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Operational approach to fluctuations of thermodynamic variables in finite quantum systems
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In this paper we present a quantum approach to the old problem of temperature fluctuations. We start by
observing that according to quantum thermodynamics, fluctuations of intensive parameters like temperature
cannot exist. Furthermore, such parameters are not observables, so their estimation has to be done indirectly. The
respective temperature estimate based on quantum measurements of the energy is shown to fluctuate according
to the well-known formula �T 2 = kBT 2

C
, but only within a certain temperature range and if the system is not too

small. We also calculate the fourth-order correction term, becoming important at higher temperatures. Finally we
illustrate our results with a concrete model of n spins.
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I. INTRODUCTION

Fluctuations within a thermodynamical setting have long
since attracted considerable interest [1]. These refer to exten-
sive and intensive thermodynamic variables [1,2] as well as
work and heat along certain thermodynamic processes [3–5].
The nature and operational accessibility of such fluctuations,
however, often lack clarity. In part this is due to the fact that
neither intensive variables nor heat and work are observables
in the strict sense (see the following discussion).

In statistical mechanics a system might be described by a
canonical ensemble. In this case the ensemble average of the
energy variance �E could—under the ergodic hypothesis—
be identified with the corresponding time average associated
with the spontaneous exchange of energy between system and
environment.

On the other hand, from the point of view of quantum
thermodynamics [6], fluctuations proper cannot exist for
an individual system appropriately embedded in a large
environment, since the environment enforces a quasistationary
state on the system, implying that energy and temperature
should be constant.

The concept of temperature fluctuations has caused long-
standing controversies [7,8] that have not been resolved
satisfactorily to this day [9]. Under exactly what conditions
should one be able to test or confirm the well-known relation
for the temperature variance [1,10],

�T 2 = T 2

C
, (1)

with C being the heat capacity of the respective system (the
Boltzmann constant kB is set to unity)? It is fairly obvious that
any attempt to do so will have to be based on data resulting
from some measurement scenario. Only then can one hope to
give fluctuations a well-defined, that is, operational meaning.

In a previous paper [11] we have shown how including
measurements in a quantum thermodynamical setting leads
to a situation in accordance with statistical mechanics. Here
we will show that with respect to fluctuations, the essential
link is also provided by measurement: While implemented
as a well-controlled act, its result is quantum-mechanically
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undetermined. We argue that although the temperature itself
does not fluctuate, there will be fluctuations for the temperature
estimate based on energy measurements. Formula (1) is
recovered for modular systems within a certain temperature
window; possible deviations from this formula will be dis-
cussed. Finally, we consider a system consisting of n spins to
illustrate our general considerations.

II. TEMPERATURE ESTIMATION

Temperature is not an observable, that is, it can only
be measured indirectly (for example, by measuring energy).
We assume the mean energy to be a bijective function of
temperature,

〈E〉 = f (T ), (2)

which thus can be inverted to give T = f −1(〈E〉). However,
the average energy on the right-hand side can only be obtained
by carrying out (in principle infinitely) many measurements.
Hence, the question of how to get an estimate for temperature
after a single energy measurement arises. Since the best guess
for a random variable is its average [12], an obvious estimate
for temperature in the case of having measured energy Em is

Test = f −1(Em). (3)

At this point it is already clear that the so-defined temperature
estimate Test will fluctuate, since a quantum measurement
of energy will cause the system to collapse into one of
the energy eigenstates Em, implying different values Test.
Thus, fluctuations of energy and the estimated temperature
are directly correlated.

