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Many physical and chemical processes, such as folding of biopolymers, are best described as dynamics on large
combinatorial energy landscapes. A concise approximate description of the dynamics is obtained by partitioning
the microstates of the landscape into macrostates. Since most landscapes of interest are not tractable analytically,
the probabilities of transitions between macrostates need to be extracted numerically from the microscopic
ones, typically by full enumeration of the state space or approximations using the Arrhenius law. Here, we
propose to approximate transition probabilities by a Markov chain Monte Carlo method. For landscapes of
the number partitioning problem and an RNA switch molecule, we show that the method allows for accurate
probability estimates with significantly reduced computational cost.
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I. INTRODUCTION

Energy landscapes [1–3] are a key concept for the
description of complex physical and biological systems. In
particular, the dynamics of structure formation (folding)
of biopolymers, e.g., protein or ribonucleic acids, can be
understood in terms of their energy landscapes [4,5]. Formally,
a landscape is determined by a set X of microstates (or
conformations), a neighborhood structure of X that encodes
which conformations can be reached from which other ones,
and an energy function E:X → R, which assigns an energy
value to each state. In the case of ribonucleic acids (RNAs),
it has been demonstrated that the dynamics of the folding
process can be captured in good approximation by merging
large contiguous sets of microstates into macrostates [6,7]. A
typical mapping is in terms of gradient basins: Each macrostate
contains the microstates from which a given local minimum
is reached by steepest descent in energy, including the local
minimum itself. The so-defined macrostates also are called
inherent structures in the context of continuous disordered
systems, see Ref. [8] for a recent review.

Given a partitioning of the landscape, the dynamics is
approximately described as a Markov chain on the set of
macrostates. In order to obtain this description, the transition
probabilities between macrostates in this Markov chain need
to be extracted from the original energy landscape.

As a first approximation, the Arrhenius equation predicts
that the transition probability is exponentially suppressed
by the ratio between barrier height and temperature. The
barrier height (also called activation energy) from mini-
mum a to minimum b measures the minimal amount by
which the system’s energy must increase along a path from
a to b [6,9,10]. The accuracy of this approach is limited
because it ignores the multiplicity of low-energy paths [11]. A
more severe drawback is the complexity of computing barrier
height itself. For landscapes of RNA secondary structure [12],
the problem is nondeterministic polynomial hard [13,14].

Commonly used methods [6,15–18] for precise transition
rate estimation are based on enumeration of all microstates.
For landscapes of real combinatorial problems or long

biopolymers with a large number microstates, however,
enumeration is impractical with the given time resources.
Typically, limited storage capacity puts even more severe
restrictions on the size of tractable problems because a
large fraction of the enumerated microstates needs to be
kept in working memory. Some studies partially circumvent
this problem by considering only the low-energy fraction of
the landscape that is tractable with the available resources
[9,19–21]. Other heuristic approaches [22–26] restrict the
landscape to the subset of states likely to be traversed by
certain trajectories, e.g., folding from the open chain to the
ground state of a biopolymer.

Here, we make a contribution to the original challenge
of capturing an arbitrary discrete landscape in terms of
macrostates and transition probabilities. We suggest a Markov
chain Monte Carlo sampling method for transition matrix
estimation. Different from the earlier approaches, the memory
requirement scales linearly with the number of nonzero
transition probabilities to be determined. Other recent methods
of stochastic landscape exploration [27,28] use trajectories
of the original dynamics for counting transitions between
macrostates. In contrast, the idea behind the present method
is to explicitly explore boundaries between macrostates. To
this end, we confine the dynamics into a single macrostate b

and find and count possible transitions from b to all adjacent
macrostates. This strategy allows us to select the regions of
the landscape to be explored and the precision to be applied.

