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Light impurity in an equilibrium gas
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We investigate the evolution of a light impurity particle in a Lorentz gas where the background atoms are in
thermal equilibrium. As in the standard Lorentz gas, we assume that the particle is negligibly light in comparison
with the background atoms. The thermal motion of atoms causes the average particle speed to grow. In the case
of the hard-sphere particle-atom interaction, the temporal growth is ballistic, while generally it is sublinear. For
the particle-atom potential that diverges as r−λ in the small separation limit, the average particle speed grows
as tλ/[2(d−1)+λ] in d dimensions. The particle displacement exhibits a universal growth, linear in time, and the
average (thermal) speed of the atoms. Surprisingly, the asymptotic growth is independent of the gas density and
the particle-atom interaction. The velocity and position distributions approach universal scaling forms which
are non-Gaussian. We determine the velocity distribution in arbitrary dimension and for arbitrary interaction
exponent λ. For the hard-sphere particle-atom interaction, we compute the position distribution and the joint
velocity-position distribution.
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I. INTRODUCTION

The goal of this work is to investigate the behavior of an
impurity particle (particle in short) in a monoatomic gas. We
focus on the limit when the particle is negligibly light in com-
parison with background atoms. In other words, the particle is
affected by collisions with atoms, while atoms do not “feel” the
presence of the particle. We want to understand the evolution
of the particle velocity and displacement distribution. This
work extends the results previously derived in [1].

The problem is a natural generalization of the standard
Lorentz gas [2–7] where scatters are assumed to be immobile.
The speed of the particle remains constant in the framework
of the Lorentz model. In our model the behavior is completely
different and can be simply understood using arguments
from the equipartition theorem (when the background gas
has a positive temperature the average speed of the particle
increases without a bound since the particle “tries” to reach an
equilibrium with the background atoms).

The problem is also reminiscent of the model originally
proposed by Fermi [8], and later refined by Ulam [9], to
explain the acceleration of interstellar particles and cosmic
rays. Fermi’s acceleration mechanism has been mostly studied
using methods of dynamical systems (see [10] and references
therein); an application of kinetic theory to Fermi’s mechanism
has been presented in [11].

Here we analyze the behavior of the light particle in an
equilibrium gas using the Boltzmann equation framework. The
Boltzmann equation [12] is the basic tool in elucidating the
properties of transport phenomena. The nonlinear integrodif-
ferential Boltzmann equation is so formidable, however, that
apart from the equilibrium Maxwell-Boltzmann distribution
[13] there are essentially no solutions to the Boltzmann
equation [14]. The standard Lorentz gas model where a point
particle is elastically scattered by immobile hard spheres is
described by the Lorentz-Boltzmann equation [2], which is
linear and, not surprisingly, amenable to analytical treatments.
The Lorentz gas has played an outstanding role in concrete
calculations (e.g., of the diffusion coefficient) and in the

conceptual development of kinetic theory [3,4]. Yet the very
applicability of the Boltzmann framework to the Lorentz gas
is questionable—when the scatters are fixed, the molecular
chaos assumption underlying the Boltzmann equation cannot
be justified [3–7].

If, however, the background atoms move and collide with
each other, the molecular chaos assumption holds in the
dilute limit and the (properly generalized) Lorentz-Boltzmann
equation must be applicable as long as the mass of the
particle is infinitesimally small so that it does not affect the
motion of atoms. Moreover, since the (average) particle speed
continues to grow, it eventually greatly exceeds the typical
velocities of background atoms. This makes it possible to
simplify the most difficult term in the Boltzmann equation,
the so-called collision integral; mathematically, an integral
operator becomes a differential one and the integrodifferential
Lorentz-Boltzmann equation reduces to a partial differential
equation.

The unlimited velocity growth suggests that the particle
velocity distribution approaches a scaling form. The scaled
velocity distribution satisfies an ordinary differential equation
(Secs. II–IV) which admits a simple solution; for the hard-
sphere atoms, the scaled velocity distribution is exponen-
tial (Secs. II and III). The Boltzmann equation approach
also describes the spatial distribution of the particle, yet
extracting the density distribution is much more difficult as
it does not obey a closed equation, so one must rely on the
joint distribution function that simultaneously describes the
probability density for the position and velocity. In Sec. V
we outline the evolution of the displacement using heuristic
arguments and exact calculations in one dimension based on
the velocity correlation functions. In Sec. VI we derive kinetic
equations describing the joint distribution in the long time
limit. In Sec. VII we investigate the density profile of the
hard-sphere gas by utilizing the moment approach and in
Sec. VIII we compute the joint distribution. We report the
results of numerical simulations in Sec. IX and summarize our
findings in Sec. X.

011107-11539-3755/2011/83(1)/011107(20) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.011107


L. D’ALESSIO AND P. L. KRAPIVSKY PHYSICAL REVIEW E 83, 011107 (2011)

II. ONE DIMENSION

As a warmup, consider the one-dimensional case. This may
appear physically dubious as the particle is caged between
two adjacent atoms, so the molecular chaos assumption (that
is, the lack of correlations between precollision velocities)
underlying the Boltzmann approach is certainly invalid in one
dimension. A Boltzmann equation, however, makes sense if
we consider the situation when in each collision the scattering
occurs with a certain probability (otherwise, the particle and
an atom just pass through each other). This one-dimensional
Boltzmann equation sheds light on the three-dimensional case.
Therefore, it has been proven useful as a toy model and it has
been studied in a number of one-dimensional settings (see,
e.g., [7,15–18]).

The Boltzmann equation for the particle velocity distribu-
tion f (v,t) reads

∂f (v,t)

∂t
=

∫ ∞

−∞
du |v − u| P (u)[f (2u− v,t) − f (v,t)]. (1)

Here

P (u) = ρ√
2πT

e−u2/2T (2)

is the equilibrium velocity distribution of the background
atoms corresponding to temperature T (we set the atomic
mass to unity). We shall see, however, that we do not need
the detailed form (2) of the equilibrium Maxwell-Boltzmann
distribution. To establish the asymptotic behavior of f (v,t)
it is sufficient to assume that P (u) is an even function,
P (u) = P (−u). Even a weaker condition that the average
velocity of atoms vanishes,∫ ∞

−∞
duuP (u) = 0, (3)

suffices. Whenever (3) holds, the long-time behavior depends
only on the second moment of P (u), which essentially defines
the temperature: ∫ ∞

−∞
duu2P (u) = ρT . (4)

We shall see that in the long time, more precisely when

t � ρ−1T −1/2, (5)

the Boltzmann equation (1) for the particle velocity distribu-
tion simplifies to

∂f

∂τ
= ∂f

∂v
+ v

∂2f

∂v2
, τ = 2ρT t. (6)

This kinetic equation admits the scaling solution

f (v,t) = 1

2τ
e−|v|/τ . (7)

To derive (6) and (7) we first simplify the collision integral
in Eq. (1) in the t → ∞ limit. Since f (v,t) = f (−v,t), it
suffices to investigate the v > 0 region [19]. Moreover, we
can replace |v − u| with v − u since the region v < u where
the replacement is invalid provides a negligible contribution
in the long-time limit: P (u) is very small in this region. More
precisely, the preceding simplification applies if the average
speed of atoms 〈u〉 ∼ √

T is much smaller than the particle

velocity v. This is our working assumption which will be
checked a posteriori. When 〈u〉 	 v we can additionally
expand f (2u − v) that appears in the collision integral in
Eq. (1) into a Taylor series:

f (2u − v) = f (v) − 2u
∂f (v)

∂v
+ 2u2 ∂2f (v)

∂v2

− (2u)3

3!

∂3f (v)

∂v3
+ (2u)4

4!

∂4f (v)

∂v4
+ · · · .

Plugging this expansion into Eq. (1) and computing the
integrals over u we obtain

∂f

∂τ
= ∂f

∂v
+ v

∂2f

∂v2
+ 2T

(
∂3f

∂v3
+ v

∂4f

∂v4

)
+ · · · . (8)

In computing the integrals leading to the first two terms on the
right-hand side of (8), it suffices to use the integral relations
(3) and (4). The next two terms are obtained using the integral
relations∫ ∞

−∞
duu3P (u) = 0,

∫ ∞

−∞
duu4P (u) = 3ρT 2. (9)

The first relation in (9) is valid for any symmetric velocity
distribution, P (u) = P (−u), while the second is derived from
the equilibrium Maxwell-Boltzmann distribution (2).

The first two terms on the right-hand side of (8) scale
as τ−1 and the next two terms scale as T τ−3, so they are
asymptotically negligible when τ � √

T ; that is, the average
particle speed greatly exceeds the average speed of atoms.
The two following terms [which have not been displayed in
(8)] contain T 2 ∂5f

∂v5 and T 2v
∂6f

∂v6 , so they scale as T 2τ−5 and

therefore they are even smaller. Thus, in the τ � √
T limit

[which is given by Eq. (5) in the original variables], Eq. (8)
indeed reduces to Eq. (6) in the leading order.