We now want to calculate the expectation value of the
estimated temperature and its fluctuations. To do so, the
first step is to make an approximation for the occupation
probabilities ω(E). In general, ω(E) is given by the Boltzmann
distribution ω(E) = g(E)e−E/T , where g(E) is the degeneracy
(we set kB to unity). Let us assume that our system is modular,
or composed of many identical parts. Such a modular structure
is typical in nature as discussed in [6]. This allows us to apply
the so-called central limit theorem, which states that a random
variable, which is the sum of n identically distributed random
variables, is in good approximation normally distributed if
n is sufficiently large. In our case, this means that the total
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energy E, which is the sum of the energies of the subsystems,
will be approximately Gaussian distributed if the number of
subsystems is large enough:

ω(E) ≈ 1√
2πσ

e
− 1

2

(
E−〈E〉

σ

)2

. (4)

With this, the expectation value for the temperature estimate
is given by

〈Test〉 =
∫ ∞

−∞
ω(E)Test(E)dE. (5)

In general, this integral cannot be solved analytically.
However, since the distribution (4) is peaked at 〈E〉,
we can perform a Taylor expansion of Test(E) = f −1(E)
around this point in energy space. Therefore, we use the
fact that the derivative of the inverse function can be
expressed as

d

dE
f −1(E) = 1

f ′[f −1(E)]
, (6)

and that f −1(〈E〉) = T . This leads to the expansion up to
fourth order:

Test(E) = T + 1

f ′(T )
(E − 〈E〉) − f ′′(T )

2[f ′(T )]3
(E − 〈E〉)2

+ 3[f ′′(T )]2 − f ′(T )f ′′′(T )

6[f ′(T )]5
(E − 〈E〉)3

+ −15[f ′′(T )]3 + 10f ′(T )f ′′(T )f ′′′(T ) − [f ′(T )]2f (4)(T )

24[f ′(T )]7
(E − 〈E〉)4

+O[(E − 〈E〉)5]. (7)

Plugging this into (5) leads to analytically solvable integrals
of the form

Ia = 1√
2πσ

∫ ∞

−∞
(x − μ)ae− 1

2 ( x−μ

σ )2

dx

= 1√
π

2
a
2 −1[1 + (−1)a]σa�

(
a + 1

2

)
, (8)

which are zero for odd a. The nonvanishing integrals in our
expansion read I0 = 1, I2 = σ 2, I4 = 3σ 4.

Here σ can be expressed by the heat capacity C(T ) = f ′(T )
according to

σ 2 = �E2 = 〈E2〉 − 〈E〉2 = T 2C(T ), (9)

which can be easily shown by standard methods of
statistical mechanics using the partition sum. This fi-
nally leads to the expectation value for the temperature
estimate

〈Test〉 = T − T 2 C ′(T )

2[C(T )]2
− T 4 15[C ′(T )]3 − 10C(T )C ′(T )C ′′(T ) + [C(T )]2C ′′′(T )

8[C(T )]5
+ · · · . (10)

As one can see, the expectation value of Test would equal the true temperature T in the case of a constant heat capacity. Otherwise,
there will be deviations that increase with increasing temperature and decreasing subsystem number n since C is extensive (i.e.,
the first correction term is of the order 1/n, the second one is of the order 1/n2, etc.). The higher-order terms typically become
more important for higher temperatures because of the factors T 2, T 4, . . . . However, this is no systematic expansion in T , since
the heat capacity C also depends on the temperature.

Let us now turn to the fluctuations of the estimated temperature characterized by �T 2
est = 〈T 2

est〉 − 〈Test〉2. 〈T 2
est〉 can be

calculated in the same way as described for 〈Test〉. We obtain

〈T 2
est〉 = T 2 + T 2f ′(T ) − T 3f ′′(T )

[f ′(T )]2

−15T 5[f ′′(T )]3 − 5T 4f ′(T )f ′′(T )[3f ′′(T ) + 2Tf ′′′(T )] − T 4[f ′(T )]2[4f ′′′(T ) + Tf (4)(T )]

4[f ′(T )]5
+ · · · . (11)

This finally leads us to

�T 2
est = T 2

C(T )
+ T 4

(
7[C ′(T )]2

2[C(T )]4
− C ′′(T )

[C(T )]3

)
+ · · · . (12)