II. LANDSCAPE AND MICROSTATE DYNAMICS

A discrete energy landscape is a triple (X,E,M) where
(1) X is a finite set of states,
(2) E:X → R is an energy function on X, and
(3) M:X → P(X) is a neighborhood function or move

set that assigns, to each state x ∈ X, the set of its directly
accessible neighboring states. P(X) is the power set of X.
Here, we assume that M is symmetric, i.e., x ∈ M(y) ⇒ y ∈
M(x). By �, we denote the maximum number of neighbors,
� = maxx∈X |M(x)|.
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We consider a time-discrete stochastic dynamics on the state
set X. Having the Markov property, the dynamics is defined by
giving the transition probability px→y from each x ∈ X to each
y ∈ M(x). Provided the system is in state x at time t , px→y is
the probability that the system is in state y at time t + 1. With
probability px→x = 1 − ∑

y∈M(x) px→y , the system remains at
state x.

Specifically, the Metropolis probabilities at inverse temper-
ature β,

px→y = �−1 min{exp (β[E(x) − E(y)]),1} (1)

are used throughout this contribution. This choice, however,
is not compulsory. All that follows, and, in particular, the esti-
mation by sampling, applies to arbitrary choices of transition
probabilities leading to ergodic Markov chains. The ergodicity
is important because we need a unique stationary distribution
P (x) on X.

III. PARTITIONING AND MACROSTATE DYNAMICS

A partitioning of the landscape is a mapping F from the
set of microstates X into a set of macrostates B. Our goal
here is to find a dynamics on B that does have the Markov
property while following the original microstate dynamics as
closely as possible. In general, however, a Markov chain is
not obtained as the direct mapping [F (xt )]∞t=0 of a Markov
chain (xt )∞t=0 generated by the dynamics on X. The reason can
be sketched as follows. When the system is in a macrostate
b ∈ B, the probability of exiting to a macrostate c depends
on where exactly (in which microstate) the system is inside b.
The microstate assumed inside b, however, depends on how the
system entered b, which is again influenced by the macrostate
a assumed before entering b.

Thus, the following simplified assumption is made [29].
Given that the system is found in macrostate b ∈ B, the
microstate x ∈ X is distributed as

Pb(x) =
{
P (x)/

∑
y∈F−1(b) P (y), if x ∈ F−1(b),

0, otherwise.
(2)

This is the stationary distribution P of the whole system
restricted to microstates in b and normalized appropriately.
Under this assumption, the probability of a transition to
macrostate c, when being in macrostate b �= c is

qb→c =
∑

x∈F−1(b)

(
Pb(x)

∑
y∈M(x)∩F−1(c)

px→y

)
. (3)

The inner sum is the probability of going to a microstate y

belonging to macrostate c and being a neighbor of x, given
that the system is in state x. The outer sum represents the
equilibrium weighting of the microstates x inside the given
macrostate b. A straightforward method determines the exact
transition probabilities by performing the sums in Eq. (3), i.e.,
exhaustive enumeration of all microstates and all neighbors
[6,17].

Throughout this contribution, we consider the usual parti-
tioning of X with respect to gradient basins, but the method
is not restricted to this choice. Two microstates x,y ∈ X lie in
the same macrostate F (x) = F (y) if and only if the steepest
descent walks starting in x and y terminate in the same

local minimum. A state u ∈ X is called local minimum, if
E(v) > E(u) for all v ∈ M(u). For a given landscape and
partitioning, the macrostate transition probabilities can be
estimated by the sampling algorithm presented in Sec. IV.

IV. SAMPLING METHOD

The method we introduce computes an estimate of the
transition probabilities q in Eq. (3) by a standard im-
portance sampling restricted to a macrostate b using the
microstate probabilities Pb(x) defined in Eq. (2). Being in state
xt ∈ F−1(b) at time t , a neighbor z ∈ M(xt ) is drawn at random
with equal probabilities. The suggestion is accepted as the
next state, xt+1 = z, with probability min{1,Pb(z)/Pb(xt )}.
Otherwise, the state remains the same, xt+1 = xt . This choice
guarantees that the relative frequency of state x tends toward
the relative frequency Pb(x) for increasing chain length
t → ∞ [30]. For a realization of a Markov chain of length
tmax, transition probabilities are estimated as

q ′
b→c = 1

tmax

tmax∑
t=1

∑
y∈M(xt )∩F−1(c)

pxt→y. (4)

In practice, the inner summation is performed only once at
each time t because each neighbor y of xt contributes to the
transition probability to exactly one macrostate F (y).