The form of Eq. (6) suggests to seek the scaling solution of
the form

f (v,τ ) = τ−1�(w), w = v/τ. (10)

Plugging (10) into (6) we obtain an ordinary differential
equation for �(w) which is solved to yield �(w) = Ce−w.
Recalling that the particle velocity distribution is even and
using the normalization condition

∫
dvf (v,t) = 1 fixes the

amplitude C = 1/2 and leads to the announced result (7).
Having determined the scaling solution (7), we would like

to understand if an arbitrary solution f (v,t) approaches the
scaling solution (7) in the long-time limit. The answer to
this question is presumably affirmative, at least when the
initial velocity distribution f (v,t = 0) quickly decays when
|v| → ∞. Yet to prove this assertion even for simplest
initial velocity distributions like f (v,t = 0) = δ(v) is hard.
Analytical arguments showing that the scaling solution (7) is
indeed an attractor are presented in Appendix A.

III. HARD-SPHERE GAS

Consider now the most natural three-dimensional situation
and assume that atoms are hard spheres of radius a. We ignore
both the mass and the size of the particle. The latter assumption
is not crucial—if the particle is a sphere of radius b, it suffices
to replace a with a + b in the following formulas.
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We again employ the Boltzmann equation approach. This
framework is applicable only in the diluted limit; for the hard-
sphere gas, this means that the volume fraction occupied by
atoms is small: ρ 4π

3 a3 	 1 (here ρ is the number density of
background atoms).

The Boltzmann equation reads

∂f (v,t)

∂t
=

∫
duP (u)ga2

∫
De[f (v′,t) − f (v,t)]. (11)

Here e is the unit vector pointing to the position of the particle at
the moment when it hits the sphere. The postcollision velocity
v′ of the particle can be expressed via v,e, and the relative
velocity g = u − v:

v′ = v + 2e(g · e). (12)

In Eq. (11) we have also used the shorthand notation De for
the integration measure over angular coordinates. For the hard-
sphere gas, this integration measure reads [4]

De = (g · e)

g
θ (g · e) d2e. (13)

In the preceding expression θ (·) is the Heaviside step function
and d2e is the standard angular integration measure.

To simplify the Boltzmann equation (11) we shall proceed
as in one dimension. Since the particle velocity distribution
is (asymptotically) isotropic, let us treat f (v) as a function of
V = v2 = (v · v). Squaring (12) we get

V ′ = V + 4(v · e)(g · e) + 4(g · e)2 = V + 4(u · e)(g · e).

Using this result and expanding f (v′) = f (V ′) into a Taylor
series we obtain

f (V ′) = f (V ) + 4(u · e)(g · e)
∂f

∂V

+ 8(u · e)2(g · e)2 ∂2f

∂V 2
+ · · · .

Using this expansion we simplify (11) to

∂f

∂t
= 4

∂f

∂V

∫
duP (u)ga2

∫
De (u · e)(g · e)

+ 8
∂2f

∂V 2

∫
duP (u)ga2

∫
De(u · e)2(g · e)2. (14)

As in the one-dimensional case, it suffices to keep only
the terms with the first- and second-order derivatives in V ;
the terms with higher order derivatives are asymptotically
negligible. The angular integrals in Eq. (14) are computed (see
Appendix B) to yield∫

De(u · e)(g · e) = π

2
(g · u), (15a)∫

De(u · e)2(g · e)2 = π

12
[3(g · u)2 + g2u2]. (15b)

Inserting (15a) and (15b) into Eq. (14) we obtain

1

2πa2

∂f

∂t
= v

3

∂2f

∂V 2

∫
duP (u)[3(v · u)2 + v2u2]

+ ∂f

∂V

∫
duP (u)g(g · u). (16)

In the first integral we already replaced g with −v, which is
correct in the leading order. In the second integral we should
be more careful. We write

g(g · u) = −v(v · u) + v−1[(v · u)2 + v2u2] + · · · .
The integral that contains the leading term vanishes since∫

duP (u)u = 0. Thus, Eq. (16) becomes

1

2πa2

∂f

∂t
= v

3

∂2f

∂V 2

∫
duP (u)[3(v · u)2 + v2u2]

+ 1

v

∂f

∂V

∫
duP (u)[(v · u)2 + v2u2]. (17)

Using relations∫
duP (u)u2 = 3ρT ,

∫
duP (u)(v · u)2 = v2ρT , (18)

we recast (17) into

∂f

∂τ
= 8v

∂f

∂V
+ 4v3 ∂2f

∂V 2
, τ = πa2ρT t. (19)

Since V = v2, we have

∂

∂V
= 1

2v

∂

∂v
,

∂2

∂V 2
= − 1

4v3

∂

∂v
+ 1

4v2

∂2

∂v2
. (20)

Using these identities we rewrite (19) as

∂f

∂τ
= 3

∂f

∂v
+ v

∂2f

∂v2
. (21)

This kinetic equation admits the scaling solution

f (v,t) = 1

8πτ 3
e−v/τ . (22)

For instance, the average speed of the particle is

〈v〉 =
∫ ∞

0
vf (v,t)4πv2dv = 3τ,

and more generally

〈vn〉 = (n + 2)!

2
τn. (23)

The preceding analysis can be straightforwardly extended
from three to d dimensions. The results up to (14) require
obvious amendments; for example, in Eq. (14) we must replace
a2 with ad−1. The integrals (15a) and (15b) become (see
Appendix B)∫

De(u · e)(g · e) = A(u · g), (24a)∫
De(u · e)2(g · e)2 = dB − A

d − 1
(u · g)2 + A − B

d − 1
g2u2,

(24b)

where A, B are constants defined by integrals:

A = 1

g2

∫
De(g · e)2, B = 1

g4

∫
De(g · e)4. (25)

The governing kinetic equation that generalizes Eq. (21) reads

∂f

∂τ
= d

∂f

∂v
+ v

∂2f

∂v2
, τ = 2ad−1AρT t. (26)
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Interestingly, in all dimensions the constant B drops from the
final equation; the constant A is essentially irrelevant as it is
absorbed into the new time variable τ .

Equation (26) is much simpler than Eq. (11) and it can be
solved by employing the Laplace transform (see Appendix C).
The asymptotic solution of Eq. (26) is again a pure exponential

f = [
d�(d)]−1 τ−de−v/τ , (27)

where 
d = 2πd/2

�(d/2) is the area of the unit sphere in d

dimensions. The constant in (27) has been chosen to ensure
the normalization:

∫
dvf (v,t) = 1.

In two dimensions, Eqs. (26) and (27) have been derived
in Ref. [11] in the realm of a stochastic model for Fermi’s
acceleration. Even earlier, the exponential velocity distribution
was found to occur in another stochastic model for Fermi’s
acceleration [20] in which a particle is bouncing in a container
of fixed volume with boundaries deforming in a chaotic man-
ner. In this case, the velocity distribution becomes exponential
independently of the container’s shape and the deformation
protocol.

IV. MONOATOMIC GAS

Consider now a general case of a monoatomic gas. It is then
natural to assume that the interaction between the particle and
an atom separated by distance r can be described by a potential
function U (r). In the long-time limit when the particle velocity
becomes large, only the small r behavior of the potential U (r)
matters. In this limit, the repulsion part of the interaction
dominates and it usually diverges algebraically in the small
separation limit,

U (r) � ε
( r0

r

)λ

, (28)

as r → 0. For example, λ = 12 for the Lennard-Jones potential
(in three dimensions).

To estimate interaction size r∗ we can use the criterion
U (r∗) ∼ g2, from which we find r∗ and the cross section area
σ ∼ rd−1

∗ :

r∗ ∼ r0

(
ε

g2

)1/λ

, σ∗ ∼ (r0)d−1

(
ε

g2

)(d−1)/λ

.

The term gad−1De characterizing the hard-sphere gas should
be replaced by the term gσ∗De in the general case. In one
dimension, the interaction law is irrelevant and the problem
reduces to the hard-core interaction. In higher dimensions, the
Boltzmann equation depends on the interaction exponent λ as
it contains the factor gσ∗ ∼ g1−γ with γ = 2(d − 1)/λ. In the
long-time limit, the particle is very fast, so it is scattered only
when it greatly approaches the atom; that is, the separation is
small and therefore the preceding analysis is asymptotically
exact. Thus, we must merely replace g by g1−γ in the Lorentz-
Boltzmann equation. This gives

∂f (v)

∂t
=

∫
duP (u)g1−γ

∫
De[f (v′) − f (v)], (29)

where we absorbed the (r0ε
1/λ)d−1 factor into the time variable.

