection with ε.

the t1/2 dependence of the boundary temperature at various
ε on a log-log scale. Note here the typical acoustic time is
ta = L/c.

In Figs. 5(b) and 5(c), we plot the boundary pressure and
density variations, respectively, which stand in stark contrast
with those obtained under the internal heating [Figs. 2(b) and
2(c)] by exhibiting strong nonlinear features associated with ε.
By virtue of Eq. (15), the boundary temperature variation
decelerates considerably with decreasing ε, mostly because
of the strong divergence of the specific heat CP near the CP.
The initial pressure rise thus becomes gradually dampened as ε

diminishes [Fig. 5(b)]. In addition, the rate of the temperature
increase also declines as time elapses, according to Eq. (15).
Consequently, the boundary pressure is unable to sustain a
steady level after the initial increase, as is such with the linear
case [see Fig. 2(b)]. Instead we find that the pressure starts
to drop after peaking, which happens with a growing delay
approaching the CP. It is also suggested in the curves for
ε = 3.96 × 10−1 and 1.58 × 100 that the boundary pressure
could eventually stabilize, apparently at a faster rate with
larger ε, as the slackened temperature increase is finally
being matched by a commensurate slowing down of the
density decrease. As Fig. 5(c) shows, increasingly less flow
is generated at the site of heating further from the CP.

Figure 6 illustrates the thermoacoustic waveforms along the
critical isochore obtained at t = ta/2 under the boundary heat-
ing. Compared with their counterparts with the same ε under
the internal heating (Fig. 3), significant wavefront distortions
stand out. The nonlinearity shown in the boundary pressure
variation is responsible for such prominent differences. For
small ε, the slowly varying pressure at the boundary [Fig. 5(b)]
produces a dull and smooth wave profile; whereas with very
large ε, the transient strong pressure fluctuation [Fig. 5(b)]
generates a steep, even shockwave-like wave shape. As is
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FIG. 6. Spatial temperature profiles at t = ta/2 for various initial
reduced temperatures under the boundary heating. Solid curve:
ε = 3.96 × 10−4; dashed curve: ε = 3.96 × 10−3; dotted curve: ε =
3.96 × 10−2; dashed-dotted curve: ε = 3.96 × 10−1; dashed-dotted-
dotted curve: ε = 1.58 × 100. The horizontal axis has been scaled
by L. The wavefront profiles vary significantly with ε, from a smooth
gradual rise to a short steep fluctuation.
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FIG. 7. Spatial pressure profiles at various times under the
boundary heating, for (a) ε = 3.96 × 10−4 and (b) ε = 1.58 × 100.
Solid curve: t = 0.5ta ; dashed curve: t = 1.0ta ; dotted curve: t =
1.5ta ; dashed-dotted curve: t = 2.0ta ; dashed-dotted-dotted curve:
t = 2.5ta . The horizontal axes have been scaled by L. The large
pressure increases at the boundaries shown in (b) are due to the
reflection of the thermoacoustic wave. Despite the large differences
in waveform between (a) and (b), the fluid pressure is gradually
raised by the sound propagation in both cases. The arrows denote the
direction of the wave propagation.

illustrated in the figure, the wave shape gradually evolves from
the former to the latter as ε increases.

In Fig. 7, we plot the spatial profiles of the fluid pres-
sure at different times, for ε = 3.96 × 10−4 and 1.58 × 100,
respectively. It is shown that, despite the differences in the
wavefront structure, the bulk pressure is increased in a way
that is quite similar to what is depicted in Fig. 4. That is,
the cumulative effect of the thermoacoustic-wave propagation
contributes to the gradual elevation of the average pressure
in the cell. Moreover, following the eventual stabilization
of the boundary pressurization [Fig. 5(b)], the waveform for
ε = 1.58 × 100 shown in Fig. 7(b) quickly turns flat, similar
to that under the linear perturbation [cf. Fig. 4(b)]. It is thus
supposed that the nonlinear effect caused by ε depends for
the most part on the boundary-layer relaxation, which only

lasts as long as the boundary pressure remains unstable. Over
time, its impact on the sound generation might be averaged out.
More evidence in support of such long-time convergence of the
linear and nonlinear responses will be shown in the following
discussion with regard to the energy conversion during the
acoustic emission.