Computation time is saved by storing visited microstates of
basin b and their sets of neighbors with transition probabilities
in a data structure with fast search access, e.g., in a hash table.
This is particularly advantageous in cases with broadly dis-
tributed microstate probabilities, such as Boltzmann weights
at low temperature. Here, the Markov chain will encounter
the highly probable (low-energy) microstates many times,
but neighbor sets and transition probabilities are computed
only once per state. In the usual cases where macro-states are
defined as basins of local minima, memory of visited states also
saves time in evaluating the macrostate assignment function F :
When the gradient walk starting at state x reaches a microstate
known to be in basin b, x itself is known to belong to b. Thus,
in many cases, the walk may be terminated before reaching
the ground state. Keeping previously visited microstates in
memory, however, is not necessary for the method to work. It
may be handled according to the available resources. One may
simply stop storing microstates when the designated memory
has been filled.

So far, we have described how to estimate probabilities
of transitions from one macrostate b to others. The result is
the bth column vector (q ′

b→c)c∈B of the estimated transition
matrix q ′ as given in Eq. (4). By applying the procedure
separately to each macrostate, the full matrix q ′ is obtained.
This can be implemented as an iterative exploration of the
energy landscape without initial knowledge of the set of
macrostates. Whenever a neighbor y of a state x in the
Markov chain belongs to a macrostate F (y) not previously
seen, we add the pair [F (y),y] to a queue Q of macrostates
yet to be worked on. Initially, Q may contain only one
particular pair (b,x0), e.g., the completely unfolded state x0

of a polymer and the corresponding macrostate b = F (x0).
The iterative exploration of the landscape is implemented
in the following loop. (i) Extract a pair (b,x0) from Q;
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(ii) generate a Markov chain inside b, starting at x0; (iii) obtain
estimates according to Eq. (4) and add newly discovered
macrostates to Q; (iv) if Q is not empty, resume at (i). Note,
this method is directly parallelizable and will easily profit
from distributed computing. Several independent realizations
of Markov chains with respect to different macrostates can be
run simultaneously, extracting from and feeding to the same
queue. An implementation of the method is part of the Energy
Landscape Library [31].

V. NUMBER PARTITIONING LANDSCAPE

The number partitioning problem (NPP) is a decision
problem in the theory of computation and computational
complexity [32–34]. It asks if a given set A of N real
non-negative numbers can be partitioned into two subsets B,C

such that numbers in B have the same sum as those in C.
In an equivalent formulation, we label the numbers in A as
a1, . . . ,aN and use spin variables x1, . . . ,xN to encode if ai is
in subset B (xi = +1) or in subset C (xi = −1). This system
has the set of microstates X = {−1, + 1}N . We define the
energy of state x ∈ X as

E(x) =
∣∣∣∣∣

N∑
i=1

xiai

∣∣∣∣∣ . (5)

Then, the NPP amounts to the question if the ground-state
energy of this system is zero.

The number partitioning landscape is obtained by using
the hypercube as the neighborhood structure. For each x ∈ X,
we have

M(x) = {y ∈ X|d(x,y) = 1}, (6)

as the set of neighbors. The usual Hamming distance d is
used, so d(x,y) is the number of entries i such that xi �= yi . A
local move on the landscape means flipping one of the N spin
variables xi .