To simplify the Boltzmann equation (29) we repeat the same
steps as for the hard-sphere gas to yield

∂f

∂t
= 4

∂f

∂V

∫
duP (u)g1−γ

∫
De(u · e)(g · e)

+ 8
∂2f

∂V 2

∫
duP (u)g1−γ

∫
De(u · e)2(g · e)2, (30)

where we have kept the terms with the first- and second-order
derivatives in V as asymptotically they provide the leading
contribution. Computing the angular integrals (as in Sec. III
and Appendix B) we arrive at

1

4A

∂f

∂t
= ∂2f

∂V 2

∫
duP (u)v1−γ [u2v2 − (u · v)2]

+ ∂f

∂V

∫
duP (u)g1−γ (u · g) (31)

in the leading order. Thus, the entire effect of the integration
measure is captured by one number, A.

To simplify the first integral on the right-hand side of (31)
we write

g1−γ (g · u)

= −v1−γ (v · u) + v−1−γ [(1 − γ )(v · u)2 + v2u2],

where we have kept only the leading and the subleading terms.
The integral over the leading term vanishes. Using (18) and
(20) we recast Eq. (31) into

∂f

∂τ
= v−γ

[
(d − γ )

∂f

∂v
+ v

∂2f

∂v2

]
, (32)

where the modified time variable is given by [we additionally
put the factor (r0ε

1/λ)d−1 back into the time variable]

τ = 2A(r0ε
1/λ)d−1ρT t. (33)

Although one cannot [21] compute the factor A without
knowing the integration measure, it is just a number that can
be absorbed into the definition of the time variable to arrive
at a universal kinetic equation (32) that depends only on the
interaction exponent λ.

The form of equation (32) implies that τ ∼ v1+γ . This
suggests a scaling ansatz:

f = τ−�d�(w), w = vτ−�, � ≡ (1 + γ )−1. (34)

Plugging (34) into (32) we obtain an ordinary differential
equation for �(w) which is solved to yield

�(w) = C exp{−�2w1/�}, C = �2�d−1


d�(�d)
. (35)

Thus, the asymptotic growth, 〈v〉 ∼ τ�, of the average speed
and the scaled velocity distribution have universal behaviors,
the only parameters that matter are the interaction exponent λ

and the spatial dimensionality d.
To exemplify the speed growth we note that in three

dimensions

〈v〉 ∼

⎧⎪⎨⎪⎩
τ when λ = ∞ (hard-sphere gas),

τ 3/4 when λ = 12 (Lennard-Jones gas),

τ 1/2 when λ = 4 (Maxwell molecules).
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By definition, the Maxwell molecule (MM) interaction [22]
leads to the collision integral that is independent on the relative
velocity. Equation (29) shows that the MM interaction is
characterized by γ = 1, so the interaction exponent is given
by λ = 2(d − 1). Interestingly, for the MM particle-atom in-
teraction, the average velocity experiences standard diffusion
and the scaled particle velocity distribution is Gaussian. Let us
now estimate the range of the validity of the preceding results
if the particle mass m is small but finite: 0 < m 	 1. For a
while, the evolution follows the zero-mass limit, but eventually
the particle equilibrates with the background. The crossover to
this regime occurs when the particle velocity becomes of the
order of

vc ∼
√

T

m
.

In the earlier regime, t < tc, we have 〈v〉 ∼ τ 1/(1+γ ). The
crossover time tc is therefore estimated from

(r0ε
1/λ)d−1ρT tc ∼

(
T

m

) 1+γ

2

;

that is,

tc ∼ (r0ε
1/λ)−(d−1)ρ−1T − 1−γ

2 m− 1+γ

2 . (36)

The dependence of the crossover time tc on the gas density and
the mass of the particle is easy to appreciate. On the other hand,
the dependence of the crossover time on the gas temperature
is a bit surprising.

(i) When γ < 1, that is λ > 2(d − 1), implying that the
potential is harder than the MM potential, the crossover time
decreases as the temperature increases.

(ii) When γ > 1, that is λ < 2(d − 1), implying that the
potential is softer than the MM potential, the crossover time
increases as the temperature increases.
Interestingly, the MM potential again separates different types
of the behavior.

V. DISPLACEMENT OF THE IMPURITY

We now turn to the spatial behavior of the impurity. We
begin with a heuristic analysis. In one dimension, the mean-
free path is � = ρ−1, the average speed grows as ρT t [see
Eq. (6)], and hence the time interval between collisions is �t ∼
ρ−1/(ρT t). This leads to an estimate for the total number of
collisions during the time interval (0,t):

N ∼ t

�t
∼ T t2

�2
. (37)

The standard random walk argument tells us that a typical
displacement of the particle is given by

xtyp ∼ �
√
N ∼

√
T t. (38)

Hence, the displacement exhibits a ballistic, x ∼ t , rather than
diffusive growth with time. Another unexpected feature of the
growth law (38) is that the gas density ρ does not affect the
asymptotic.

The situation remains the same for an arbitrary dimension
d and an arbitrary interaction. Consider first the hard-sphere
interaction. The mean-free path in this case is � ∼ (ρad−1)−1

and the average speed grows as v ∼ ρad−1T t [see Eq. (26)].
Proceeding as in the one-dimensional case we find

N ∼ t

�t
∼ T t2

�2
,

and therefore

rtyp ∼ �
√
N ∼

√
T t. (39)

The striking feature of this growth law is that the displacement
is asymptotically independent on the density of atoms and their
size.

If the particle mass m is small but finite, 0 < m 	 1, the
growth law (39) holds up to the crossover time tc when the
displacement becomes of the order of

rc ∼ (r0ε
1/λ)−(d−1)ρ−1T

γ

2 m− 1+γ

2 , (40)

while for t > tc the ballistic growth (39) switches to the
diffusive growth,

rtyp ∼ rc

√
t/tc. (41)

The preceding heuristic argument can be extended to the
case when the particle-atom interaction is described by a
potential. At any time, the model is close to the hard-sphere
case with effective radius of the order of r∗. However, since
the displacement growth (39) is independent on a in the
hard-sphere case, it will be independent on r∗ at any given
moment and generally independent on the parameters of the
interaction potential (28). Thus, the displacement obeys the
same growth law (39) independently on λ and d.

We now turn from heuristics to exact analyses. To determine
the second moment of the spatial distribution we first express
it through the velocity correlation function

〈x2(t)〉 =
∫ t

0
dt1

∫ t

0
dt2〈v(t1)v(t2)〉

= 2
∫ t

0
dt1

∫ t

t1

dt2〈v(t1)v(t2)〉. (42)

To evaluate 〈v(t1)v(t2)〉 let us consider the impurity particle
that starts at the origin with velocity equal to zero (initial
conditions are actually irrelevant as we are interested in the
long-time behavior; however, this particular choice makes
the computation more compact). In this case the probability
distribution for v1 = v(t1) is given by Eq. (7). To determine
the velocity distribution of v2 = v(t2) we must use v1 as the
initial condition. The corresponding distribution function (i.e.,
the conditional probability) f (v2,t2|v1,t1) satisfies a kinetic
equation which is different from (6) as the derivation of the
latter assumes that the distribution function is symmetric,
f (v) = f (−v). Generally, we write

f (v) =
{

f+(v) v > 0,

f−(−v) v < 0,

and then proceed as in Sec. II to yield

∂f+
∂t

= 2ρT

[
∂f−
∂v

+ v
∂2f−
∂v2

]
− ρv(f+ − f−), (43a)

∂f−
∂t

= 2ρT

[
∂f+
∂v

+ v
∂2f+
∂v2

]
+ ρv(f+ − f−). (43b)
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Subtracting (43b) from (43a), we see that the antisymmetric
part,

φ(v) = f+(v) − f−(v), (44)

satisfies a closed equation,

∂φ

∂t
= −2ρT

[
∂φ

∂v
+ v

∂2φ

∂v2

]
− 2ρvφ (45)

[while for the symmetric part ψ(v) = f+(v) + f−(v), we
recover Eq. (6)]. The initial condition is

φ(v,t = t1) = δ(v − v1) (46)

and the boundary condition, which follows immediately from
the definition Eq. (44), is

φ(v = 0,t) = 0. (47)

The initial-boundary value problem (45)–(47) is nontrivial, yet
in the interesting long-time limit the governing equation (45)
simplifies to ∂φ

∂t
= −2ρvφ (since v � √

T ), or equivalently
∂φ

∂τ
= −vφ/T . Therefore,

φ(v,t |v1,t1) = δ(v − v1)e−v(τ−τ1)/T . (48)

The velocity autocorrelation function can be presented in a
rather compact form

〈v1v2〉 = 2
∫ ∞

0
dv1v1f (1)

∫ ∞

−∞
dv2v2f (2|1)

= 2
∫ ∞

0
dv1v1f (1)

∫ ∞

0
dv2v2φ(2|1). (49)

Note that only the antisymmetric part of f (2|1) contributes
to the two-point velocity correlation function. For the higher-
points velocity correlation functions both the symmetric and
the antisymmetric part appear alternatively. For example the
four-point velocity correlation function can be written as

〈v1v2v3v4〉 = 2

(
4∏

i=1

∫ ∞

0
dvivi

)
f (1)φ(2|1)ψ(3|2)φ(4|3),

where ψ(v,t |v2,t2) satisfies Eq. (6) with the symmetric initial
condition ψ(v,t = t2) = δ(v − v2) + δ(v + v2).