C. Energy yield of the thermoacoustic process

The thermoacoustic waves carry energy, as is indicated
by the temperature and pressure increases caused by the
propagating waves (see Figs. 3, 4, 6, and 7). We can measure
the wave energy by calculating the energy variation in the
bulk [9,32],


Ebulk =
∫

P
δρ

ρ
dx, (16)

which is due almost exclusively to the thermoacoustic effect as
the heat conduction is mainly confined in the boundary layer.

10-3 10-2 10-1 100
-0.1

0.0

0.1

0.2

0.3

0.4

0.5
 t = t

a

 t = 10t
a

 t = 50t
a

 t = 100t
a

 Eq. (17) (nitrogen)

(a)

10-3 10-2 10-1 100
-0.1

0.0

0.1
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0.3

0.4

0.5

 t = t
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 t = 10t
a

 t = 50t
a

 t = 100t
a

 Eq. (17) (CO
2
)

(b)

FIG. 8. Calculated energy efficiency ζ vs reduced temperature ε

at different times under the internal source heating, in (a) nitrogen
and (b) CO2. Square: t = ta ; circle: t = 10ta ; up-pointing triangle:
t = 50ta ; down-pointing triangle: t = 100ta ; dashed curve: Eq. (17).
The results are presented on a semilogarithmic scale. The calculations
are shown to coincide with the theoretical values at all times.
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The integration is performed over 99% of the cell except very
close to the locus of heating [39].

The ratio ζ = Ebulk/Qinput represents the energy efficiency
of the acoustic emission, through which the mechanical energy
is converted from the heat added to the fluid (denoted by Qin).
In the case of the internal source heating, the total heat input
is evaluated as Qinput = ∫

φδdt ; whereas in the case of the
boundary heating, we have Qinput = ∫

qbdt .
According to the linearized theory [9,18,32], when the

boundary layer is sufficiently thin compared to L, the energy
efficiency can be approximated by

ζ �
(

1 − 1

γ

)
P

T

(
∂T

∂P

)
ρ

=
(

1 − 1

γ

)
P

T

κT

αP

. (17)

Close to the CP, the preceding relation is found to tend to a
constant.

Figure 8 illustrates the distributions of ζ along the critical
isochore at different times based on the numerical simulation

under the internal source heating. We plot the results for
nitrogen and CO2, respectively. Also included for comparison
are the theoretical predictions by Eq. (17), shown as dashed
lines. Exceptionally good agreement can be observed between
the simulation and the theory. For both fluids, the results are
found to be nearly invariant with time. However, the overall
trend of variation of ζ with ε deserves some remarks. It seems
from Fig. 8 that the energy efficiency for large ε is ostensibly
higher than that for small ε, particularly in the case of nitrogen
[Fig. 8(a)]. This observation is somewhat contradictory to the
notion that the PE is greatly enhanced approaching the CP.
We attempt an explanation here. For any given time, higher ζ

means that more energy should be transferred to the bulk via
the thermoacoustic process. However, according to Eq. (16), a
less conspicuous disturbance to the fluid variables might result
from such an energy increase due to the fact that pressure
rises significantly with increasing ε along the critical isochore
[Eq. (7)]. Also contributing is the rapidly decreasing sound
velocity near the CP (see Table I). As a result, the propagating
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FIG. 9. (Color online) Calculated energy efficiency ζ vs reduced temperature ε in nitrogen and CO2 under the boundary heating, at
(a) t = ta , (b) t = 10ta , (c) t = 50ta , and (d) t = 100ta . Black circle: calculated ζ in nitrogen; red triangle: calculated ζ in CO2; black solid
curve: Eq. (17) for nitrogen; red dashed curve: Eq. (17) for CO2. The results are presented on a semilogarithmic scale. As time passes, a
convergence between the calculations and the theoretical values appears to grow from the right-hand side to the left-hand side of the figures.
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thermoacoustic wave could have a larger magnitude when
possessing nominally less energy because of the shortened
waveform. The thermoacoustic behavior thus appears more
“detectable” at the CP.

