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Coherent potential approximation of random nearly isostatic kagome lattice
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The kagome lattice has coordination number 4, and it is mechanically isostatic when nearest-neighbor sites are
connected by central-force springs. A lattice of N sites has O(

√
N) zero-frequency floppy modes that convert to

finite-frequency anomalous modes when next-nearest-neighbor (NNN) springs are added. We use the coherent
potential approximation to study the mode structure and mechanical properties of the kagome lattice in which
NNN springs with spring constant κ are added with probabilityP = �z/4, where �z = z − 4 and z is the average
coordination number. The effective medium static NNN spring constant κm scales as P2 for P � κ and as P for
P � κ , yielding a frequency scale ω∗ ∼ �z and a length scale l∗ ∼ (�z)−1. To a very good approximation at
small nonzero frequency, κm(P,ω)/κm(P,0) is a scaling function of ω/ω∗. The Ioffe-Regel limit beyond which
plane-wave states become ill-defined is reached at a frequency of order ω∗.
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I. INTRODUCTION

Understanding the nature of mechanical stability, how it
arises, and how it can be controlled is important to fields
ranging from civil engineering to biology. Materials and
systems that undergo a transition from a floppy state that cannot
support an external load to a rigid state [1] that can include
frames, studied by Maxwell [2], of points connected by fixed
length struts, randomly diluted lattices of springs that undergo
a rigidity percolation transition [3–5] upon dilution, network
glasses [3,6], granular media [7,8], networks of cross-linked
semiflexible polymers [9–11], and packed spheres near the
jamming transition [12–14]. The transition state separating
the floppy from the rigid state is either at or near a special
“isostatic” state in which the number of constraints (struts
in the case of the Maxwell frames) is such that there are no
zero-energy modes, other than the trivial ones arising from
rigid translations and rotations, and such that the removal
of one constraint leads to the appearance of an extra zero-
frequency internal floppy mode. For systems of particles or
points in d dimensions in which neighboring sites interact via
central-force potentials, the isostatic point occurs when z, the
average number of neighbors per site is equal to 2d. The square
and kagome lattices in two dimensions and the simple cubic
and pyrochlore lattices in three dimensions are systems whose
bulk sites have exactly 2d nearest-neighbor sites, and apart
from corrections arising from boundary sites with only 2d − 1
or fewer neighbors, they are isostatic. Because they are fully
characterized and because they can be moved off isostaticity in
precise and well-controlled ways, they are attractive platforms
for studying what effects the existence of nearby isostatic
point have on elastic response and mode structure [15,16] of
elastic networks. In this paper, we use the coherent potential
approximation (CPA) [17–20] to study frequency-dependent
mechanical response and mode structure of a kagome lattice
of nearest-neighbor harmonic springs with spring constant k

to which next-nearest-neighbor springs of spring constant κ

are randomly added with probability P .

A. The Maxwell argument

Maxwell considered a frame of N points in d dimensions
connected by struts of fixed length, though his arguments

apply equally well to systems in which the struts are replaced
by central-force potentials. Each point in the frame has dN

translational degrees of freedom, and in the absence of struts,
these points have dN zero modes. Thus, the total number
of zero modes is N0 = dN − Nc, where Nc is the number of
constraints, provided that dN − Nc is greater than d(d + 1)/2,
the number of trivial modes of translation and rotation of a
rigid body. Since each strut is shared by two sites, there are
zN/2 struts, where z is the average number of neighbors per
site, and if all struts are independent, then N0 = dN − 1

2zN .
In large systems the trivial modes can be neglected in the
total count, and the critical number of neighbors below
which there are nontrivial zero modes, called floppy modes or
mechanisms [21,22], is zc = 2d. If z > zc, the system has no
floppy modes, and the system is rigid. The counting of floppy
modes is different if there are bending as well as stretching
forces [3,23,24] and if there are redundant struts [25–27]
in the network whose addition does not change N0, but for
each realization of the network, there is a critical value of z

separating a floppy state with N0 > 0 from a rigid one whose
macroscopic elastic moduli are nonzero and that can thus
support external loads. Thus, z = zc is a kind of mechanical
critical point.

B. Examples of rigidity transitions

Rigidity percolation [3,4] is probably the most studied of
the transitions to rigidity. It is analogous to the connectivity
percolation problem [28,29], but its threshold is different and
it is in a different universality class. In its simplest form,
nearest-neighbor bonds on a lattice are populated with central-
force springs with probability P . At a critical probability,
P = Pr , a rigid cluster forms, and for P > Pr , all elastic
moduli grow continuously from zero. This behavior occurs in
randomly diluted random [30,31] as well as periodic lattices.
The probability that a site is a member of the infinite rigid
cluster also grows continuously from zero [25,32] in 2d, but
in the fcc and bcc bond-diluted lattices in 3d [27], it jumps
discontinuously to a nonzero value. Thus, in the latter lattices,
the central-force rigidity transition is first order in terms of
the geometry of the rigid cluster but second order in terms
of the elastic moduli. Effective medium theories [33–35]
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provide a remarkably accurate description of the growth of
elastic moduli above Pr and the zero modes count below
Pr [36]. The addition of bending forces between neighboring
bonds [3,24,37] provides an important generalization of
central-force models that provide realistic descriptions of
network glasses [3,24,26] and of networks of semiflexible
polymers [9–11,38,39].

The jamming of packed spheres [12,40] is another example
of a rigidity transition. Spheres of radius a are characterized by
their volume fraction φ. Below a critical fraction φc, spheres
are on average not constrained by their neighbors, and above
φc, there are a sufficient number of contacts between them
that the system as a whole supports both compression and
shear. At the jamming point J where φ = φc, the average
coordination number is zc = 2d, making the state at J isostatic
in the Maxwell sense. For �φ = (φ − φc) > 0, �z = z −
zc ∼ (�φ)1/2, and the shear modulus scales as G ∼ (�φ)1/2 ∼
�z [13,41]. Interestingly, the bulk modulus B is nonzero at
J , and B ∼ (�φ)0 ∼ (�z)0 [13,41]. Thus, in terms of the
bulk modulus, the jamming transition is first order, whereas
in terms of the shear modulus, it is second order. Associated
with this transition is a divergent characteristic length scale
l∗ ∼ (�φ)−1/2 ∼ (�z)−1 and a vanishing frequency scale
ω∗ ∼ (�φ)1/2 ∼ (�z) [42–44], whose scaling properties can
be derived from a simple cutting argument [45,46]. ω∗ marks
the transition in the density of states [45] from a Debye
regime to a frequency-independent regime characteristic of
a one-dimensional system, and l∗ can be interpreted as the
length scale at which the longitudinal phonon frequency is
equal to ω∗. There is a second length that diverges as (�z)−1/2,
which appears to be associated with thermal transport [47,48],
though it is also the length scale at which the transverse sound
frequency is equal to ω∗.

The close-packed spheres at the jamming transition is
isostatic with an average of 2d neighbors per site. The cutting
arguments that determine the dependence of ω∗ and l∗ on �z

appear to depend only on the existence of a nearby isostatic
state and not on the exact nature of that state, suggesting that
they might apply quite generally to any system that becomes
rigid at an isostatic point. (To our knowledge, they have not
been applied to the rigidity percolation transition, which has
a threshold slightly below the isostatic limit [5,25,27].) To
explore this possibility, it is natural to study the properties
of precisely determined periodic isostatic lattices that can
be moved away from isostaticity as a complement to the
study of random isostatic or nearly isostatic lattices generated
by random dilution or by sphere packing. Periodic isostatic
lattices, like the square and kagome lattices, can be moved
away from isostaticity by adding next-nearest-neighbor (NNN)
springs with spring constant κ either homogeneously on all
NNN bonds or randomly on these bonds with probability P .
In the former case, isostaticity is approached continuously
as κ → 0, and in the latter case, it is approached by either
P → 0 or κ → 0 or by both. Exact calculations on the
square and kagome lattices [15] with NNN springs uniformly
added reveal a characteristic frequency ω∗ ∼ κ1/2 and length
l∗ ∼ κ−1/2. In the square lattice, the compression modulus C11

remains nonzero as κ → 0, but the shear modulus C11 ∼ κ

vanishes with κ . In the kagome lattice, both the bulk and
the shear modulus remain nonzero in this limit. Within the

CPA approximation in the random case [16], the static spring
constant κm(0) is proportional to P ∼ �z for P > κ/k and
to P2 ∼ (�z)2 for P < κ/k, indicating a crossover from
nearly affine behavior at large P to nonaffine behavior as
P → 0. This implies that near the isostatic limit, ω∗ ∼ �z and
l∗ ∼ κ

−1/2
m ∼ (�z)−1, in agreement with the cutting argument.