Thus, in lowest order, we confirm Eq. (1). This means this formula is valid for sufficiently large systems as well as not too
high temperatures. Moreover, the formula would be exact if the heat capacity C(T ) were independent of temperature, since all
higher-order terms contain derivatives of C(T ).
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Combining (9) and (12) we recover a kind of “thermodynamic
uncertainty relation” [13,14]:

�E2�T 2
est = T 4 + O

(
1

n

)
. (13)

For fixed temperature this uncertainty product is also fixed and
thus appears to leave no room for variations. But the relation
indicates that any increase of fluctuations in energy (e.g., by
increasing the size of the thermometer system and thus of C)
has to be counterbalanced by a reduction of the fluctuations of
the temperature estimate.

Looking at the expansion, one may expect the formulas
(10)–(13) to be valid for arbitrary low temperatures. This is not
the case, though, since at low temperatures the approximation
(4) breaks down for finite systems: Below a certain temperature
the occupation probabilities can no longer be described by a
normal distribution.

How can we get an estimate for the lower bound? Let us
set the energy of the ground state to zero. Then occupation
probabilities for E < 0 following from (4) should be negligibly
small, if the normal distribution should be a good approxima-
tion. To achieve this, we demand the expectation value of the
distribution to be larger than three times the standard deviation:
〈E〉 � 3σ . This guarantees that 99.87% of the occupation
probability is at E > 0. Expressing this condition in terms
of the heat capacity yields

3Tmin

√
C(Tmin) =

∫ Tmin

0
C(T ′) dT ′ (14)

as a criterion for the minimal temperature Tmin below which
the fluctuation formula (1) may break down.

Until now, the discussion has been based on a single mea-
surement. If one wants to improve the estimate of temperature
(e.g., for small systems, where the fluctuations of Test tend to
become large), one has to perform more measurements. It is
clear that for modular systems with n parts the probability of
measuring the total energy E after j independent measure-
ments equals the probability for measuring energy E for a
system of jn parts after a single measurement: ω(n,j )(E) =
ω(jn,1)(E). This means that calculating the temperature by
averaging over several measurements amounts to an effective
increase of system size, thus reducing the fluctuations. In
turn, this demonstrates that the formula (1) can be applicable
only for a single measurement; whenever an average over
more measurements is used, the number of measurements will
modify the fluctuations of estimated temperature.

III. EXAMPLE: THE n SPIN MODEL

In this section, we want to apply our general considerations
to a concrete model. The quantum system we consider here
is a set of n spins, with energy splitting ε each, which we
first suppose to be without mutual interaction. Energy levels
are indexed by r = 0, . . . , n, with Er = rε and degeneracy
g(Er ) = ( n

r
). This system is prepared in a canonical state by

coupling with a bath at T so that its mean energy is

〈E〉
T

= f (T ) = nε

1 + exp
(

ε
T

) . (15)

According to (3) the temperature estimate is inferred from

Test(Em) = ε

ln
(

nε
Em

− 1
) (16)

after energy Em has been measured.

FIG. 1. (Color online) 〈Test〉T
as compared to 〈Test〉T

= T (dash-dotted line) and X(T ) = �T 2
est

�2 as compared to X(T ) = 1, both as a function
of T for n = 7, 51, and 501.
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FIG. 2. (Color online) Discrete probability distribution of Y = Test−T

�
compared with the Gaussian form assumed by fluctuation theory,

p(Y ) = 1√
2π

exp(−Y 2/2) (dash-dotted line).

Obviously, Test defined this way is singular at Em = nε
2 . To

avoid inconsistencies we introduce a cutoff temperature T cut

redefining Test(Em) for Em > 〈E〉T cut by Test(Em) = T cut. If we
choose T cut large enough (note that we are interested in low
temperatures), the probability of measuring Em > 〈E〉T cut is
negligible, ensuring that the results will not depend on T cut.