Random instances are typically generated by drawing the
ai as statistically independent random variables uniformly
distributed in the unit interval. Then, the expected number
of local minima grows exponentially with N , more precisely
〈|B|〉 ∼ 2NN−3/2 [35]. Here, we use special instances of the
NPP where

ai = (i − 1)−α, (7)

with α = 0.55. For these instances, we have found the number
of local minima to grow exponentially with N for N � 40.
However, the growth is much slower than for randomly
generated instances. At N = 40, the instance of Eq. (7) has
318 local minima, to be compared with an expected number of
≈1015 local minima for randomly generated instances. Each
landscape with 10 � N � 40 has, at least, one basin with an
energy barrier �0.1. We explore the landscape at temperature
1/β = 0.1.

Figure 1 shows the convergence of the probability esti-
mates. For each system size N , the sampling error decreases
inversely proportional to the number of sampling steps
performed per basin. Larger systems need more computational
effort to reach a certain precision. The inset of Fig. 1 indicates
that the total computational effort required for the error to

10
4

10
5

10
6

sampling steps ber basin

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

K
L

 d
iv

er
ge

nc
e

N=15
N=20
N=25
N=30
N=35
N=40

10 20 30 40
N

10
5

10
6

10
7

10
8

10
9

st
ep

s 
to

 r
ea

ch
 p

re
ci

si
on

 r

r = 10
-5

r = 10
-4

FIG. 1. (Color online) The deviation of estimated transition
probabilities from the exact values is inversely proportional to the
number of sampling steps (main panel). Shown are the analyzed
special instances of number partitioning landscapes [see Eq. (7)]
for various sizes N . Error bars (N = 15 and N = 40) indicate the
standard deviation between errors for different basins. The inset
shows the N dependence of the total number of sampling steps
required for reaching a given precision, i.e., lowering the error
below r . Given a macrostate a, we employ the Kullback-Leibler
(KL) divergence D(·|| · ·) [36] to define the error as ε(s,a) :=
D[q ′(s,a)||q ′(2s,a)], making a comparison of the estimate of the
outgoing transition probability vector q ′(s,a) = (q ′

a→b)b∈B (s) after s

sampling steps with its estimate after 2s sampling steps. The plotted
values are the equally weighted average of the errors ε(s,a) over all
macrostates a ∈ B.

fall below a given value grows subexponentially with N , to be
compared with a number of microstates increasing as 2N . Thus,
under growing N , sampling a strongly decreasing fraction of
microstates is sufficient in order to reach a given precision.

VI. FOLDING LANDSCAPE OF AN RNA SWITCH

As a real-world example of folding landscapes of biopoly-
mers, we consider RNA molecules [37]. The primary structure
of an RNA molecule is a finite sequence (a string) over
the alphabet of the four nuclear bases {A,C,G,U}. An RNA
secondary structure is a list of pairs (i,j ) of positions in the
primary structure such that the following conditions hold.
(1) Base combinations at pairing positions must be A-U or
G-C (Watson-Crick pairs) or G-U (wobble pair); (2) each
position i can pair with at most one other position j ; (3) there
are no two pairs (i,j ) and (k,l) with i < k < j < l. The
latter condition forbids so-called pseudoknots and makes the
graph representation of a secondary structure outer planar
(see Fig. 2).

In the folding landscape of an RNA sequence, the set of
microstates X contains the valid secondary structures. The
energy E(x) of a secondary structure x ∈ X is a sum over
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FIG. 2. (Color online) RNA secondary structures (top and
bottom) with energies −14.4 kcal

mol and −14.3 kcal
mol of the tested bistable

RNA d33 and their outer-planar linear Feynman diagrams (middle)
(drawn using jViz.Rna v1.77 [38]). Energy evaluation and sequence
design are based on the Vienna RNA package v1.8.2 [39] and the
method from Ref. [40].

binding energies of stacks (contiguous regions of binding) and
entropic contributions from open (unbound) sections of the
RNA chain. For details of energy calculations, we refer to the
literature [39,41,42]. Microstates x,y ∈ X are adjacent, i.e.,
y ∈ M(x) and x ∈ M(y), if y can be generated from x by
adding or removing a single base pair. Shift moves [37] are
not considered in this paper. When the lowest-energy neighbor
of a structure is not unique, the degeneracy is resolved by
the lexicographic ordering on string representations of the
structures [6,7,9,37].