Substituting into (49) the results for f (1) ≡ f (v1,t1) and
φ(2|1) ≡ φ(v2,t2|v1,t1) [Eqs. (7) and (48)] we get

〈v1v2〉 =
∫ ∞

0
dv1

v2
1

τ1
exp

(
−v1

[
1

τ1
+ τ2 − τ1

T

])
= 2τ 2

1

[1 + (τ2 − τ1)τ1/T ]3
.

Note that the equal times velocity autocorrelation function
(t1 = t2 = t) reduces to 〈v2(t)〉 = 2τ 2. This result directly
follows from (7), thereby providing a useful check of the
consistency of our calculation of the velocity autocorrelation
function. Plugging the velocity autocorrelation function into
Eq. (42), we obtain

〈x2〉 = 1

ρ2T 2

∫ τ

0
dτ1τ

2
1

∫ τ

τ1

dτ2

[1 + (τ2 − τ1)τ1/T ]3
. (50)

Computing the integral over τ2 yields

〈x2〉 = 1

2ρ2T

∫ τ

0
dτ1τ1

{
1 − 1

[1 + (τ2 − τ1)τ1/T ]2

}
.

The first integral
∫

dτ1τ1 provides the leading contribution.
Recalling that τ = 2ρT t , we arrive at

〈x2〉 � T t2. (51)

This asymptotically exact result confirms the heuristic predic-
tion (38).

One can also compute higher-order velocity correlation
functions, for example, 〈v1v2v3v4〉, and use them to compute
higher moments of the displacement. For instance,

〈x4〉 = 4!
∫ ∫ ∫ ∫

0<t1<t2<t3<t4<t

dt1dt2dt3dt4〈v1v2v3v4〉.

These computations are very laborious, so we do not present
them; we just mention that using this method we were able
to compute the asymptotically exact fourth moment of the
displacement,

〈x4〉 � 5T 2t4, (52)

in one dimension.
Finally, we note that the preceding procedure can be

generalized to higher dimensions. Even in the case of the
hard-sphere particle-atom interaction, however, the explicit
computations are quite unwieldy.

VI. VELOCITY-POSITION DISTRIBUTION

The calculations of the moments of the displacement, for
example, the derivation of Eq. (52), through the velocity
correlation functions are very cumbersome. It seems hardly
possible to succeed in deriving the next moment,

〈x6〉 � 61T 3t6, (53)

relying on the velocity correlation functions.
Therefore, we employ different procedures that utilize

a Boltzmann equation for the velocity-position distribution
f (r,v,t). This joint distribution function provides a complete
description of the evolution of the impurity particle. Recall
that in studying the velocity distribution function we relied on
a shortened description for the velocity distribution function
f (v,t). In studying the displacement one would also like to
use a governing equation for the density function N (r,t) as a
starting point. Unfortunately, there is no closed equation for
the density function N (r,t).

In the one-dimensional setting, the governing kinetic
equation for the joint distribution f (x,v,t) reads

∂f

∂t
+ v

∂f

∂x
= 2ρT

(
∂f

∂v
+ v

∂2f

∂v2

)
. (54)

The left-hand side of this equation is exact, yet Eq. (54) is
already a simplified version of the Boltzmann equation as the
collision term is only asymptotically exact, namely, it is
appropriate when v � √

T . As we mentioned earlier, there is
no closed equation for the density function, N (r,t). If one tries
to integrate the kinetic equation (54) over v, the convective
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term leads to a current term, that is, ∂
∂x

∫
dvvf (v,x,t) ≡

∂
∂x

J (x,t), so the density is coupled to the current. One can then
deduce from (54) an equation for the current, but it will involve
the second moment

∫
dvv2f (v,x,t). This procedure leads to

an infinite hierarchy which seems intractable as (essentially)
all infinite hierarchies.

The kinetic equation (54) is a linear partial differential
equation with two coefficients depending linearly on the
velocity v. The most difficult term in Eq. (54), namely,
the convective term (v∇)f , can be further simplified in the
long-time limit when v � √

T . Indeed, since the particle
speed grows (on average) with a constant rate, the particle
experiences numerous collisions during a time interval when
its speed is almost constant. Then the problem is akin to the
standard Lorentz gas where the particle undergoes a simple
diffusion. The separation between the time scale at which
diffusion appears (few collisions) and the time scale at which
the particle speed changes appreciably allows us to replace the
convective term by the diffusion term of a standard Lorentz
gas. In one dimension, the diffusion coefficient is D = v/2ρ

(see [7]). In the present case we can use the same formula.
Thus, Eq. (54) becomes

∂f

∂t
= 2ρT

(
∂f

∂v
+ v

∂2f

∂v2

)
+ v

2ρ

∂2f

∂x2
.

As usual, it is convenient to use τ = 2ρT t as the time variable.
Then the preceding equation becomes

∂f

∂τ
= ∂f

∂v
+ v

∂2f

∂v2
+ v

4ρ2T

∂2f

∂x2
. (55)

In Eq. (55) we tacitly assume that v > 0. This is obvious
regarding the last term on the right-hand side as the diffusion
coefficient must be positive (the correct expression is D =
|v|/2ρ). The form fv + vfvv of the collision term also assumes
(see Sec. II) that v > 0. There is no need to separately consider
negative velocities; it suffices to take into account the reflection
symmetry f (x,v,t) = f (x, − v,t).

In the long-time limit, the joint distribution function
f (x,v,t) should approach the scaling form

f (x,v,t) � 1

4x∗v∗
F (X,V ), X = x

x∗
, V = v

v∗
, (56)

where x∗ = √
T t and v∗ = τ . It could be difficult to prove

that every solution approaches the scaling form (56), although
physically the emergence of scaling is obvious and the
numerical evidence is also very strong (Fig. 1).

The reflection symmetry with respect of the velocity and
the displacement [23] allows us to limit ourself to the quadrant
V > 0,X > 0. By inserting (56) into (55) we obtain

2F + X
∂F

∂X
+ V

∂F

∂V
+ ∂F

∂V
+ V

∂2F

∂V 2
+ V

∂2F

∂X2
= 0. (57)

The normalization condition∫ ∞

−∞
dx

∫ ∞

−∞
dvf (x,v,t) = 1

can be rewritten as∫ ∞

0
dX

∫ ∞

0
dV F (X,V ) = 1. (58)

0 1 2 3 4 5 6
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FIG. 1. (Color online) Simulation results (see Sec. IX) for a gas
of hard spheres in one dimension: contour plot (top panel) and 3D plot
(bottom panel) of the distribution function F (X,V ). For any given
position (velocity) the dashed blue (dash-dotted green) line shows the
value of the velocity (position) for which the probability distribution
has a maximum.

This explains the factor 1/4 in the scaling ansatz
(56).

In higher dimensions, we limit ourselves to the case of
the hard-core particle-atom interaction. Then the governing
kinetic equation reads

∂f

∂t
+ v · ∂f

∂r
= 2ad−1AρT

(
d

∂f

∂v
+ v

∂2f

∂v2

)
. (59)

Equation (59) is again asymptotically exact in the large time
limit when the typical particle velocity greatly exceeds the
thermal velocity, v � √

T . In this limit, the collision term
simplifies to the first term on the right-hand side of Eq. (59) and
the convective term (v · ∇)f can be replaced by the diffusion
term −D∇2f as the transport is asymptotically diffusion with
velocity-dependent diffusion coefficient. More precisely, the
diffusion coefficient is given by [24]

D = v

2dAad−1ρ
, (60)

with the amplitude A known in the case of the hard-core
interaction [see (B9)]. Using again the modified time variable
is τ [which for hard-sphere particle-atom interaction is given
by τ = 2Aad−1ρT t ; see (26)], and taking into account the
spatial isotropy we recast (59) into

∂f

∂τ
= d

∂f

∂v
+ v

∂2f

∂v2

+ v

d(2Aad−1ρ)2T

(
∂2f

∂r2
+ d − 1

r

∂f

∂r

)
. (61)
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A solution to Eq. (61) approaches a scaling form,

f (r,v,t) = (
d )−2(τ
√

T t)−dF (V,R), (62)

with scaled spatial and velocity variables

R = r√
T t

, V = v

τ
. (63)

With the choice (62) of the scaling form, the normalization
requirement,∫ ∞

0

dr

d−1dr

∫ ∞

0

dv

d−1dvf (r,v,t) = 1,

becomes ∫ ∞

0
dR

∫ ∞

0
dV Rd−1V d−1F (R,V ) = 1. (64)

Using (62) and (63), we transform (61) into

2dF + RFR + V FV + dFV + V FV V

+ V

d

(
d − 1

R
FR + FRR

)
= 0. (65)

This is a linear elliptic (recall that R > 0,V > 0) partial-
differential equation. Despite of linearity, Eq. (65) is difficult
since the coefficients in front of derivatives in Eq. (65) vary
with V and R.