We now compare the (exact) fluctuations of the estimated
temperature �T 2

est based on

�T 2
est = 1

Z(T )

n∑
r=0

(
n

r

)
exp

(
−Er

T

)
T 2

est(Er )

−
[

1

Z(T )

n∑
r=0

(
n

r

)
exp

(
−Er

T

)
Test(Er )

]2

(17)

with the fluctuation formula [the lowest order of (12)]

�2 = T 2

C
= T 4[1 + exp(ε/T )]2

nε2 exp(ε/T )
. (18)

In the second step in Eq. (18), we have used the analytical form
for the heat capacity C(T ) = ∂

∂T
〈E〉

T
derived from Eq. (15).

As discussed in the preceding section, this formula should
be valid in a temperature window bounded from below by
condition (14), which reads for the present model,

Tmin = ε

log(n/9)
, (19)

and from above by the fact that higher-order terms in (12)
should still be negligible, which is roughly the case for
T < Tmax = 0.05

√
n ε. It is clear that if the lower bound Tmin

becomes larger than the upper bound Tmax, the fluctuation
formula should no longer apply. This turns out to be the case
for small systems of less then 82 spins.

The curves of X(T ) = �T 2
est

�2 as a function of T for n = 7, 51,
and 501 are given in Fig. 1 together with those of 〈Test〉T

(which
is, as said, not necessarily equal to T ). As expected, X(T ) = 1
(dash-dotted line) is definitively unsuitable below n of the
order of about 100 spins. For bigger systems there is a range
of temperatures where X(T ) = 1 becomes valid. This domain
of system size and temperature coincides with the conditions
for the measurement protocol to be considered acceptable,
with 〈Test〉T

≈ T .
Figure 2 shows the probability distribution of Test for

different values of n and T . As one can see, the Gaussian

approximation breaks down at low temperatures as well as for
small systems, which explains the deviations form X(T ) = 1
in these areas.

Interactions between the spins will influence the present
results. It can be shown that for weak interactions the initial
peak in the curves X(T ) (see Fig. 1) slightly shifts toward
higher temperature.

IV. CONCLUSION

In this paper we have tried to shed new light on the
old debate about fluctuations of thermodynamic variables, in
particular of temperature. We have argued that according to
quantum thermodynamics, temperature is a fixed parameter
T determined by the large environment. Thus, there are no
fluctuations “when nobody looks.”1

However, if one wants to estimate temperature from a single
energy measurement, the estimated temperature, indeed, will
fluctuate. These fluctuations are based neither on mere formal
calculation nor on experimental error but actually represent
a fundamental limit for the instantaneous determination of
temperature. The fluctuations of Test are directly connected
with the energy fluctuations due to the measurement and
therefore with the measurement postulate of quantum mechan-
ics. This connection can be expressed by the thermodynamic
uncertainty relation (13).

We found that Test fluctuates according to the well-known
fluctuation formula (1), subject, however, to some conditions:
On the one hand, the actual temperature T has to be not too
low, since otherwise the occupation probabilities will no longer
be Gaussian distributed, which was assumed for deriving
the formula. This deviation from the Gaussian distribution
typically also leads to a deviation of the fluctuations from
formula (1), as shown for the concrete model of n spins. On the
other hand, for too high temperatures, higher-order correction
terms will become important. The range of temperatures in

1This statement is a reminder of D. Mermin’s seminal paper entitled
“Is the moon there when nobody looks? Reality and the quantum
theory”, Physics Today, April 1985, pp 38–47. The question points to
the fact that “observations not only disturb what has to be measured,
they produce it”.
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which the formula is valid becomes larger and larger for
increasing size of the system. Therefore, it is not surprising
that this formula can be confirmed already for mesoscopic
systems, as done in [15].

The fluctuations of Test can be reduced at will by averaging
over more and more (independent) measurements [16].
Formula (1), therefore, is valid only if temperature is estimated
via a single measurement, which is, in a sense, local in time.
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