Furthermore, κm(ω) = κm(0)f (ω/ω∗), where f is a scaling
function. On the other hand, C44 ∼ κm ∼ (�z)2 vanishes more
rapidly than does the shear modulus at jamming.

C. Review of results

In this paper, we undertake a CPA analysis of the kagome
lattice with added NNN springs. As in the case of the square
lattice, we find nonaffine response with κm(0) ∼ P2 at small
P and nearly affine response with κm(0) ∼ P at large P , and
as a result ω∗ ∼ �z and l∗ ∼ (�z)−1, again in agreement with
the cutting argument. We also find that κm(P,ω)/κm(P,0)
is a basically a scaling function of ω/ω∗ at small P , but
with small yet important deviations at small ω that describe
Rayleigh scattering, characterized by a mean-free path that
scales as ω−3 in 2d. Thus, the cutting argument provides
a consistent description of the frequency and length scales
for systems near three isostatic networks with qualitatively
different geometries, with differences reflected in the different
behaviors as a function of �z of their elastic moduli and of their
different mode structures. It would be tempting to conclude
that the cutting argument applies universally to all systems
near isostaticity, but that would perhaps be a little premature.
There are indications [49] that it does not apply to models,
such as one obtained by twisting the unit cells of the kagome
lattice, in which the bulk modulus, but not the shear modulus
vanishes in the isostatic limit.

The outline of this paper is as follows. In Sec. II we
review the elasticity of the homogeneous nearly isostatic
kagome lattice. In Sec. III we discuss the CPA on random
nearly isostatic kagome lattices with the NNN bonds randomly
occupied with probability P . In Sec. IV we discuss the results
of the CPA calculation, including the crossover of κm from
P2 to P behavior as P increase or κ decreases and the rapid
increase of scattering at the characteristic frequency ω∗

D ∼ �z.

II. HOMOGENEOUS NEARLY ISOSTATIC KAGOME
LATTICE AND ITS ELASTICITY

A. Expansion of elastic energy in general lattice models

In this section we briefly review the elastic energy in central-
force network models, in which the elastic energy U can be
written as a sum of the energy of each central-force bond,

U =
∑

b

Ub(Rb), (1)

where Rb is the length of the bond and Ub is the potential
energy of the bond as a function of the length. We consider a
displacement field on the network that maps particle � which
is at position R�0 to a new position R� = R�0 + u�; thus, the
length of bond b between particles � and �′ is changed to

Rb = |R�′ − R�|. (2)
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We refer to the original space in which particle � is at R�0 as the
reference space and the space after applying the displacement
field as the target space. We consider harmonic potentials,

Ub = kb

2
(Rb − RbR)2, (3)

where RbR is the rest length of the bond and kb is the
spring constant. The length Rb can be expanded for small
displacement u as

Rb = Rb0 + eb0 · ub

+ 1

2Rb0
ub · (I − eb0eb0) · ub + O

(
u3

b

)
, (4)

where Rb0 = |R�′0 − R�0|, ub = u�′ − u�, and eb0 = (R�′0 −
R�0)/|R�′0 − R�0| is the unit vector pointing along the bond in
the reference space. Thus, we have

Ub = kb

2
(Rb0 − RbR)2 + fb eb0 · ub

+1

2
ub ·

[
kbeb0eb0 + fb

Rb0
(I − eb0eb0)

]
· ub, (5)

where fb = U ′
b(R) = kb(Rb0 − RbR) is the magnitude of the

force on the bond in the reference space. In general, we
consider the case in which the reference state is in mechanical
equilibrium, which means that the total force on each particle
vanishes,

f� =
∑

b(�,�′)

fbeb0 = 0, (6)

where the sum
∑

b(�,�′) is over all occupied bonds connected
to �. However, to capture the properties of random networks,
which often carry residual stress, the length of each bond is not
necessarily at its rest length; that is, Rb0 − RbR 	= 0 in general.

The change of the elastic energy from the reference space
to the target space of the whole system is then a quadratic form
of the displacement field,

�U =
∑

b

1

2
ub ·

[
kbeb0eb0 + fb

Rb0
(I − eb0eb0)

]
· ub, (7)

which can also been written as

�U =
∑

b

1

2

[
kb(u‖

b)2 + fb

Rb0
(u⊥

b )2
]
, (8)

where u‖
b is the component of ub parallel to eb0 and u⊥

b is the
component perpendicular to eb0.

By doing a gradient expansion on the displacement field,

ub = Rb0 eb0k ∂ku(r), (9)

where u(r) is the displacement field at position r, we recover
the elastic energy of the continuum theory,

�U =
∫

drKijkl∂kui∂luj , (10)

with

Kijkl =
∑

b

R2
b0

2v0
eb0keb0l

×
[
kbeb0ieb0j + fb

Rb0
(δij − eb0ieb0j )

]
, (11)

1

2 3

FIG. 1. (Color online) The kagome lattice with random additional
NNN bonds denoted by purple dashed lines. The unit cell triangle is
marked with filled triangles. Particles 1, 2, and 3 in each unit cell are
marked in the bottom right unit cell.

where the summation
∑

b is over bonds connecting to one
particle, and we are using a simple lattice with one particle
per unit cell in this illustration. The volume of a unit cell is
denoted by v0.

B. Elastic energy of the kagome lattice

The kagome lattice is a lattice with three particles per
unit cell, and we shall use the following six-dimensional
displacement vector to describe the deformation of the
lattice:

u� = (u�,1,x,u�,1,y ,u�,2,x,u�,2,y ,u�,3,x ,u�,3,y), (12)

where � labels the unit cell and (1,2,3) label the particles in the
unit cell as in Fig. 1. To leading order in u, the lattice energy
can be expressed as the quadratic form

�U = 1

2

∑
�,�′

u� · D�,�′ · u�′ , (13)

where D is the 6 × 6 dynamical matrix. This elastic energy in
Fourier space is

�U = 1

2N2

∑
q,q′

uq · D−q,q′ · uq′ , (14)

where the Fourier transforms are defined as

uq =
∑

�

u�e
−iq·R�0 ,

(15)

u� = 1

N

∑
q

uqe
iq·R�0 ,

where N is the number of unit cells. The dynamical matrix
for the homogeneous kagome lattice with all nearest-neighbor
(NN) bonds occupied with springs of spring constant k and all
NNN bonds with springs of spring constant κ is a 6 × 6 matrix
given by

Dq,q′ = Nδq,q′Dq(k,κ),
(16)

Dq(k,κ) = k
∑

m∈NN

BNN
m,qBNN

m,−q + κ
∑

m∈NNN

BNNN
m,q BNNN

m,−q,

where the B vectors and their derivation are given in
Appendix A.
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FIG. 2. (Color online) (a) Phonon dispersion along symmetry
directions. The dotted lines are for κ = 0 and the solid lines are
for κ = 0.02. The floppy and anomalous branches are in red.
(b) Anomalous and shear modes along 	M . Characteristic frequen-
cies and wave numbers are also shown. Frequencies ω∗

O , ω∗
S , and ω∗

M

are defined in the text. (From Ref. [15].)