We treat the preceding equations by using different tech-
niques. The standard technique relying on the Laplace and
Fourier transforms is the most powerful. In Sec. VIII we derive
the major result for the scaled joint distribution of the impurity
particle in the hard-sphere gas:

F (R,V ) = Cd

�(d)

∫
dse−i

√
ds·R−V s coth s

(
s

sinh s

)d

. (66)

Further, the scaled density distribution reads

N (R) = Cd

∫
ds

e−i
√

ds·R

(cosh s)d
, Cd = dd/2
d

(2π )d
. (67)

In particular, in one dimension,

N (X) = 1

cosh R1
, R1 = π

2
X, (68)

while in three dimensions the density is

N (R) = 3
√

3

8

(
4R2

3 + π2
)

tanh R3 − 8R3

R3 cosh R3
,

(69)

R3 = π
√

3

2
R.

First, however, we describe an approach based on the direct
computing of the moments and guessing from them the spatial
distribution.

VII. MOMENTS

The moment approach deals with the moments of the joint
distribution rather than with the joint distribution itself. The
moment approach has been used in kinetic theory throughout
its history (see, e.g., [13,14]) as the governing equations are
very complicated and seldom tractable. The moment approach
has also been applied [11,20] to the Fermi’s acceleration

mechanism. For instance, in Refs. [20] the authors computed
the moments 〈vn〉 for small n, guessed the answer [namely
(23)] for an arbitrary n, showed that the guess is correct, and
observed that the exponential velocity distribution has exactly
the same moments. Generally, if one succeeds in computing
the moments, one still has to recover the distribution that has
such moments. This is not rigorous as at best we have infinitely
many integer moments (or only even integer moments as in the
examples in what follows) and we want to restore the entire
distribution function. If the distribution function is analytic
(the fact which is usually unknown, but believed to be correct),
the distribution function can be uniquely determined by
(infinitely many) integer moments, so restoring such function
is a technical problem.

Another problem is that since the number of moments is
infinite, it is usually impossible to compute them all. Having
computed a few moments one can try to guess the rest
and to check the conjecture using computer-assisted exact
calculations. We have succeeded in guessing all even moments
of the spatial displacement in one and two dimensions and
in reading off the density in one dimension. The moment
approach is therefore not really systematic and it involves
guesswork. The strength of the moment approach is that one
can easily compute the basic moments, for example, even
moments of the displacement 〈R2〉,〈R4〉,〈R6〉, etc., or mixed
moments like 〈R2V 2〉, and arrive at important conclusions
(like the existence of correlations between the velocity and
the spatial displacement manifested by relation 〈R2V 2〉 �=
〈R2〉〈V 2〉).

In our problem we eventually derived more comprehensive
results using standard techniques (see Sec. VIII). Still, the
moment approach has a future. Indeed, it is more powerful
nowadays than it ever was as the tedious calculations of
the moments can be exactly performed by a computer and
if the resulting moments admit a simple expression through
well-known sequences, there is a good chance to extract such
an expression by using The On-Line Encyclopedia of Integer
Sequences [25]. Since the moment approach is rarely used,
we illustrate it here as in our situation where the moment
approach clearly gives highly nontrivial results. We begin with
the one-dimensional setting.

A. One dimension

In this subsection we present very strong evidence in favor
of the announced result (68) for the spatial distribution. To
establish (68), we turn (57) into an infinite set of relations,

(i + j )Mi,j = j 2Mi,j−1 + i(i − 1)Mi−2,j+1, (70)

for the moments

Mi,j =
∫ ∞

0

∫ ∞

0
dXdV XiV jF (X,V ). (71)

The relation (70) is valid for all i � 2,j � 0.
Using (70) one can compute moments with small indexes;

for instance, one can establish (51)–(53). The structure of the
quasirecurrent equation (70) and the procedure that allows
us to calculate the spatial moments are illustrated in Fig. 2.
One finds that 〈X2n〉 = M2n,0 can be expressed as a weighted

011107-8



LIGHT IMPURITY IN AN EQUILIBRIUM GAS PHYSICAL REVIEW E 83, 011107 (2011)

0 1 2 3 4 5 6 7
i

0

1

2

3

4

j

1
st

2
nd

4
th

5
th

6
th2

nd

3
rd

4
th

5
th

FIG. 2. (Color online) Schematic representation of how Eq. (70)
can be iteratively used to calculate all the moments Mi,j = 〈RiV j 〉
with i = even (red circles). The moments M0,j are known for all
j � 0. At the first step the known value of M0,1 allows us to calculate
M2,0. At the second step the already-known M2,0 and M0,2 are used
to calculate M2,1 [see (73)]. At the third step we compute M4,0

through M2,1. The moments Mi,j with i = odd (blue squares) cannot
be calculated using this approach.

sum of M0,1, . . . ,M0,n. This sum is then computed using the
identity

M0,j = 〈V j 〉 =
∫ ∞

0
dV e−V V j = j !. (72)

We now demonstrate this in practice. Specializing (70)
to (i,j ) = (2,0) gives M2,0 = M0,1 = 1, which is identical to
Eq. (51). Specializing (70) to (i,j ) = (2,1) yields

3M2,1 = M2,0 + 2M0,2. (73)

Taking then (i,j ) = (4,0) we obtain M4,0 = 3M2,1, or

M4,0 = M0,1 + 2M0,2 = 5, (74)

which is equivalent to (52). Further, specializing (70) to (i,j ) =
(6,0),(4,1),(2,2) and using (74) we obtain

M6,0 = 5M0,1 + 10M0,2 + 6M0,3 = 61, (75)

which proves (53). The fact that we have been able to reproduce
the values of the spatial moments calculated using the velocity
correlation functions [Eqs. (51)–(53)] supports the claim that
the replacement of the convection term by the diffusion term
in Eq. (54) is asymptotically exact.

The computed even moments 〈X2n〉 are all integers which
look familiar; indeed, up to the sign they are the Euler’s
numbers,

〈X2n〉 = (−1)nE2n. (76)

The Euler’s numbers En appear in numerous combinatorial
problems, as well as in number theory, topology, etc. The
Euler’s numbers are defined by the Taylor series

1

cosh(y)
=

∑
n�0

Eny
n

n!
. (77)

Note that all the odd-indexed Euler numbers are equal to zero,
while the even-indexed Euler number have alternating signs.

The evidence in the exactness of (76) is overwhelming—
using MATHEMATICA, we verified (76) for all even moments up
to 〈X1000〉.

To establish (68) we start by extending the range of X to the
whole axis and calculate the Fourier transform of Nsym(X) =
1
2N (|X|),

N̂sym(s) =
∫ ∞

−∞
dXe−isXNsym(X)

=
∑
n�0

(−1)ns2n〈X2n〉
(2n)!

=
∑
n�0

s2nE2n

(2n)!
= 1

cosh s
, (78)

where on the first step we have expanded e−isX and taken into
account that Nsym(X) is an even function of X, while on the
second and third steps we have used (76) and (77), respectively.
Since

1

2

∫ ∞

−∞
dX

e−isX

cosh(πX/2)
= 1

cosh s
, (79)

we conclude that Nsym(X) = 1/[2 cosh (πX/2)], which is
equivalent to Eq. (68).

The moment relations (70) have helped us to determine all
even moments 〈X2n〉, yet they do not allow one to determine
even the simplest odd moment 〈X〉. Using the spatial density
(68), however, we can compute this moment (more precisely,
it is equal to 〈|X|〉 and it represents the dimensionless average
displacement),

〈|X|〉 =
∫ ∞

0
dX

X

cosh(πX/2)
= 8G

π2
,

where G is the Catalan constant,

G = 1

12
− 1

32
+ 1

52
− 1

72
+ · · · = 0.915 965 594 . . . .

Hence, the average displacement is given by

〈|x|〉 = 8G

π2

√
T t.

Similarly, one can compute an arbitrary odd moment:

〈|X|2k−1〉 = 22k+1(2k − 1)!

π2k

∑
m�0

(−1)m

(2m + 1)2k
.