Multistable RNAs, so-called RNA switches, are essential
for the regulation of cellular processes. Thus, an understanding
of the folding kinetics of such molecules is of great importance.
For a detailed overview, see Ref. [40]. Specifically, we work
with the bistable RNA d33 sequence shown in Fig. 2. It has
29 759 371 microstates, allowing for full enumeration and,
thus, for a comparative analysis with our method. Out of
the 3223 local minima, the two lowest are the secondary
structures given in Fig. 2. These two ground states practically
have the same energy. A walk between the ground states
involves breaking all base pairs, resulting in an energy barrier
of height �E = 1.18 × 10−19 J. The temperature for both
sampling and energy calculation is T = (273.15 + 37.00) K.
Therefore, 1/β = kBT = 4.28 × 10−21 J is more than 1 order
of magnitude below the barrier height �E of the RNA
switch.

A comparison between exact and sampled transition prob-
abilities is made in terms of the average time τ (b) from
macrostate b to one of the ground states. For a biopolymer
as considered here, τ (b) is the folding time when starting in
an initial state b, such as the open chain.

Given a set of target states A ⊂ B, the time to target
is τ (a) = 0 when starting in one of the target states a ∈ A

(boundary condition). For a starting state b ∈ B \ A, the
average time τ (b), until first reaching one of the target states,
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FIG. 3. (Color online) Sampling precision in terms of the pre-
dicted average time τ (b) to reach the ground state from a macrostate
b for RNA d33. For each b, the corresponding data point gives
the ratio between τsampling based on the sampled transitions q ′ and
the value τexact from the exact ones q versus τexact itself. Symbols
indicate the number of sampling steps per macrostate as 103 (squares),
104 (diamonds), and 105 (crosses). The target set contains both ground
states.

obeys the recursion,

τ (b) = 1 +
∑
c∈B

qb→cτ (c). (8)

The average time to target from b is one time step plus the
time to target from state c following b. The distribution of c is
given by the transition probability qb→c. Time to target is also
called exit time [43].

Figure 3 shows that τ (b) values based on the sampled
transition probabilities have small relative error for all starting
macrostates b ∈ B. With 104 sampling steps per basin, the
ratios between exact and approximate times τ are in the range
[0.75; 1.15]. They fall into [0.96; 1.07] when using 105 steps
per basin.

To investigate the sampling error, we compare, separately
for each macrostate b, the exact ones with the estimated
transition probability vectors for leaving b. We quantify the
discrepancy between the two vectors by the KL divergence
[36],

D(q ′
b||qb) =

∑
c∈B

q ′
b→c ln

q ′
b→c

qb→c

. (9)

Figure 4 summarizes the evolution of the sampling error
for increasing sampling steps per basin. As in the number
partitioning landscape, KL divergence decreases inversely
proportional to the number of sampling steps. The mean of
the distribution of KL values across basins is larger than the
median by a factor of 3, indicating a broad distribution. This
is due to a broad distribution of macrostate sizes. Probability
vectors for macrostates comprising one or a few microstates
reach a low error after fewer sampling steps than those for
large macrostates. Still, the maximum of the error across all
basins also decreases proportionally to the average. One of
the extensions of the method outlined in Sec. VII chooses a
number of sampling steps individually for each macrostate
based on its estimated partition function.
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FIG. 4. (Color online) Time evolution of the sampling error [KL
divergence Eq. (9)] for the folding landscape of the RNA switch
molecule d33. Mean, median, and maximum are for the distribution
of KL values over the |B| = 3223 macrostates (local minima).