We show in Fig. 9 the time evolutions of ζ in nitrogen
and CO2 under the boundary heating, and their comparison
with Eq. (17), which (according to Fig. 8) amounts to an
indirect comparison between the linear and nonlinear cases.
In early times, as depicted in Fig. 9(a), significant differences
can be found between the predicted energy efficiencies under
the internal heating and boundary heating, which correspond
with the outstanding waveform deformation with varying ε as
shown in Fig. 6. As time goes on, the gaps between the linear
and nonlinear cases are getting smaller and smaller. Ultimately,
at t = 100ta [Fig. 9(d)], it seems that a convergence is almost
reached for both nitrogen and CO2. It is interesting to note that,
as the figure shows, the merging of the curves appears to start
from the points with large ε values and then moves gradually
toward the CP. As we have discussed previously, the nonlinear
features of the thermoacoustic waves are closely related to
the boundary pressure variation. For small ε, it is argued that
it takes a considerably long time for the boundary pressure
to finally stabilize [Fig. 5(b)]. Consequently, alleviating the
differences resulting from the nonlinear effects should require
more time.

In spite of being touted as the fourth mode of heat transfer,
one of the core premises of the PE, paradoxically, is that the
process is strictly adiabatic. Here we define the coefficient ξ

as the ratio of the entropy-based heat transport [Eq. (5)] in the
bulk of the fluid to the total energy input, which reads

ξ =
∫

bulk ρT δsdx

Qin

=
∫

bulk dx
(
ρCP δT − ρ(CP − CV ) κT

αP
δP

)
Qin

. (18)

In Fig. 10, we plot the short-time (t = ta) and long-time
(t = 100ta) calculations of ξ versus ε for nitrogen and CO2,
in the linear and nonlinear cases, respectively. Unsurprisingly,
ξ is found to be near zero consistently, which attests to the
adiabatic nature of the thermoacoustic effect.

Let us end this section by remarking that the use of
Eq. (15) in the modeling of the boundary heating suffers
from some defects. One of the assumptions of Eq. (15) is
that at any given time, the heat input is being completely
absorbed by the boundary layer. In using Eq. (15), in effect we
neglect the contribution of the acoustic emission. As a result,
the boundary temperature could be slightly overestimated.
Besides, the errors derived from omitting the temperature
variation at the edge of the boundary layer, as Eq. (14) implies,
could accrue over time as the bulk temperature is slowly
increased by the thermoacoustic coupling. On the other hand,
still little is known about the thickness of the thermal boundary
layer very close to the CP [40]. The crude generalized
treatment of the growth of the boundary layer as (Dt)1/2 could
introduce some additional uncertainties regarding the results
from the boundary heating. These theoretical shortcomings
might contribute to the imperfect convergence of ζ [Fig. 9(d)]
and the noticeable deviations of ξ near the CP [Fig. 10(b)] at
later stages.
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FIG. 10. (Color online) Calculated coefficient ξ vs reduced
temperature ε, under (a) the internal source heating and (b) the
boundary heating. Black circle: for nitrogen at t = ta ; black triangle:
for nitrogen at t = 100ta ; red cross: for CO2 at t = ta ; red star: for CO2

at t = 100ta . The results are presented on a semilogarithmic scale.
Most of the data spread neatly near zero, despite some deviations
arising for small ε in (b).

IV. CONCLUDING REMARKS

In the present work, we have explored the thermoacoustic-
wave features over several decades of reduced tempera-
tures along the critical isochore by numerically solving
the governing differential equations. Two different types of
thermal perturbations (i.e., the internal source heating and
boundary heating) have been used in the investigation, through
which the fluid is essentially subject to linear and nonlinear
boundary-layer temperature changes, respectively. The sound
generation is found to be markedly different under these two
situations. In the linear case, homogeneous thermoacoustic
waves are induced by the heat input, which vary only in
strength with the distance to the CP. On the other hand,
under the nonlinear temperature disturbance, variation in the
thermophysical properties causes serious distortions to the
wavefront profile in the early stage. In later times, however,
the simulations conducted in nitrogen and CO2 both suggest
that the two cases could gradually converge in terms of the
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energy yield of the thermoacoustic process, with the impact of
the initial nonlinearity being slowly smeared out. The strong
adiabatic nature of the thermoacoustic waves is also explicitly
confirmed in the analysis.