C. The homogeneous kagome lattice and its
low-energy theory

There are six translational degrees of freedom per unit cell
in the kagome lattice, giving rise to six phonon branches. Of
these, three are optical branches with frequencies of order√

k, two are acoustic branches with sound velocities of order√
k, and one is the anomalous branch, whose frequencies

along 	 − M (see Fig. 2) in the Brillouin Zone reduce to the
zero-frequency floppy modes when κ → 0. The latter three
branches, which determine the low-energy elastic theory of
the kagome lattice, have modes in the space spanned by the
three vectors

ν1 = (1/
√

3)(1,0,1,0,1,0),

ν2 = (1/
√

3)(0,1,0,1,0,1), (17)

ν3 =
(

− 1√
3
,0,

1

2
√

3
, − 1

2
,

1

2
√

3
,
1

2

)
,

which correspond, respectively, to two translations of the
whole unit cell in x and y directions and the rotation of the
unit-cell triangle around its center. The low-energy theory is
governed by the 3 × 3 reduced dynamical matrix obtained
by integrating out the three high-energy optical branches, as
shown in Appendix B.

For small momentum, |q| < q∗
H = 4

√
3κ/k, the reduced

dynamical matrix is simply diagonalized by longitudinal and
transverse acoustic phonons (which are linear combinations of
ν1 and ν2) with speeds of sound cL = √

3k/4 and cT = √
k/4

and the rotational mode with a characteristic frequency ω∗
O =√

6κ at q = 0. The bulk modulus B and the shear modulus
G are related, respectively, to the longitudinal and transverse
sound velocities through

c2
L = (B + G)/�, c2

T = G/�, (18)

where � is the mass density, which, because there are three
atoms per unit cell, is equal to 3 in our units. Thus, B = 3k/8
and G = 3k/16. There is only weak mixing between the
rotational modes and the acoustic phonons, and the system is
isotropic.

For large momentum |q| > q∗
H = 4

√
3κ/k, strong mixing

between the transverse acoustic modes and the rotational
modes occurs, and the strong anisotropy of the isostatic

FIG. 3. (Color online) The kagome lattice and its floppy modes,
with the reference state in gray and deformed state in red. Two of its
floppy modes are shown in this figure marked by the yellow ribbons.

state is retrieved. The mixing is maximal along qx = 0 and
symmetry equivalent directions, which we refer to as the
isostatic directions, and the resulting two modes are shown
in Fig. 2(a). The anomalous branch, with frequency of order
κ , is the lower branch of the two. In the limit of κ = 0, the
lattice becomes isostatic, the isotropic region is squeezed to the
origin, and the anomalous modes reduce to the isostatic floppy
modes with zero frequency along qx = 0 (	M line in Fig. 2)
and symmetry equivalent directions as depicted in Fig. 3.
The name “anomalous modes” follows the nomenclature of
Ref. [46], referring to the modes developed from the floppy
modes as the system is moved away from the isostatic point.
For a more detailed discussion of the low-energy theory of the
elasticity of the kagome lattice, see Appendix B.

Of particular interest is the frequency of the anomalous
modes in the vicinity of qx = 0. The squared frequency of
these modes can be written as

ω2(q) = ω2
A(qy) + c2

xq
2
x , (19)

where cx = cL = √
3k/4. The function ω2

A(qy) is plotted
in Fig. 4. It reaches a maximum value of (ω∗

S)2 at a 2d

saddle point at qy = QS and a local minimum value of
(ω∗

M )2 at the zone edge qy = QM = 2π/
√

3 . For small κ ,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

qy

ω
A2 κ

FIG. 4. (Color online) Eigenvalue of the isostatic mode along
isostatic directions, for example, qx = 0, for κ = 5 × 10−4. The
eigenvalue of the full 6 × 6 dynamical matrix, ω2, normalized by
κ , is denoted by the red dots, and the eigenvalue of the 3 × 3 reduced
dynamical matrix (B2) is denoted by the red line. The blue dashed
line represents the approximation (20) we used in the asymptotic
calculation in the f in CPA.
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Qs  4(3κ/2k)1/4, (ω∗
S)2  3κ , and (ω∗

M )2  2κ . All of the
characteristic frequencies ω∗

O > ωS > ωM are proportional to√
κ for small κ . ω2

A(qy)is well approximated between qy = QS

and qy = QM by

ω2
A ≈ 1

QM − QS

[
QMω2

S − QSω
2
M − qy

(
ω2

S − ω2
M

)]
, (20)

as is evident from Fig. 4. This relation will prove useful in our
evaluation of integrals in our CPA analysis in Sec. III.

Lengths scaling as κ−1/2 can be extracted from the
phonon dispersion relations in various ways. One length is
the hybridization length l∗H obtained from the hybridization
wave number q∗

H = 4
√

3κ/k = l∗−1
H , separating the domain

of predominantly transverse phonon behavior at low qy from
the domain of predominantly rotation behavior at high qy .
Other lengths can be obtained by comparing the cxq

2
x term

in ω2(q) to ω2
M and ω2

S : q∗
M = ωM/cx = l∗−1

m = (8/
√

6)
√

κ/k

and q∗
S = ωS/cx = l∗−1

S = 4
√

κ/k. An interesting property of
ω2

A(qy) is that the hybridization frequency ω∗
H obtained by

setting qy = q∗
H in the transverse phonon frequency is identical

to ω∗
S : cT q∗

H ≡ ω∗
H = ω∗

S .
One experimentally relevant quantity is the Fourier trans-

form of the finite temperature static phonon correlation
function Gμ,ν(l,l′),

Gμ,ν(q) = kBT
∑

α

eα
μ(−q)eα

ν (q)

ω2
α(q)

, (21)

where μ and ν label the basis defined in Eq. (12) of the
six-dimensional space of u, α labels the phonon band, and
eα
μ(q) is the six-dimensional eigenvector associated with mode

(α,q). This correlation function is a static equilibrium quantity
and thus independent of phonon damping. The quantities
ω2

α(q)are merely the eigenvalues of the dynamical matrix
with the zero-frequency value of the spring constant (the
effective medium spring constant can depend on frequency
as we discuss below in the CPA). Thus, from experimentally
measured finite temperature static phonon correlation function
Gμ,ν(l,l′), one can obtain ω2

α(q) from the eigenvalues of
Gμ,ν(l,l′), and by fitting ω2

α(q) to Eq. (20), one will arrive
at the diverging length scale l∗ ∼ κ−1/2.1

III. THE COHERENT POTENTIAL APPROXIMATION ON
THE RANDOM NEARLY ISOSTATIC KAGOME

LATTICE

The CPA is a widely used method in the study of disordered
systems [19,33,34]. In it, a random system is mapped into an ef-
fective medium with no disorder that is described by a Green’s
function with a suitable self-energy that can capture the effect
of the disorder average of the randomness. To achieve this,
one imposes a self-consistency constraint that the effective
medium Green’s function perturbed by the presence of single
impurity in the effective medium reduces to the effective

1Our prescription, which unambiguously produces a length scale
for uniform or randomly diluted periodic lattices, has not to our
knowledge yielded a length scale for the jamming problem, whose
lattice is not periodic.

medium Green’s function when averaged over the probability
distribution of the impurity. More specifically, the T matrix of
this perturbation vanishes upon averaging over configurations
that contain and do not contain the impurity.

For the case of the nearly isostatic kagome lattice, the
effective medium has all NNN bonds occupied with an
effective medium spring of spring constant κm(P,ω), and the
effective medium Green’s function is identical to that of a
homogeneous system with κ = κm(P,ω). The CPA procedure
consists of replacing one arbitrary NNN bond with a new
bond of spring constant κs , which takes on the value κ with
probability P (bond occupied) and the value 0 with probability
1 − P (bond unoccupied). This procedure leads to a modified
dynamical matrix,

DV = D + V, (22)

where

Vq,q′(k,κ) = (κs − κm)BNNN
1,q BNNN

1,−q′ , (23)

where 1 represents the arbitrary NNN bond we have chosen
to replace into κs . This form of V follows directly from the
calculations leading to Eq. (16). It depends on the wave
numbers q and q′ because the perturbed system is not
translationally invariant.