We can establish some qualitative and quantitative features
of the joint distribution without having its analytical expres-
sion. For instance, if the joint distribution has allowed the
factorization, that is, if it had the form N (X)F (V ), then the
moments would satisfy 〈|X|i |V |j 〉 = 〈|X|i〉〈|V |j 〉. This is not
so; for example,

〈X2V 〉
〈X2〉〈V 〉 = 5

3
,

〈X2V 2〉
〈X2〉〈V 2〉 = 7

3
,

〈X4V 2〉
〈X4〉〈V 2〉 = 331

75
,

etc. Qualitatively, these results are not surprising—the larger
separation from the starting position, the larger (on average)
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the speed of the particle is expected to be. Mathematically, this
implies an inequality,

〈|X|i |V |j 〉
〈|X|i〉〈|V |j 〉 > 1, (80)

for all i,j > 0. This inequality is indeed obeyed in all instances
where we were able to compute the moments, for instance,
when both indexes are sufficiently small. Using Eq. (70) we
have also computed a few infinite series, for example,

〈X2n|V |〉
〈X2n〉〈|V |〉 = 1

2n + 1

|E2n+2|
|E2n| > 1,

〈X2|V |j 〉
〈X2〉〈|V |j 〉 = 1 + 2

3
j,

(81)〈X4|V |j 〉
〈X4〉〈|V |j 〉 = 1 + 88

75
j + 4

15
j 2,

〈X6|V |j 〉
〈X6〉〈|V |j 〉 = 1 + 794

549
j + 116

183
j 2 + 40

549
j 3.

Thus, in these cases the inequality (80) is valid.
The correlation between the velocity and the displacement

of the particle shows that the knowledge of the velocity
distribution F (V ) and the density N (X) provides limited
information about the characteristics of the particle—the joint
distribution function F (X,V ) is needed to provide a complete
(in the realm of kinetic theory) description.

B. Higher dimensions

The normalization condition (64) suggests to define the
moments via

Mi,j =
∫ ∞

0
dR

∫ ∞

0
dV Ri+d−1V j+d−1F (V,R). (82)

Multiplying Eq. (65) by Ri+d−1V j+d−1 and integrating we
arrive at the moment relations

(i + j )Mi,j = j (j + d − 1)Mi,j−1

+ i(i + d − 2)

d
Mi−2,j+1. (83)

We can now proceed as in the one-dimensional case.
Namely, using relations (83), we can in principle exactly
compute any moment 〈R2n〉 = M2n,0 by expressing it as a
weighted sum of M0,1, . . . ,M0,n. Then we use the known
expression for M0,j ,

M0,j = 〈V j 〉 =
∫ ∞

0
dV

e−V

�(d)
V j+d−1 = �(j + d)

�(d)
, (84)

which is computed with the help of Eq. (27). This procedure
gives

〈R2〉 = d, (85a)

〈R4〉 = (d + 2)
(
d + 2

3

)
, (85b)

〈R6〉 = d−1(d + 2)(d + 4)
(
d2 + 2d + 16

15

)
. (85c)

Using MATHEMATICA, we have computed the moments
〈R2n〉 = M2n,0 up to 〈R1000〉 in two and three dimensions.
A few of these even-indexed moments are listed in Table I. In
contrast to one-dimensional results (also presented in Table I),

the moments are no longer integer; apparently [26], they are
noninteger for all (even) n � 4.

We tried to identify the sequence 〈R2n〉 = M2n,0 with
known sequences [25]. Since most known sequences are
integer, one can seek M2n,0 as a ratio of integer sequences. In
three dimensions one can write 〈R2n〉 = Mn/3n. The sequence
Mn is integer, but it does not appear in [25]. In two dimensions
we were more lucky: Seeking M2n,0 as a ratio of integer
sequences, we arrived at

〈R2n〉 = 23n+1(4n+1 − 1)

n + 1

n!n!

(2n)!
|B2n+2|, (86)

where Bk are the Bernoulli numbers [27]. The evidence in the
exactness of (86) is overwhelming (we have checked it up to
n = 500).

C. Tail of the density distribution

According to our definition of the scaled density distribu-
tion N (R), it satisfies∫ ∞

0
dRRd−1N (R) = 1. (87)

In one dimension, N = [cosh(πX/2)]−1, and therefore the tail
of the distribution is

N � 2e−πX/2 when X → ∞. (88)

This exact asymptotic leads to the conjecture that generally
in d dimensions the leading asymptotic is exponential. More
precisely, we assume that

N � CRce−μR when R → ∞, (89)

where we have augmented the controlling factor e−μR using
an algebraic prefactor Rc and the amplitude C. The parameters
μ, c, C are dimensionless, so they can depend only on d.

In principle, the moments

〈R2n〉 =
∫ ∞

0
dRR2n+d−1N (R) (90)

depend on the entire density distribution N (R). In the n → ∞
limit, however, the integral in Eq. (90) is chiefly gathered in
the tail of the distribution. Hence, we can use the ansatz (89).
Plugging it into (90) we get

〈R2n〉 � C

∫ ∞

0
dRR2n+c+d−1e−μR

= C

μ2n+c+d
�(2n + c + d), (91)

when n � 1.
In two dimensions, Eq. (86) that yields even moments

involves Bernoulli numbers whose asymptotic can be extracted
from the celebrated Euler’s formula relating Bernoulli’s
numbers with the values of the ζ function at positive even
integers:

|B2k| = 2(2k)!

(2π )2k
ζ (2k), ζ (s) =

∑
j�1

1

j s
. (92)
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Thus, we recast (86) into

〈R2n〉 = 23n+1(4n+1 − 1)

n + 1

n!n!

(2n)!

2(2n + 2)!

(2π )2n+2
ζ (2n + 2).

Using Stirling’s formula, we simplify the ratio:

n!n!

(2n)!
�

(
n
e

)2n
2πn(

2n
e

)2n√
4πn

=
√

πn

22n
.

We also notice that ζ (2n + 2) − 1 � 2−2n−2, and therefore
asymptotically ζ (2n + 2) � 1 for n � 1. Thus, the moment
〈R2n〉 approaches

〈R2n〉 � 2n+3

π2n+2

√
πn(2n + 1)! (93)

in the n → ∞ limit. On the other hand, in two dimensions
the asymptotic prediction (91) based on the ansatz (89) can be
rewritten in the form

〈R2n〉 � C

μ2n+c+2
(2n)c(2n + 1)!, (94)

where we use the well-known asymptotic [27]

�(m + a)

�(m)
� ma when m → ∞.

The asymptotics (93) and (94) would agree if

2n+3

π2n+2

√
πn = C

μ2n+c+2
(2n)c.

We get μ = π/
√

2 by matching the dominant exponential
factors. Matching then the subleading algebraic factors we get
c = 1/2. Matching finally the amplitudes yields C = 25/4π .
Therefore, in two dimensions,

N � 25/4π
√

Re−πR/
√

2 when R → ∞. (95)

The asymptotics in one and two dimensions make plausible
that the controlling exponential factor in higher dimensions is

N ∼ exp

{
−π

√
d

2
R

}
. (96)

Thus, N ∼ e−μ3R with μ3 = 1
2π

√
3 � 2.720 699 in three

dimensions. To extract μ3 we proceed as follows. Using
MATHEMATICA, we have determined the exact values of the
moments 〈R2n〉 = M2n,0 up to 〈R1000〉 in three dimensions.
Hence, we can compute the ratio of consecutive terms and
compare the outcome with the prediction of Eq. (91). The
latter becomes (in three dimensions)

〈R2n〉
〈R2n+2〉 � (μ3)2

(2n + c + 3)(2n + c + 4)
. (97)

Thus, the quantity Gn ≡ (2n)2〈R2n〉/〈R2n+2〉 should converge
for n → ∞ to (μ3)2 = 3π2/4 � 7.402 203. This is indeed in
excellent agreement with our findings (Fig. 3).