It should be pointed out that the results of the present study
still need further experimental verification. Since the differ-
ences between the boundary heating and the internal source
heating are both delicate in scale and transient in nature, careful
experimental design and accurate measurement are essential
for developing a better understanding of thermoacoustic-wave
motion.
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APPENDIX: SOLUTIONS TO THE HEAT CONDUCTION
PROBLEM UNDER VARIOUS THERMAL DISTURBANCES

In the classical regime of the PE (not too close to the
CP), thermal boundary layers are purely diffusive [33]. We
can gain important insights into the boundary-layer dynamics
by solving the corresponding heat conduction equation with
similar problem configurations. Here we present several
examples with formulations that are of particular interest to
the present work.

A. Internal heating with an infinitesimal source

Consider a semi-infinite medium (0 � x < ∞) is initially at
Ti ; for times t > 0 there is an infinitesimal heat source located
at x = 0 releasing energy at a rate of Qv per unit time per
unit volume. No heat flux is allowed to cross the boundary at
x = 0. Based on the Fourier law, the heat conduction equation
is formulated as

∂T

∂t
= D

∂2T

∂x2
+ Qv

ρCP

δ (x) , (A1)

with the initial condition

T (x,t = 0) = Ti (A2)

and the boundary condition

∂T

∂x
(x = 0,t) = 0. (A3)

Here δ(x) is the unit Dirac delta function. We introduce the
dimensionless excess temperature θ (x,t) = (T − Ti)/Ti , and
the preceding equations become

∂θ

∂t
= D

∂2θ

∂x2
+ �δ (x) , (A4)

θ (x,t = 0) = 0, (A5)
∂θ

∂x
(x = 0,t) = 0, (A6)

with � = Qv/(ρCP Ti). We use Green’s function [41] to solve
Eqs. (A4)–(A6). To determine Green’s function G(x,t |x ′,t ′),

we first need to consider the homogeneous auxiliary problem
defined through

∂φ

∂t
= D

∂2φ

∂x2
, (A7)

φ (x,t = 0) = F (x) , (A8)
∂φ

∂x
(x = 0,t) = 0, (A9)

where F(x) is the arbitrary initial condition function. The
solution is obtained by means of the separation of variables,
which yields

φ (x,t) =
∫ ∞

0

1√
4πDt

[
exp

(
− (x + x ′)2

4Dt

)

+ exp

(
− (x − x ′)2

4Dt

)]
F (x ′)dx ′. (A10)

Based on the Green’s function approach, the general
solution to the problem (A7)–(A9) can be written as

φ(x,t) =
∫ ∞

0
G(x,t |x ′,t ′)|t ′=0F (x ′)dx ′. (A11)

Comparing Eq. (A11) with Eq. (A10), with t replaced by
t−t’, leads to

G(x,t |x ′,t ′) = 1√
4πD(t − t ′)

[
exp

(
− (x + x ′)2

4D(t − t ′)

)

+ exp

(
− (x − x ′)2

4D(t − t ′)

)]
. (A12)

The temperature solution to the original problem (A4)–(A6)
is thus described by

θ (x,t) = �

∫ t

0
dt ′

∫ ∞

0
G(x,t |x ′,t ′)δ(x ′)dx ′

= �

∫ t

0

1√
4πD (t − t ′)

dt ′

×
∫ ∞

0

[
exp

(
− (x + x ′)2

4D(t − t ′)

)

+ exp

(
− (x − x ′)2

4D(t − t ′)

)]
δ(x ′)dx ′

= �

∫ t

0

1√
4πD(t − t ′)

exp

(
− x2

4D(t − t ′)

)
dt ′.