The phonon Green’s function for the effective medium is

Gq(ω) = [ω2I − Dq]−1. (24)

In the perturbed system with one bond replaced, the Green’s
function becomes

GV
q,q′ (ω) = [ω2I − DV ]−1

q,q′ (25)

and is no longer translationally invariant. This Green’s function
can be expanded for small V,

GV
q,q′ = (I − G · V)−1

q,q′ · Gq′

 Nδq,q′Gq + Gq·Vq,q′·Gq′

+ 1

N

∑
q1

Gq·Vq,q1·Gq1·Vq1,q′·Gq′ +· · · , (26)

where we have dropped the frequency ω dependence, which
is the same for every G and V. This series can be written as

GV
q,q′ = Nδq,q′Gq + Gq · Tq,q′ · Gq′ , (27)

where

Tq,q′ ≡ Vq,q′ + 1

N

∑
q1

Vq,q1·Gq1·Vq1,q′

+ 1

N2

∑
q1,q2

Vq,q1·Gq1·Vq1,q2·Gq2·Vq2,q′

+ · · · (28)

is the T matrix expressed in the wave number basis.
In the CPA, the effective medium spring constant κm is

determined by requiring that the average value of GV
q,q′ be

equal to Nδq,q′Gq or equivalently that the disorder average of
the T matrix vanish:

PT|κs=κ + (1 − P)T|κs=0 = 0. (29)
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The evaluation of the T matrix is simplified by the following
identity:

1

N

∑
q1

Vq,q1·Gq1·Vq1,q′

= (κs − κm)2BNNN
1,q (30)

× 1

N

(∑
q1

BNNN
1,−q1

· Gq1 · BNNN
1,q1

)
BNNN

1,−q′ (31)

= −(κs − κm)Vq,q′f (κm,ω), (32)

where

f (κm,ω) = −v0

∫
1BZ

d2q
4π2

BNNN
1,−q · Gq(ω) · BNNN

1,q , (33)

with v0 = √
3/2 the area of the unit cell in real space and

4π2/v0 = 8π2/
√

3 is the area of the first Brillouin zone in
reciprocal space. The integral is over the first Brillouin zone.
The Green’s function Gq(ω) is the phonon Green’s function in
the effective medium so it depends on κm. Using these relations
in Eq. (28) gives

Tq,q′ = Vq,q′

1 + (κs − κm)f (κm,ω)
. (34)

Thus, the self-consistency equation (29) requires that

f (κm,ω)κ2
m − [1 + κf (κm,ω)]κm + Pκ = 0, (35)

from which one can solve for the effective medium NNN
spring constant κm for any given P and ω. The form of this
solution at small κm depends on the behavior of the function
f (κm,ω) at small κm, which is in turn determined by the form
of the anomalous mode along the qx = 0 and other isostatic
directions. Details of the calculation of f (κm,ω) are presented
in Appendix B.

In the following discussion, unless otherwise stated, we
use reduced units with k = 1 and lattice constant a = 1, and
thus unitless spring constants, elastic moduli, and frequencies:
κ/k → κ , Ga2/k → G, and ω/

√
k → ω, respectively.

IV. RESULTS AND DISCUSSION

A. CPA solution at zero frequency: Static response

We first consider the case of ω = 0, which characterizes
the static response of the system. For small P , we expect that
the effective medium spring constant κm also to be small and
that we can, therefore, ignore the f (κm,ω)κ2

m term in the CPA
self-consistency equation (35). Using the asymptotic small κm

limit f (κm,0) = ß/
√

κm, where ß = 5(1 − √
2/3), derived in

Appendix B [Eq. (B13)], we obtain the equation

κm + ßκ
√

κm − Pκ = 0, (36)

determining κm at small P . The solution to this equation,

κm(P,0) =
[

−ßκ + √
ß2κ2 + 4Pκ

2

]2

, (37)

has two limits,

κm(P,0) 
{
AP2 if P � (ß2/4)κ,

Pκ if P � (ß2/4)κ,
(38)
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10 4
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κ m
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FIG. 5. (Color online) CPA solution at zero frequency. Data
points show the numerical solution κm as a function of P at ω = 0 of
the CPA self-consistency equation (35) with the full 6 × 6 dynamical
matrix. NNN bond spring constant κ = 10−2,100,102 are shown as
red dots, purple squares, and blue diamonds, respectively. Also shown
are the nonaffine (κm = AP2) and affine (κm = Pκ at κ = 10−2)
limits as a green dashed line and a red dotted line, respectively.
At large P the numerical solution, especially the one for κ = 102

deviate significantly from the nonaffine limit form because Eq. (36)
is an approximation at small P by ignoring the highest-order term in
Eq. (35).

whereA = 1/ß2 = 3(5 + 2
√

6)/25. In the first case, κ
√

κm �
κm, and the solution for κm is obtained by ignoring the first
term in Eq. (36); in the second case, the opposite is true,
and κm is obtained by ignoring the second term in this
equation. In the second case, every NNN bond distorts in
the same way under stress, and response is affine. In the
first case, κm = AP2 � Pκ , indicating that the response is
nonaffine with local rearrangements in response to stress.
Within the CPA, this result emerges because of the divergent
elastic response encoded in G [and f (κm,0)] as κm → 0 (see
Appendix B). The nonaffine regime arises when NNN springs
are strong enough for the second term in Eq. (36) to dominate
the first. As κ approaches zero at fixed P , distortions produced
by the extra bond decrease and the nonaffine regime becomes
vanishingly small. Numerical solutions of the CPA self-
consistency equation (35) with the full 6 × 6 dynamical matrix
are plotted in Fig. 5, along with a comparison to the analytical
solution (37) and the two asymptotic forms in Eq. (38).

The effective NNN spring constant κm in both the square
[16] and the kagome lattices exhibit an affine G ∼ P to
nonaffine G ∼ P2 crossover with decreasing P . The effects of
this crossover are, however, different in the two cases. In the
square lattice, the shear modulus G ≡ C44 is equal to κm, and as
a result, the macroscopic shear response exhibits this crosser.
In the kagome lattice, the shear modulus is proportional to the
NN spring constant k rather than κ , and the macroscopic elastic
response does not exhibit the affine to nonaffine crossover. The
crossover appears instead in the anomalous mode that reduces
to the floppy modes shown in Fig. 3 when κm → 0.

Length and frequency scales can be extracted in the static
limit much as they were extracted in the homogeneous case
discussed in Sec. II. The finite temperature static phonon
correlation function G is the inverse of the dynamical matrix
evaluated at ω = 0, whose eigenvalues and eigenvectors are
identical to those of the homogeneous case with κ replaced
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by κm ≡ κm(P,0). The eigenvalues allow us to identify
frequencies by taking the square roots of the appropriate
eigenvalues of D:

ω∗
O =

√
6κm > ω∗

S =
√

3κm > ω∗
M =

√
2κm. (39)

Unlike the situation in homogeneous lattices, these frequencies
are not equal to any physical dynamical-mode frequency of the
system. They do, however, provide information about the static
properties of the phonon correlation function G that could,
in principle, be measured at finite temperature via scattering
or particle tracking experiment. They also lead to diverging
lengths just as they do in the homogeneous case:

l∗ ≡ l∗H = 1√
3

l∗S =
√

2 l∗M = 1

4
√

3κm

= 1√
3A

1

�z
. (40)

B. CPA solution at finite frequency: Dynamic response and
damping

For finite frequency ω, the effective medium spring con-
stant is complex, κm(P,ω) = κ ′

m(P,ω) − iκ ′′
m(P,ω), where the

imaginary part κ ′′
m(P,ω), which describes damping of phonons

in this random network, is odd in ω and positive for ω > 0.
From the analysis for the static limit ω = 0, we see that the
interesting case is the nonaffine regime with P � (ß2/4)κ , in
which the self-consistency equation (36) simplifies to

f (κm,ω)κm = P. (41)