In Fig. 5, we compare the kinetics of the molecule for
the approximated transition probabilities via sampling and
the exact ones obtained by enumeration of all microstates
of the landscape. As an initial condition, we choose the
whole ensemble to be in the macrostate of the open chain
(structure without base pairs). As a qualitative description,
the ensemble first populates the first and, somewhat later, the
second ground state. On an intermediate time scale (106),
an almost constant concentration vector is reached with the
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FIG. 5. (Color online) Time evolution of macrostate concentra-
tions for RNA d33 from the exact transition probabilities q (curves)
and from the estimates q ′ via sampling for 104 (�) and 105 (+) steps
per macrostate. The concentrations both for the exact and the sampled
transition rates are at the stationary values for t � 1015. See main text
for a discussion of the discrepancy in these stationary concentrations.

second ground state dominating the first. However, this plateau
concentration vector is transient. Probability mass flows from
the second to the first ground state on a slow time scale (1015)
to reach the stationary concentrations.

With transition probabilities obtained by sampling for
104 steps per macrostate, the kinetics is reproduced with
high precision both in the timing as well as in the absolute
concentration in the plateau where the relative error is below
10−2. Since we hash the probabilities for already visited
structures, the computational effort per basin is dominated
by the number of visited states instead of overall sampling
steps. Thus, small basins are sampled faster than larger ones.
When sampling 105 steps per macrostate, which renders the
kinetics with even higher accuracy, computation time is still
reduced by a factor of ≈9 compared with full enumeration.

The stationary concentrations found at time t � 1015,
however, do not agree with the exact solution. A much
larger number of sampling steps is required to match these.
Further tests with other RNA switch molecules yield the same
qualitative result for a moderate number of sampling steps per
basin. Both the concentration levels and the time scales are
faithfully reproduced by the transition rates from sampling,
except for the stationary concentrations.

A closer look at the particular structure of the landscape
of RNA switches hints at an explanation for the discrepancy.
Both ground states have large and deep basins. In RNA d33,
barriers to neighboring basins are all at least 8.6 × 10−20 J
above ground-state energy, which is more than 20kBT . Exits
from one ground-state basin toward the other lead through
a small number of microstates. When sampling the large
ground-state basins, these few salient microstates are likely to
be missed. The subtle balance between incoming and outgoing
probability flows in the equilibrium is distorted. Due to the
symmetry of the move set, however, those missed nonzero
transition probabilities can be identified to some extent. When
the forward rate is nonzero, then the backward rate must
be nonzero as well. For dynamics with detailed balance, as
considered here, even quantitative correction of missed or
undersampled rates is possible. This is suggested as one of
the extensions in Sec. VII.

VII. EXTENSIONS AND MODIFICATIONS
OF THE METHOD

We outline ideas for varying the method to potentially
increase efficiency and applicability in various settings. These
are not used in the applications in Secs. V and VI.

A. Guided sampling

The stopping criterion (iv) of the outer loop for full
transition matrix estimation (Sec. IV) may be modified if we do
not aim to explore the whole landscape but only a subset of the
set of macrostates [18]. Then, Q may be handled as a priority
queue. For instance, we may be interested only in transitions
between macrostates below a certain energy threshold or those
involved in typical trajectories. In the latter case, the next
macrostate to be explored is the one that is reached from
already explored macrostates with the largest probability.
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B. Partition function estimation

In addition to transition probabilities, the canonical parti-
tion function,

Zb =
∑

x∈F−1(b)

exp[−βE(x)], (10)

of the macrostate b may be estimated at any time during the
sampling. Consider a subset X ⊆ F−1(b) of the microstates of
macrostate b. When sampling in the macrostate b, the fraction
of time the Markov chain spends in X is

r = 1

Zb

∑
x∈X

exp[−βE(x)]. (11)