(A13)

Set τ = t−t ′ and the preceding equation becomes

θ (x,t) = �

∫ t

0

1√
4πDτ

exp

(
− x2

4Dτ

)
dτ. (A14)

From Eq. (A14), one finds that the temperature at x = 0,
due to the internal heat generation, increases at a rate

∂θ

∂t

∣∣∣∣
x=0

= �√
4πDt

. (A15)
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B. Internal heating with a finite-size source

Now we replace the infinitesimal source with a finite-size
source, and keep the rest of the configuration unchanged. The
problem can be reformulated as

∂θ

∂t
= D

∂2θ

∂x2
+ �� (x) , (A16)

θ (x,t = 0) = 0, (A17)
∂θ

∂x
(x = 0,t) = 0, (A18)

where instead of the Dirac delta function, the spatial profile of
the source is given as

� (x) =
{

1,

0,

0 � x � 
,

x > 
.
(A19)

In Eq. (A19), 
 is the width of the source. Note that such
a setup is similar to the case of the internal source heating
studied in Sec. III A. Repeating the previously described steps
leads to

θ (x,t) = �

∫ t

0
dt ′

∫ ∞

0
G(x,t |x ′,t ′)�(x ′)dx ′

= �

∫ t

0

1√
4πD(t − t ′)

dt ′

×
∫ 


0

[
exp

(
− (x + x ′)2

4D(t − t ′)

)

+ exp

(
− (x − x ′)2

4D(t − t ′)

)]
dx ′

= �

2

∫ t

0

[
erf

(
x + 
√

4D(t − t ′)

)

− erf

(
x − 
√

4D(t − t ′)

)]
dt ′. (A20)

Again, substituting τ for t−t ′ in the equation yields

θ (x,t) = �

2

∫ t

0

[
erf

(
x + 
√

4Dτ

)
− erf

(
x − 
√

4Dτ

)]
dτ,

(A21)

which, after differentiating with respect to t, becomes

∂θ

∂t
= �

2

[
erf

(
x + 
√

4Dt

)
− erf

(
x − 
√

4Dt

)]
. (A22)

In the limit of t → 0, the time rate of the temperature
increase at x = 0,

∂θ

∂t

∣∣∣∣
x=0

� �, (A23)

is almost constant. In the early stage, the input energy is nearly
completely devoted to heating the fluid at the source, which
results in a linear temperature increase.

C. Surface heating with a constant heat flux

A semi-infinite region (0 � x < ∞) is subject to a constant
heat flux (denoted by QW per unit time per unit area) for t > 0 at

the boundary. The initial temperature is Ti . The mathematical
formulation of the problem is

∂T

∂t
= D

∂2T

∂x2
, (A24)

∂T

∂x
(x = 0,t) = −QW

λ
, (A25)

T (x,t = 0) = Ti. (A26)

Once again, the temperature T is substituted by θ (x,t) =
(T − Ti)/Ti , which leads to

∂θ

∂t
= D

∂2θ

∂x2
, (A27)

∂θ

∂x
(x = 0,t) = −QW

λTi

= −�, (A28)

θ (x,t = 0) = 0. (A29)

We split up the nonhomogeneous problem (θ = ψ + ϕ)
into a steady problem defined as

d2ψ

dx2
= 0, (A30)

dψ

dx
(x = 0) = −�, (A31)

and a homogeneous unsteady problem defined as

∂ϕ

∂t
= D

∂2ϕ

∂x2
, (A32)

∂ϕ

∂x
(x = 0,t) = 0, (A33)

ϕ (x,t = 0) = −ψ (x) . (A34)

It can be easily shown that

ψ = −�x. (A35)

Following the method of separation of variables [41], we
obtain the solution to Eqs. (A32)–(A34),

ϕ (x,t) = �

[√
4Dt

π
exp

(
− x2

4Dt

)
+ x erf

(
x√
4Dt

)]
.

(A36)

Finally, the temperature distribution of the original problem
is found to be

θ (x,t) = �

[√
4Dt

π
exp

(
− x2

4Dt

)
+ x erf

(
x√
4Dt

)
− x

]
.

(A37)

At x = 0, one finds explicitly the temperature variation due
to the boundary heat flux,

θ (x = 0,t) = �

√
4Dt

π
, (A38)

which shows the same time dependence of t1/2 as is prescribed
in the boundary heating case [Eq. (15)].
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From Eqs. (A15), (A23), and (A38), it is evident that small
subtle adjustments to the problem configuration can bring
about different boundary-layer behaviors. In particular, the
internal heat generation from a finite-size source causes the

temperature to increase linearly as t in early times; whereas
the constant boundary heat flux causes the temperature to rise
nonlinearly as t1/2. The results in Figs 2(a) and 5(a) exhibit
similar patterns.
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