In the static limit, f (κm,0) ∼ κ
−1/2
m is singular in the κm → 0

limit. As we show in Appendix B, at finite frequency,
f (κm,ω) ∼ [

√
(3κm − ω2)/κm −

√
(2κm − ω2)/κm]/κm,

which leads to

κm(P,ω) = 3P2

25

(
5 + 2

√
6

√
1 − 25ω2

18P2

)
, (42)

as depicted in Fig. 6. Taking ω = 0, this solution reduces
to the zero-frequency solution [Eq. (38)] in the nonaffine

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

ω

κ m
,ω

κ m
,0

FIG. 6. (Color online) CPA solution at finite frequency for P =
0.01 and P = 0.05. The numerical solution to Eq. (35) with the full
6 × 6 dynamical matrix is shown as the data points. Blue circles and
red squares represent real and (negative of) imaginary parts of κm

at P = 0.01, respectively, and green diamonds and brown triangles
represent the real and (negative of) imaginary parts of κm atP = 0.05,
respectively. The asymptotic form (42) is shown as the blue (real) and
red (negative of imaginary) lines. In this plot frequency is rescaled
by P , and the effective medium spring constant κm is rescaled by its
value at zero frequency, which is real.

limit. Equation (42) develops an imaginary part when |ω| >

2
√

3P/5, which, as we discussed earlier, must be negative for
ω > 0. It is straightforward to see that this solution satisfies
the scaling form κm(P,ω) = κm(P,0)h(ω/ω∗), as does the
CPA effective NNN spring constant in the square lattice [16].
This solution shows a rapid increase of damping beyond a
characteristic frequency,

ω∗
D = 2

√
3P

5
, (43)

marking another characteristic frequency that scales also as P .
Numerical solutions of the CPA self-consistency equation

(35) using the full 6 × 6 dynamical matrix is also shown in
Fig. 6. We see that the asymptotic form (42) captures the
solution fairly well.

This special behavior of the imaginary part of the effective
medium spring constant κm is related to the phonon spectrum
of the kagome lattice. As we discussed in Sec. II, at low
frequencies, there is only very weak mixing between the
rotational branch, which is strongly affected by the NNN
bonds, and the acoustic phonon branches, which are only
very weakly affected by the NNN bonds. As a result, the
damping to the acoustic phonons is very weak. On the other
hand, at frequencies greater that ω∗

D , the transverse phonons
scatter strongly from the anomalous modes, and there is a
rapid increase in their damping. The weak scattering below
ω∗

D is not captured by the asymptotic form (42) for small κm

because the function κm(P,ω) in Eq. (42) was obtained using
the dominant small κm limit of the integral f (κm,ω). There
are, however, contributions to this integral that do not diverge
and that contribute a subdominant imaginary part to κm, even
when ω < ω∗

D , that is, of order P3ω2 at small ω correspond-
ing to Rayleigh scattering. More discussion is included in
Appendix B.

In the homogeneous case, the eigenvalues of the dynamical
matrix lead naturally to the identification of characteristic
frequencies ω∗

S and ω∗
M that vanish as

√
κ in the limit of

κ → 0. In the random case, we have to deal with both the
frequency dependence of κm(P,ω) and the fact that it is a
complex number, and we must ask whether these frequencies
have any real meaning. As discussed in Sec. II C, we can
extract frequencies from the static dynamical matrix in exactly
the same way that we did for the homogeneous case, and they
satisfy

ω∗
O = 3.85ω∗

D > ω∗
S = 2.72ω∗

D > ω∗
M = 2.22ω∗

D > ω∗
D.

(44)

Thus, all of these frequencies are greater than the frequency
ωD . As a result, the signatures in the phonon dispersion relation
including hybridization and the saddle point giving rise to the
logarithmic van Hove singularity in the density of states of
the uniform NNN kagome lattice are washed out by the strong
scattering, as is shown in Fig. 7.

C. Phonon density of states

The phonon density of states (DOS) can be calculated from
the retarded Green’s function through

ρ(ω) = − 1

π
Tr ImG (q,ω), (45)
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FIG. 7. (Color online) Scattering of phonons characterized using
the imaginary part of the transverse component of the phonon
response function divided by frequency ImχT T (q,ω)/ω as a function
of ω for various values of qy (we took qx = 0 to follow the isostatic
	M direction). The green line (b) in the bottom plane marks ω∗

D , the
blue (c) and red (a) lines marks the solution ω′ and ω′′ of the equation
ω2 − ωA[q,κm(P,ω)]2 = 0, which solves for the pole of the Green’s
function for the anomalous branch. The derivation of ωA is shown in
Appendix B.

where the trace is over both momentum q and the phonon
branches. Using this we obtain the phonon DOS of the effective
medium plotted in Fig. 8. For comparison, we also show the
phonon DOS of a periodic kagome lattice with the NNN spring
constant equal to κm(P,0), which is real valued.

For small frequencies, at which the imaginary part of the
CPA solution κm(P,ω) is very small, the two DOS are very

0.0 0.5 1.0 1.5 2.0
0
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6

8

ω

ρ
ω

0.000 0.002 0.004 0.006 0.008 0.010
0.00
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0.03

0.04
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ω

ρ
ω

(a)

(b)

FIG. 8. (Color online) (a) The phonon DOS at P = 0.01 (blue
circles) and P = 0.05 (green squares) of the CPA effective medium
and the pure kagome lattice with the NNN spring constant equal to
the zero-frequency effective medium value κm(P,ω) for P = 0.01
(purple line). The frequency is rescaled by P . (b) The phonon DOS
at small frequency for CPA effective medium [color scheme the same
as in (a)]. The Debye DOS defined in Eq. (46) is also shown as the
red dashed line.

close and can be fitted nicely by the Debye-like total DOS of
the transverse and the longitudinal phonons,

ρs(ω) = ω

(4π/
√

3)c2
L

+ ω

(4π/
√

3)c2
T

, (46)

where c2
L = 3k/16 and c2

T = k/16 are, respectively, the longi-
tudinal and transverse speed of sound (we have taken k = 1 as
stated earlier).

At the critical frequency ω∗
D , the imaginary part of κm(P,ω)

increases rapidly, inducing a rapid increase of the phonon
DOS. On the other hand, the periodic lattice exhibit a jump in
DOS at ω∗

M = √
2κm(P,0) corresponding to the minimum of

the phonon dispersion relations at the edge of the first Brillouin
zone. At ω∗

S = √
3κm(P,0) the DOS of the periodic lattice has

a logarithmic singularity, corresponding to the saddle point of
the phonon dispersion at QS  4(3κm/2k)1/4 on the isostatic
directions [15]. For the CPA effective medium, this singularity
is totally washed out due to the strong damping beyond ω∗

D ,
which is similar to the case of the square lattice [16].

D. Phonon scattering and the Ioffe-Regel limit

From the CPA solution at finite frequency, we identified a
frequency scale ω∗

D beyond which phonon scattering rapidly
increased. In this section we examine the scattering of phonons
in more detail.