Therefore, Zb can be calculated when knowing r and the
energies of all states in X. Now X can be taken as the set
of states visited in the first t∗ steps of the Markov chain,
X = {xt |t = 1, . . . ,t∗}. An estimate r ′ of r is obtained by
counting how often the Markov chain visits states in X during
a sufficiently long time interval [tstart,tstop],

r ′ = |{t |tstart � t < tstop ∧ xt ∈ X}|
tstop − tstart

. (12)

In order to obtain an unbiased estimate of r , this time interval
must not overlap with the time steps during which X is
recorded, thus, tstart > t∗. By solving Eq. (11) for Zb and
replacing r with the estimate r ′, we obtain

Z′
b = 1

r

∑
x∈X

exp[−βE(x)], (13)

as an unbiased estimate of the partition function Zb.

C. Sampling time adjustment

The estimate r(t) may also be used for adapting the length of
the Markov chain exploring macrostate b to the size of b. The
sampling will be run until the fraction of covered probability
mass exceeds a certain threshold, e.g., stopping as soon as
r(t) > 0.5.

D. Landscape coarse graining

The state space can be coarse grained beyond the initially
chosen macrostate state partitioning by dynamically merging
macrostates [44]. For merging macrostate b into macrostate a,
the affected entries in the matrix q are replaced by

q̂a→c = Zaqa→c + Zbqb→c

Za + Zb

, (14)

q̂c→a = qc→a + qc→b (15)

for all macrostates c /∈ {a,b}. The new diagonal element q̂a→a

is obtained by normalization of probability. The row and
column of macrostate b are set to zero (or are deleted). In
a separate index, the mapping of macrostate b to macrostate a

is stored.
Strategies for the choice of macrostates to be merged need

to be explored yet. A reasonable starting point is to choose
pairs of macrostates with high overlap in successor states,

e.g., choosing a and b such that∑
c∈B

qa→cqb→c (16)

is maximal.

E. Balancing the transition probability matrix

If the microstate dynamics in terms of the transition
probabilities px→y fulfills detailed balance, then so does
the macrostate dynamics with transition probabilities qb→c.
Detailed balance means

Zlql→s = Zsqs→l (17)

for all macrostate pairs (l,s). The transition probabilities q ′
l→s

obtained by the sampling, however, need not fulfill the same
condition. By the transformation,

q∗
l→s = 1

2
q ′

l→s + 1

2
q ′

s→l

Zs

Zl

, (18)

transition probabilities q∗ with detailed balance are obtained.
The transformation also serves to impose a known stationary
distribution of concentrations on the transition probability
matrix.

VIII. CONCLUSION AND DISCUSSION

When coarse graining the state space of an energy landscape
into macrostates, transition probabilities between macrostates
have to be obtained in order to capture the coarse-grained
stochastic dynamics. Here, we have introduced a sampling
method that allows for a fast yet accurate estimation of these
transition probabilities. We have demonstrated the scalability
of the approach with a system size for special instances of the
number partitioning problem. As a real-world application, we
have analyzed the folding landscape of the secondary structure
of an RNA switch as an example of a biopolymer. Its rich
dynamic behavior on separate fast and slow time scales is
accurately rendered by transition probabilities obtained with
low computational cost.

The general method introduced here may serve as a flexible
framework for stochastic exploration of energy landscapes. As
laid out in Sec. VII, several extensions and modifications may
be made to obtain increased performance and wider applica-
bility. In particular, the high variation of macrostate sizes may
be exploited in a scheme for an automatic choice of sampling
effort. Furthermore, the merging of small macrostates with
larger neighbors during the sampling may lead to more
manageable and potentially more meaningful partitions of the
landscape akin to metabasins [8].

In ongoing and future work, the method will be applied
to other energy landscapes including those of state-discrete
protein folding dynamics [45–47]. Such landscapes have been
shown to be amenable to sampling approaches [48]. Another
field of application of our method is the clarification of
concepts for dynamics on energy surfaces, such as the notion
of a folding funnel [11,49,50].
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