D. Correlations

As in the one-dimensional case, both in two and three
dimensions there are correlations between the position and the
speed of the impurity particle. In this subsection, we present a

0 50 100 150 200 250 300 350 400 450 500
n

0

1

2
(π2)

2
3

4

2(π2)
2

6

7
3(π2)

2

G
n

1d
2d
3d

FIG. 3. (Color online) Plot of Gn ≡ (2n)2〈R2n〉
〈R2n+2〉 for the hard-sphere

gas in d = 1,2,3. Using Eq. (97) we extract the controlling exponen-
tial factor e−μdR of the density profile at large R and we confirm that
μd = π

2

√
d in d = 1,2,3.

few results for the three-dimensional case. One can compute
〈RiV j 〉 for even i and arbitrary j . For instance,

〈R2V 2〉
〈R2〉〈V 2〉 = 13

9
,

〈R2V 4〉
〈R2〉〈V 4〉 = 17

9
,

〈R4V 2〉
〈R4〉〈V 2〉 = 991

495
,

etc., suggesting again that the inequality

〈RiV j 〉
〈Ri〉〈V j 〉 > 1 (98)

is valid for all i,j > 0. One can compute the left-hand side of
Eq. (98) for arbitrary j and sufficiently small i:

〈R2V j 〉
〈R2〉〈V j 〉 = 1 + 2

9
j, (99a)

〈R4V j 〉
〈R4〉〈V j 〉 = 1 + 208

495
j + 4

99
j 2, (99b)

〈R6V j 〉
〈R6〉〈V j 〉 = 1 + 27074

45549
j + 236

2169
j 2 + 40

6507
j 3. (99c)

For instance, let us establish (99a). First, we specialize (83)
to d = 3 and i = 2 to yield

(j + 2)M2,j = j (j + 2)M2,j−1 + 2M0,j+1. (100)

Using (84) and setting d = 3 we get M0,j+1 = 1
2 (j + 3)! and

therefore (100) becomes

M2,j = jM2,j−1 + (j + 3)(j + 1)!. (101)

The form of this recurrence suggests to seek M2,j in the form
M2,j = j !Nj . This transformation leads to

Nj = Nj−1 + (j + 3)(j + 1). (102)

Solving recurrence (102) subject to the “initial” condition
N0 = 3 (this condition ensures that M2,0 = 〈R2〉 = 3) we
obtain

Nj = 3 +
j∑

l=1

(l + 3)(l + 1) = 1

6
(j + 1)(j + 2)(2j + 9).
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Since 〈R2V j 〉 = M2,j = j !Nj = 1
6 (j + 2)!(2j + 9) and

〈R2〉〈V j 〉 = 3M0,j = 3
2 (j + 2)!, we have

〈R2V j 〉
〈R2〉〈V j 〉 =

1
6 (j + 2)!(2j + 9)

3
2 (j + 2)!

= 1 + 2

9
j,

thereby establishing (99a). Using similar reasoning we have
derived (99b) and (99c), as well as analogous results (81) in
one dimension.

The ratios (99a)–(99c) suggest that∫ ∞

0
dRR2+2iF (R,V ) = e−V Pi(V ), (103)

with Pi(V ) being a polynomial of V of degree i. We already
know that P0(V ) = 1/2 in three dimensions. [Generally
P0(V ) = 1/(d − 1)!.] Using (99a)–(99c) we arrive at the
following explicit results for the polynomials Pi(V ) with
i = 1,2,3:

P1(V ) = 1

2
+ 1

3
V,

P2(V ) = 17

18
+ 34

27
V + 10

27
V 2, (104)

P3(V ) = 457

162
+ 457

81
V + 266

81
V 2 + 140

243
V 3.

E. Monoatomic gas

In the case when the particle-atom interaction has a power
law tail (28) in the small separation limit, the joint distribution
approaches a scaling form,

f (r,v,t) = (
d )−2(τ�
√

T t)−dF (V,R), (105)

with scaled spatial and velocity variables,

R = r√
T t

, V = v

τ�
. (106)

The analog of Eq. (65) reads

(1 + �)dF + RFR + �V FV + V −γ [(d − γ )FV + V FV V ]

+DV

d

(
d − 1

R
FR + FRR

)
= 0. (107)

Here D is a numerical factor which quantifies diffusion in the
Lorentz gas where the particle-scatters interaction is given by
(28).

Multiplying Eq. (107) by Ri+d−1V j+d−1 and integrating
we arrive at the moment relations

(i + �j )Mi,j = j (j + d − 1 − γ )Mi,j−1−γ

+D i(i + d − 2)

d
Mi−2,j+1. (108)

To the best of our knowledge, the value of the numerical
constant D is not known.

VIII. JOINT DISTRIBUTION

Here we derive the announced results [Eqs. (66) and (67)]
by employing an approach based on the combination of the
Laplace and Fourier transforms. It proves easier to deal with
original kinetic equations (61) rather than with its scaled

version. As a by-product, we can also see that the solution
approaches the scaling form.

We begin again with the one-dimensional setting and show
that the Laplace and Fourier transforms allow one to solve
Eq. (55) for an arbitrary initial velocity distribution. Then we
generalize to higher dimensions.

A. One dimension

It is convenient to study Eq. (55) on the entire line −∞ <

x < ∞ while the velocity is taken positive, 0 � v < ∞, as
previously. Performing the Laplace transform in the v variable
and the Fourier transform in the x variable, we find that the
transformed joint distribution

g(q,k,τ ) =
∫ ∞

−∞
dxeiqx

∫ ∞

0
dve−vkf (x,v,τ ) (109)

satisfies

∂g

∂τ
+ (k2 − Q2)

∂g

∂k
= −kg, Q2 ≡ q2

4ρ2T
. (110)

This linear hyperbolic partial differential equation can be
solved using the method of characteristics. The characteristics
are the curves in the (k,τ ) plane which are found from

dk

dτ
= k2 − Q2. (111)

Solving this differential equation we get

k = −Q coth[Q(ξ + τ )], (112)

where ξ parameterizes different characteristics. Along a
characteristic, that is, keeping ξ fixed, the governing equation
(110) becomes

dg

dτ

∣∣∣
ξ=const

= −kg. (113)

Using (112) we express k via ξ and τ , so that Eq. (113) becomes

dg

dτ
= Q coth[Q(ξ + τ )]g, (114)

whose solution reads

g = sinh[Q(ξ + τ )]G(ξ ). (115)

Specializing (112) and (115) to τ = 0 we get

g0(k,Q) = sinh(Qξ )G(ξ ), k = −Q coth(Qξ ),

so that

G(ξ ) = g0[−Q coth(Qξ ),Q]

sinh(Qξ )
. (116)

Combining (115) and (116) we arrive at the exact solution for
the transformed joint distribution

g = sinh[Q(ξ + τ )]

sinh(Qξ )
g0[−Q coth(Qξ ),Q]. (117)

Using (112), we massage the ratio and rewrite the argument of
g0 to transform (117) into

g = 1

cosh s + k
Q

sinh s
g0

(
k + Q tanh(s)

1 + k
Q

tanh(s)
,Q

)
, (118)
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where we have used the notation s = Qτ , which has been used
previously, for example, in (79). This exact solution is valid
for any initial distribution

g0(k,q) =
∫ ∞

−∞
dxeiqx

∫ ∞

0
dve−vkf (x,v,τ = 0). (119)

Consider now the simplest initial velocity distribution

f (x,v,τ = 0) = δ(x)δ(v), (120)

which corresponds to the initially stationary particle at the
origin. The governing equation Eq. (55) is formally applicable
if v � √

T [since the simplification of the collision integral in
Eq. (1) leading to Eq. (55) is valid only under this condition],
but we are now more concerned with finding the simplest
solution; in addition the initial condition is asymptotically
irrelevant. For the initial condition (120) we get g0 = 1 and
the transformed joint distribution becomes

g = 1

cosh s + k
Q

sinh s
, s = Qτ = q

√
T t. (121)

The dependence on k in (121) is very simple, so we perform
the inverse Laplace transform and obtain

f (x,v,τ ) =
∫ ∞

−∞

dq

2π
e−iqx se−V s coth s

τ sinh s
.

Note that the preceding formula already has the scaling
form [for the initial condition (120) the scaling form es-
tablishes instantaneously]. Extending the variable V to the
whole axis (this amounts to replace V → |V | and divide by 2)
and rewriting the distribution in the manifestly scaling form
[f (x,v,τ ) = F (X,V )

4v∗x∗
; see (56)] we get

F (X,V ) =
∫ ∞

−∞

ds

π
e−isX se−V s coth s

sinh s
. (122)

Integrating in velocity, N (X) = ∫ ∞
0 dV F (X,V ), we arrive at

the announced result (68).
We could not compute the integral (122) in a closed form,

so we determined it numerically. The results of the numerical
integration (Fig. 4) are in excellent agreement with the results
of direct simulations (Fig. 1). The excellent agreement between
theory and simulations is further shown in Figs. 5 and 6; it
provides further verification of our simulation scheme and
demonstrates again that the replacement of the convection term
by effective diffusion is indeed asymptotically exact.

B. Higher dimensions

The joint distribution f (r,v,τ ) is isotropic in r and v. It
is convenient to explicitly assume the latter, so we want to
find f (r,v,τ ). We define the Laplace-Fourier transform of this
distribution through

g(q,k,τ ) = 
d

∫
dreiq·r

∫ ∞

0
dvvd−1e−vkf (r,v,τ ). (123)

We limit ourselves to the hard-sphere interaction. Applying
the Laplace-Fourier transform to (61) we obtain

∂g

∂τ
+ (k2 − Q2)

∂g

∂k
= −dkg, (124)
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FIG. 4. (Color online) Contour plot (top panel) and 3D plot
(bottom panel) of the joint distribution function F (X,V ) for the 1d

hard-sphere gas [Eq. (122)].

where we have used the shorthand notation

Q2 = q2

d(2Aad−1ρ)2T
≡ q · q

d(2Aad−1ρ)2T
.