The scattering of the transverse phonons is characterized by
the imaginary part of the phonon response function projected
to the transverse direction ImχT T (q,ω). The phonon response
function is defined as

χμ,ν(�,t ; �′,t ′) ≡ δuμ(�,t)

δFν(�′,t ′)
, (47)

where t and t ′ label time and μ and ν label the basis defined
in Eq. (12) of the six-dimensional space of u. This response
function is related to the phonon Green’s function through
χ = −G. The imaginary part of the transverse component of
this response function ImχT T (q,ω) characterizes the scattering
of the transverse phonon by disorder. ImχT T (q,ω) is calculated
for small momentum and frequency using the asymptotic
CPA solution (42) and shown in Fig. 7. Also shown in
the figure is the frequency at which the phonon Green’s
function of the anomalous branch has a complex pole, which
is solved from the equation ω2 − ωA[q,κm(P,ω)]2 = 0, which
characterizes the dynamic dispersion relation. We use the
form of ωA as defined in Appendix B for this calculation.
Below ω∗

D , the response function has Dirac-δ peaks at the
frequencies determined by the transverse phonon dispersion
relation ω = cT qy . Above ω∗

D the imaginary part ω′′ increases
rapidly, and the phonon peaks progressively broaden, showing
that the transverse phonon is no longer a good eigenstate of
the system. Furthermore, the characteristic frequencies for
the hybridization of the transverse phonon and the rotational
phonon into the anomalous mode and of the van Hove
singularities in the DOS are greater than ω∗

D , and as a result,
these phenomena are washed out by the strong scattering. As
a result, ω∗

O , ω∗
S , ω∗

M no longer play a meaningful role in the
dynamic response function.

The strength of the scattering can be characterized by
the Ioffe-Regel (IR) limit, which states that the plane-wave
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states are no longer well defined if the mean-free path lmfp

is comparable to or less than the phonon wavelength λ.
An equivalent condition is that the relaxation time becomes
comparable to the period of the wave, that is, ω′′ ∼ ω′. The
solution for the positions of the complex poles of the Green’s
function of the anomalous branch ω2 − ωA[q,κm(P,ω)]2 = 0
shows that the imaginary part ω′′ becomes comparable to the
real part ω′ not far beyond ω∗

D and that ω∗
IR ∼ ω∗

D ∼ �z. The
associated IR length scale can be derived from ω∗

D and cT to
be of order lIR ∼ √

k/κm ∼ �z−1.
This IR length scale differs from that in jammed solids,

ld ∼ �z−1/2 as derived in Refs. [47,48] (called ls in Ref. [31]).
This discrepancy can be attributed to the different scaling of
the shear modulus G. In the kagome lattice, the shear modulus
G is proportional to k and thus scales as �z0, whereas in
jammed solids G ∼ �z. Thus, the transverse speeds of sound
scales as (�z)0 and (�z)1/2 in these two cases, respectively.
In both cases, the frequency beyond which plane-wave states
are strongly scattered is ω∗ ∼ �z. Therefore, the scattering
length scales, cT /ω∗, are, respectively, l∗ ∼ (�z)−1 and ld ∼
(�z)−1/2 in the kagome lattice and jammed solids.

E. Comparison between different random nearly isostatic
systems

Up to now, three examples of random nearly isostatic
systems have been studied, including the random nearly
isostatic square lattice, the random nearly isostatic kagome
lattice discussed in this paper, and jammed solids near point
J . In all cases, the characteristic frequency for the onset of
the anomalous mode plateau ω∗ ∼ �z and the isostatic length
scale l∗ ∼ (�z)−1. On the other hand, the scaling of elastic
moduli in the three cases are different because of different net-
work architecture: In the square lattice G ∼ κm ∼ (�z)2 and
B ∼ k ∼ (�z)0, in the kagome lattice G,B ∼ k ∼ (�z)0, and
in jammed solids G ∼ �z and B ∼ k ∼ (�z)0 (a jump from
zero to finite value at point J ). As a result, the scattering length
scales are also different. The square lattice is anisotropic, and
we studied the scattering of the ux vibrations along qy direction
and found that the scattering length corresponded to the point
M in the first Brillouin zone, qy = π , or lx,IR = a. In the
kagome lattice lIR ∼ cT /ω∗ ∼ (�z)−1. In jammed solids, the
IR length scale ld ∼ cT /ω∗ ∼ (�z)−1/2.

In Ref. [31], Wyart studied transport properties of amor-
phous solids modeled by an isostropic random network near
its percolative rigidity threshold. In this system, both B and G

vanish as �z, and the crossover frequency between plane-wave
and strongly scattered states is ω∗ ∼ �z. Both the longitudinal
and the transverse sound velocities scale as (�z)1/2, and the
IR length lIR ∼ cL,T /ω∗ scales as (�z)−1/2 for both modes.
By ignoring the iω3 term, which is a reflection of Rayleigh
scattering in three dimensions, the CPA self-consistency
equation for low frequency in Ref. [31], Eq. (7), can be
rewritten in the form

k2
M − (�z)kM + ω2 = 0. (48)

The solution to this equation,

kM = �z

2

⎛
⎝1 +

√
1 − 4ω2

�z2

⎞
⎠ , (49)

has a form very similar to the that of the effective medium
NNN spring constant κm in the kagome lattice, as shown in
Eq. (42). Although kM (ω = 0) ∼ �z in the amorphous solid
and κm(ω = 0) ∼ (�z)2 in the kagome lattice scale differently
with �z, the frequency dependence of kM (ω)/kM (ω = 0) and
κm(ω)/κm(ω = 0) are almost identical: They are both of the
form a + b

√
1 − (ω/ω∗

D)2, where a and b are constants and
ωD ∼ �z. The ω3 term ignored in the preceding analysis leads
to Rayleigh scattering, ld ∼ ω−4 at small ω. In the case of the
kagome lattice, the subdominant terms in f (as discussed in
Sec. IV B) contribute ω2 in κ ′′

m, and lead to Rayleigh scattering
ld ∼ ω−3. The difference in the exponent in these two cases is
due to different spatial dimension.

To summarize, we examined the random nearly isostatic
kagome lattice via the CPA and we obtained effective medium
NNN spring constant κm that scales with the occupancy
probability P ∼ �z of the NNN bonds as P2 at small P .
Below the characteristic frequency ω∗

D ∼ P , there is only
weak damping of acoustic phonons arising from Rayleigh
scattering, whereas above ω∗

D scattering increases rapidly and
the system shows proximity to the IR limit. We compare
the kagome lattice to other nearly isostatic systems including
the square lattice, jammed solids near point J , and a model
random isotropic network [31]. The characteristic frequency
scale ω∗ ∼ �z, marking both the onset of the plateau of the
anomalous modes and the strong scattering of plain wave
states, is found to be a universal property of all of these systems.
The elastic modulus G,B and thus the transport length scale
depends on the network architecture and are not universal.
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APPENDIX A: THE DYNAMICAL MATRIX OF
THE KAGOME LATTICE

To construct the dynamical matrix of the kagome lattice,
we use the form of the elastic energy given in Eq. (7). Because
we consider the reference state of all bonds at their rest length,
we have fb = 0; thus, there is only projection of u onto the
direction along the bond. We first consider the case of a simple
lattice with one particle in each unit cell and rewrite Eq. (7) as

�U =
∑

b

kb

2

[(
u�1 − u�2

) · e�1�2

]2
=
∑
�,�′

∑
b

kb

2
u� · e�1�2

(
δ�,�1 − δ�,�2

)
× (δ�′,�1 − δ�′,�2

)
e�1�2 · u�′ , (A1)

where �1,�2 labels the two particles connected by the bond b.
Thus, the dynamical matrix D, as defined in Eq. (13), is given
by

D�,�′ =
∑

b

kbe�1�2

(
δ�,�1 − δ�,�2

)(
δ�′,�1 − δ�′,�2

)
e�1�2 . (A2)
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It is convenient to express the dynamical matrix in momentum
space via the Fourier transform defined in Eq. (15)

Dq,q′ =
∑
�,�′

e−iq·r�+iq′ ·r�′ D�,�′

=
∑
�,�′

e−iq·r�+iq′ ·r�′
∑
�1

′∑
�2

kbe�1�2

× (δ�,�1 − δ�,�2

)(
δ�′,�1 − δ�′,�2

)
e�1�2

= Nδq,q′
∑

b

kb(1 − e−iq·b)

× (1 − eiq·b)ebeb, (A3)

where the ′ above the summation of �2 denotes a summation
over particles connected to �1, and b = r�′ − r� represents the
bonds connected to an arbitrary particle (note the difference
from b in the previous equation, which represents all bonds
in the system). One can define the dynamical matrix for
translational invariant system as

Dq,q′ = Nδq,q′Dq,

Dq =
∑

b

kb(1 − e−iq·b)(1 − eiq·b)ebeb

=
∑
m

kmBm,qBm,−q, (A4)

where the summation m is over bonds connected to an arbitrary
particle, and the vector

Bm,q = (1 − e−iq·bm )ebm
(A5)

is a convenient way to express the dynamical matrix.
For the kagome lattice, which has three particles per unit

cell, one needs to modify the preceding construction of the
dynamical matrix, and in the basis of

u� = (u�,1,x,u�,1,y ,u�,2,x ,u�,2,y ,u�,3,x ,u�,3,y), (A6)

with particles 1,2,3 labeled as in Fig. 1, the dynamical matrix
can be expressed as

Dq,q′ = Nδq,q′Dq(k,κ),

Dq(k,κ) = k
∑

m∈NN

BNN
m,qBNN

m,−q

+ κ
∑

m∈NNN

BNNN
m,q BNNN

m,−q, (A7)

with the B vectors for NN bonds for each unit cell (each bond
is counted once)

BNN
1,q =

(
−1

2
, −

√
3

2
,
1

2
,

√
3

2
,0,0

)
,

BNN
2,q = (0,0,1,0, − 1,0),

BNN
3,q =

(
1

2
, −

√
3

2
,0,0, − 1

2
,

√
3

2

)
,

BNN
4,q =

(
−1

2
, −

√
3

2
,
1

2
e−i( 1

2 qx+
√

3
2 qy ),

√
3

2
e−i( 1

2 qx+
√

3
2 qy ),0,0

)
, (A8)

BNN
5,q = (0,0, − e−iqx ,0,1,0),

BNN
6,q =

(
1

2
, −

√
3

2
,0,0, − 1

2
e−i(− 1

2 qx+
√

3
2 qy ),

√
3

2
e−i(− 1

2 qx+
√

3
2 qy )

)
,

and the B vectors for NNN bonds for each unit cell

BNNN
1,q =

(√
3

2
e−iqx ,

1

2
e−iqx ,0,0, −

√
3

2
, − 1

2

)
,

BNNN
2,q = (0,0,0,e−i( 1

2 qx+
√

3
2 qy ),0, − 1),

BNNN
3,q =

(√
3

2
,
1

2
,0,0, −

√
3

2
e−i( 1

2 qx+
√

3
2 qy ),

−1

2
e−i( 1

2 qx+
√

3
2 qy )

)
,

BNNN
4,q =

(
−

√
3

2
,
1

2
,

√
3

2
e−i(− 1

2 qx+
√

3
2 qy ),

−1

2
e−i(− 1

2 qx+
√

3
2 qy ),0,0

)
, (A9)

BNNN
5,q = (0,0,0,1,0, − e−i(− 1

2 qx+
√

3
2 qy )),

BNNN
6,q =

(
−

√
3

2
eiqx ,

1

2
eiqx ,

√
3

2
, − 1

2
,0,0

)
.

APPENDIX B: CALCULATION OF THE ASYMPTOTIC FOR
OF THE f (κm,ω) FUNCTION AT SMALL κm

A. The reduced dynamical matrix

To calculate the asymptotic form of f (κm,ω) we first
simplify the problem by reducing the dynamical matrix into
the space of its three low-energy modes by integrating out
its three high-energy modes [15]. The resulting low-energy
dynamical matrix is conveniently represented in the basis of
longitudinal and transverse phonons and the rotational mode
(mode ν3),

(ν ′
1,ν

′
2,ν

′
3) =

(
qxν1 + qyν2

|q| ,
−qyν1 + qxν2

|q| ,ν3

)
, (B1)

in which the dynamical matrix takes the form

D̃(R) = k

⎛
⎜⎜⎝

3q2

16 0 q2

16 cos 3θ

0 q2

16 − q2

16 sin 3θ

q2

16 cos 3θ − q2

16 sin 3θ
q2

16 + 6κm

k

⎞
⎟⎟⎠ (B2)

in leading order of small κ and quadratic order in q (the cross
term of order κmq2 is considered higher order and has been
dropped).
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Eigenmodes of the dynamical matrix are identified by
diagonalizing D̃(R). Strong mixing between the transverse
mode and the rotational mode occurs along qx = 0 (i.e., θ = 0)
and symmetry equivalent isostatic directions. The resulting
two eigenvalues (by diagonalizing the lower right 2 × 2 block)
are

ω̃2
A(q) = q2

16
+ 3κm −

√(q2

16

)2
+ (3κm)2,

(B3)

ω̃2
B(q) = q2

16
+ 3κm +

√(q2

16

)2
+ (3κm)2,

obtained from the quadratic order of the renormalized 3 × 3
matrix D̃(R). The lower eigenvalue ω̃2

Acorresponds to the
anomalous mode, which is close to the transverse mode ν ′

2
(which is simply ν1 for qx = 0 direction) for qy � q∗

H =
4
√

3κm/k . For qy � q∗
H this anomalous mode corresponds

to the linear combination of (ν ′
2 − ν ′

3)/2, which is actually the
floppy mode of the kagome lattice in the κm → 0 limit, in
which ω̃A → 0.

B. Leading order divergence of f (κm,ω)

The function f (κm,ω), as given in Eq. (33), can be analyzed
using the simplified dynamical matrix (B2), which is the
leading order form in small κm and q. Thus, we can obtain
an asymptotic analytical calculation of the integral f by
projecting from the six-dimensional basis in Eq. (12) onto
the three-dimensional basis in Eq. (B1) built from the three
low-energy modes of the system

f (κm,ω) = −
∫

1BZ

d2q

8π2/
√

3
BNNN

1,−q · Gq(ω) · BNNN
1,q

 −
∫

1BZ

d2q

8π2/
√

3
BNNN

1,−q · �T�

· Gq(ω) · �T� · BNNN
1,q , (B4)

where

� =

⎛
⎜⎜⎝

qx√
3q

qy√
3q

qx√
3q

qy√
3q

qx√
3q

qy√
3q

− qy√
3q

qx√
3q

− qy√
3q

qx√
3q

− qy√
3q

qx√
3q

− 1√
3

0 1
2
√

3
− 1

2
1

2
√

3
1
2

⎞
⎟⎟⎠ (B5)

is the orthogonal transformation from the basis of u� =
(u�,1,x,u�,1,y ,u�,2,x,u�,2,y ,u�,3,x ,u�,3,y) to the basis (ν ′

1,ν
′
2,ν

′
3)

in Eq. (B1) with the longitudinal, transverse, and rotational
modes. In these new bases, the dynamical matrix is modified by
integrating out the high-energy modes and keeping to leading
order in small κm and q, which lead to the simple form of
Eq. (B2) [15], and thus the Green’s function can be analyzed
correspondingly. Note that we use the Green’s function G̃q(ω)
calculated from the renormalized dynamical matrix (B2),

so it is different from the bare value � · Gq(ω) · �T. The
transformed BNNN

1,q vector in the basis of (ν ′
1,ν

′
2,ν

′
3) takes the

form (
(e−iqx − 1)(3qx + √

3qy)

6|q| ,

(e−iqx − 1)(
√

3qx − 3qy)

6|q| , − 1

2
(1 + e−iqx )

)
. (B6)

The leading order term of this integral in small κm is from
ν ′

3, the anomalous mode, which has a small frequency of order√
κm over the whole range of momentum from qH to the edge

of the Brillouin zone along the isostatic directions, and thus
corresponds to diverging contributions to the f integral in
small κm.

For an approximation of the f integral at small κm, we use
the dynamical matrix of the form (B2), which is kept to leading
order in κm and quadratic order in q. At small momentum, the
dynamical matrix (B2) is diagonalized by the basis (ν ′

1,ν
′
2,ν

′
3),

and the Green’s function Gq(ω) takes the form of a diagonal
matrix

G̃q(ω) = Diag

(
1

ω2 − 3q2

16

,
1

ω2 − q2

16

,
1

ω2 − 6κm − q2

16

)
, (B7)

which is isotropic and valid for small momentum |q| < q∗
H .

Thus, the small momentum region contributes to f the
following terms:

f<(κm,ω) = −
∫

|q|<q∗
H

dqxdqy

8π2/
√

3

{
(1 − cos qx)(3qx + √

3qy)2

18
(
q2

x + q2
y

)(
ω2 − 3

(
q2

x+q2
y

)
16

)
+ (1 − cos qx)(

√
3qx − 3qy)2

18
(
q2

x + q2
y

)(
ω2 − q2

x+q2
y

16

)
+ 1 + cos qx

2
(
ω2 − 6κ − q2

x+q2
y

16

)
}

. (B8)

At large momentum, the dynamical matrix can be diago-
nalized to leading order in κm in the basis (ν ′

1,
ν ′

2+ν ′
3√

2
,
ν ′

2−ν ′
3√

2
), in

which B1,q takes the form(
(e−iqx − 1)(3qx + √

3qy)

6|q| ,
(e−iqx − 1)(

√
3qx − 3qy)

6
√

2|q|

− 1

2
√

2
(1 + e−iqx ),

(e−iqx − 1)(
√

3qx − 3qy)

6
√

2|q|

+ 1

2
√

2
(1 + e−iqx )

)
, (B9)

and the Green’s function Gq(ω) takes the form of a diagonal
matrix

G̃q(ω) = Diag

⎛
⎜⎝ 1

ω2 − 3
(
q2

x+q2
y

)
16

,
1

ω2 − 6κm − q2
x+q2

y

16

,
1

ω2 − 1
QM−QS

[
QMω2

S − QSω
2
M − qy

(
ω2

S − ω2
M

)]− 3q2
x

16

⎞
⎟⎠ , (B10)
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which is for the direction of qx = 0, and we have used the
approximated form (20) of ω2

A, which represents the dispersion
relation of the anomalous mode at large frequency, as depicted
in Fig. 4. For this calculation we use the small κm values
(ω∗

S)2 = 3κm and (ω∗
M )2 = 3κm.

For the other two directions one should change the third
term in Eq. (B10) from q2

x into the perpendicular direction

of the two isostatic directions accordingly. Thus, we need to
divide the first Brillouin zone into three parts (|θ − π/2| <

π/6, |θ − π/6| < π/6, and |θ − 5π/6| < π/6) and integrate
each of them out separately and then calculate the sum. Here
we just do the |θ − π/2| < π/6 part as an example, which
uses the form of the Green’s function in Eq. (B10). This part
of the integral is

f>, π
2
(κm,ω) = − 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫ |qy |√
3

− |qy |√
3

dqx

⎧⎪⎪⎨
⎪⎪⎩

(1 − cos qx)(3qx + √
3qy)2

18
(
q2

x + q2
y

) (
ω2 − 3

(
q2

x+q2
y

)
16

)

+ (2 + cos qx)q2
x + √

3(1 − cos qx)qxqy + 3q2
y

6
(
q2

x + q2
y

) (
ω2 − 6κm − q2

x+q2
y

16

) + (2 + cos qx)q2
x + √

3(1 − cos qx)qxqy + 3q2
y

6
(
q2

x + q2
y

) (
ω2 − QMω2

S−QSω2
M−qy

(
ω2

S−ω2
M

)
QM−QS

− 3q2
x

16

)
⎫⎪⎪⎬
⎪⎪⎭ , (B11)

and the integral for the other two directions can be calculated
similarly.

The leading order contribution to f (κm,ω) in small κm is
from the third term in Eq. (B11), which represents the isostatic

mode. We first consider the ω = 0 case, for which the leading
order term of f (κm,ω) is

fπ
2 ,l.o.(κm,0) = 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫ |qy |√
3

− |qy |√
3

dqx

(2 + cos qx)q2
x + √

3(1 − cos qx)qxqy + 3q2
y

6
(
q2

x + q2
y

) (QMω2
S−QSω2

M−qy

(
ω2

S−ω2
M

)
QM−QS

+ 3q2
x

16

)

 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

(2 + cos qx)q2
x + √

3(1 − cos qx)qxqy + 3q2
y

6
(
q2

x + q2
y

) π√
QMω2

S−QSω2
M−qy

(
ω2

S−ω2
M

)
QM−QS

4√
3
δ(qx)

 2(1 − √
2/3)√

κm

, (B12)

where we took the limit of κm → 0 and make use of the identity
lima→0

1
a2+x2 = (π/a)δ(x). Adding up the contribution from

θ = π/6 and θ = 5π/6 part we have

fl.o.(κm,0)  5(1 − √
2/3)√

κm

. (B13)

Other terms in Eqs. (B8) and (B11) contribute higher order
terms in small κm, and are discussed in Sec. IV C.

In the case of ω > 0, the leading order term can be
calculated in a similar way

fπ
2 ,l.o.(κm,0) = − 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫ |qy |√
3

− |qy |√
3

dqx

(2 + cos qx)q2
x + √

3(1 − cos qx)qxqy + 3q2
y

6
(
q2

x + q2
y

) (
ω2 − QMω2

S−QSω2
M−qy

(
ω2

S−ω2
M

)
QM−QS

− 3q2
x

16

)

 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

1

2

2πi(16/3)

2(4/
√

3)

√
ω2 − QMω2

S−QSω2
M−qy

(
ω2

S−ω2
M

)
QM−QS

 2√
3κm

(√
3 − ω2

κm

−
√

2 − ω2

κm

)
. (B14)

The qx integral can either be evaluated using the δ func-
tion trick by assuming an infinitesimal imaginary part of
ω(ω → ω + iδ) or by extending the integral limit of qx

to (−∞,∞) (because the integrand decays fast when qx

is large) and using contour integral. We also assumed that

|
√

QMω2
S−QSω2

M−qy (ω2
S−ω2

M )
QM−QS

− ω2| � 1 to make the simplification
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that cos qx  1. Adding up the contribution from θ = π/6 and
θ = 5π/6 part we have

fl.o.(κm,ω)  5√
3κm

(√
3 − ω2

κm

−
√

2 − ω2

κm

)
. (B15)

Other terms in Eqs. (B8) and (B11) contribute higher order
terms in small κm and are discussed in Sec. IV C.

C. Correction at small frequencies

To get the correction to the asymptotic solution of κm(P,ω)
as in (B15), in particular the small imaginary part rather than
zero at small frequency, we calculate the imaginary part of f

at small frequencies and solve for the correction to κm(P,ω)
perturbatively in the CPA equation.

Because we consider small frequencies ω2 < κm, the con-
tribution is from the two acoustic modes, which are isotropic,
and thus can be calculated as

ImfL  − 2

8π2/
√

3

∫ q∗
H

0
dq

∫ 2π

0
dθq

× Im

[
q2 cos2 θ (3 cos θ + √

3 sin θ )2

18
(
ω2 − 3

16q2 + iδ
)

]
 20

27
ω2,

(B16)

and

ImfT  − 2

8π2/
√

3

∫ q∗
H

0
dq

∫ 2π

0
dθq

× Im

[
q2 cos2 θ (

√
3 cos θ − 3 sin θ )2

18
(
ω2 − 1

16q2 + iδ
)

]
 4ω2.

(B17)

Thus we have the correction to Eq. (B15) that is valid for small
ω as

f (κm,ω) = 5√
3κm

(√
3 − ω2

κm

−
√

2 − ω2

κm

)
+ i

128

27
ω2.

(B18)

We then solve the leading order CPA equation in small κm

nonaffine regime perturbatively using this corrected form of f

at small ω and get

κm(P,ω) = κ (0)
m − 256

135(1 − √
2/3)

(
κ (0)

m

)3/2
iω2, (B19)

where κ (0)
m is the zeroth-order solution (42). This correction is

very small and cannot be observed in our numerical solutions
within precision.
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