The characteristics curves in the (k,τ ) plane are defined by
the same equation (111) as in one dimension, while instead of
(113) and (114) we get

dg

dτ

∣∣∣
ξ=const

= −dkg = dQ coth[Q(ξ + τ )]g.
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FIG. 5. (Color online) Values of F (X,V ) for the 1d hard-sphere
gas along the lines of fixed V = 0.0035,1,2,3,4. The lines are
obtained from the numerical simulations (see Sec. IX), while the
symbols represent the values obtained by computing the integral
(122).
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FIG. 6. (Color online) Values of F (X,V ) for 1d hard-sphere gas
along the lines of fixed X = 0.0035,1,2,3. The data are obtained as
explained in Fig. 5.

Integrating we find

g = (sinh[Q(ξ + τ )])d G(ξ ),

while the general solution

g(k,q,τ ) =
(

cosh s + k

Q
sinh s

)−d

g0

(
k + Q tanh(s)

1 + k
Q

tanh(s)
,Q

)
,

with s = Qτ . For the simplest initial velocity distribution,

f (r,v,τ = 0) = δ(r)δ(v), (125)

the general solution simplifies to

g =
(

cosh s + k

Q
sinh s

)−d

. (126)

As a check of this result we set q = 0. Then s = Qτ = 0 and
limQ→0 Q−1 sinh s = τ , so that Eq. (126) becomes g(k,q =
0,τ ) = (1 + τk)−d , which is exactly the Laplace transform of
the velocity distribution [see (C4)].

Thus, the joint distribution is the inverse Laplace-Fourier
transform of (126). Performing the inverse Laplace transform
of (126) in k is easy. Therefore, the final answer is the inverse
Fourier transform. Rewriting the result in the scaling form we
arrive at the announced scaled joint distribution (66). Similarly,
we obtain (67).

Equations (66) and (67) involve integrals of the kind

J (R) =
∫

dse−i
√

ds·R�(s). (127)

The integral J (R) is actually rotationally invariant, J (R) =
J (R), which becomes clear by noting that we can simul-
taneously rotate R and s. Using spherical coordinates we
write ds = 
d−1(sin θ )d−2sd−1dsdθ , where θ is the angle
between s and R (that is, we have s · R = sR cos θ ). This
allows us to reduce the d-fold integral (127) to the double-fold

integral:

J (R) = 
d−1

∫ ∞

0
dssd−1�(s)

∫ π

0
dθ (sin θ )d−2e−i

√
dsR cos θ .

The integral in θ is computable, so one actually reduces (127)
to a single integral.

For example, in two dimensions we have

F (R,V ) = 2
∫ ∞

0
dss3 J0(

√
2sR)

(sinh s)2
e−V s coth s (128)

and

N (R) = 2
∫ ∞

0
dss

J0(
√

2sR)

(cosh s)2
, (129)

while in three dimensions we obtain

F (R,V ) = 3

πR

∫ ∞

0
dss4 sin(

√
3sR)

(sinh s)3
e−V s coth s (130)

and

N (R) = 6

πR

∫ ∞

0
dss

sin(
√

3sR)

(cosh s)3
. (131)

Computing the integral on the right-hand side of (131) we
arrive at the announced result (69). The integrals defining the
joint distribution in d = 2,3 [Eqs. (128)–(130)] were evaluated
numerically and the resulting distributions are qualitatively
similar to the one shown in Fig. 4 for the 1d case.

IX. NUMERICAL SIMULATIONS

In order to verify our theoretical results we have used
different types of numerical simulations.

The most straightforward numerical approach to check
our theoretical results would be to perform a full molecular
dynamics (MD) simulation. We are interested, however, in the
evolution of a single particle in a gas of background atoms. The
MD simulations are very inefficient to study such a situation
since they keep track and update the positions and velocities
of all the background atoms that are unnecessary to compute
the quantities of interest. Whenever possible we turn to less
costly computational methods.

For the hard-sphere gas in one and two dimensions,
the inhomogeneous Boltzmann equation was simulated by
stochastically updating the velocity and positions of 106 and
108 particles, respectively. A particle with velocity v travels
for a time �t from the last collision covering a distance v�t

before colliding with a background atom with velocity u. At
the instant of collision the particle’s velocity changes. Thus,
the update rules are

tn+1 = tn + �tn, (132a)
rn+1 = rn + vn�tn, (132b)

vn+1 = vn + 2e[(u − vn) · e]. (132c)

Under the assumption already used in writing the Lorentz-
Boltzmann equation, the quantities �t , u, and e are random
variables whose distributions need to be specified in order to
have a complete description of the temporal evolution. The
velocity update rule (132c) can be understood by analyzing
the collisions in the reference frame of the background atom
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(which in our case coincides with the center of mass reference
frame). The key feature of the hard-sphere interaction is that
the collision rate is proportional to the absolute value of the
relative velocity g, so that the particle more often collides with
atoms moving in a direction opposite to its own.

The random variable �t is the first collision time which
is distributed according to a Poisson process. This can be
understood in the following way. The particle can collide with
any background atom. The probability that the particle has not
collided with the background atom ith up to time t is called
Si(t). The survival probability Si(t) is decaying in time and
satisfies a very simple differential equation:

∂Si(t)

∂t
= −riSi(t), ri ∼ |v − ui |. (133)

The rate of collision, ri , is proportional to the absolute value of
the relative velocity with respect the ith atom. The probability
that the particle has not collided with any atom up to time t is
S(t) = ∏N

i=1 Si(t), where N is the total number of background
atoms. Using Eq. (133) and the definition of S(t) we obtain

∂S(t)

∂t
= −rS(t), r =

N∑
i=1

ri, (134)

whose solution is a simple exponential decay with rate r . Note
that S(t) is also the probability that the first collision happens
at time t ; that is, S(t) is the distribution of the first collision
time. Reintroducing the dependence on the particle velocity
explicitly we obtain the probability P (�t |v) that the particle
with velocity v collides for the first time at time �t :

P (�t |v) = r(v) exp(−r(v)�t), (135a)

r(v) =
N∑

i=1

ri(v) = 2aρ〈|v − u|〉u. (135b)

Here 〈(·)〉u denotes the average over the velocity distribution
of the background atoms, a is the radius of the hard-spheres
and ρ is the number density of background atoms. The last
equality in (135b) has been specified for the two-dimensional
case.

The probability of making the first collision with the ith
atom is [28]

ri(v)

r(v)
= |v − ui |

N〈|v − u|〉u
. (136)

This equation can be understood in the following way. If it
was equally likely to collide with any atom, only the factor
1/N would appear in Eq. (136). The correction ( |v−ui |

〈|v−u|〉u
) in

Eq. (136) to this simple behavior describes the fact the the
particle collides preferentially with atoms moving in direction
opposite to its own. It is worth noting that this correction
approaches 1 if v � 〈u〉.

The calculation of the total rate is difficult in any dimension
d > 1. It can be approximated by

〈|v − u|〉u ∼ |v| + 〈|u|〉u ∼ |v| +
√

T . (137)

Only the limiting behaviors for v � √
T and v 	 √

T of
Eq. (137) are important. We are interested in the large time
limit when v � 〈u〉 and r(v) ∼ N |v|. Equation (137) correctly
reproduces this limit. Moreover, Eq. (137) ensures that a
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FIG. 7. (Color online) Density profile for the hard-sphere gas
vs the rescaled variable R = r/

√
T t . The numerical simulations in

d = 1,2 (red squares and blue triangles, respectively) are compared
with the theoretical predictions (continuous red and dashed blue
lines, respectively) [Eqs. (68) and (129); integrated numerically]. The
theoretical prediction for d = 3 (dot-dashed green line) [Eq. (69)] is
also shown.

particle with an unexpected low velocity (in the extreme
case v = 0) will collide with a background atom with a rate
proportional to the thermal velocity of the background gas.

Using (135a)–(137) one computes the collision time �t .
Then a background velocity u is generated from the Maxwell-
Boltzmann distribution (2) and it is accepted with probability

|v−u|
〈|v−u|〉u

[see Eq. (136)]. Finally the random variable e is
generated from the distribution (13).

The velocity distribution is in excellent agreement with the
exponential scaling form. The density profiles are shown in
Fig. 7. In one dimension, there is a perfect agreement with
the theoretical prediction [Eq. (68)]. In two dimensions, the
numerical simulation correctly reproduces the known values
for the moments 〈R2n〉 (see Table I) and agrees with the
prediction (96) for the tail.

In the one-dimensional case, every velocity distribution of
the background atoms is stationary (since in a two-body colli-

TABLE I. The moments 〈Rn〉 in one, two, and three dimensions
for small even indexes.

n 1d 2d 3d

0 1 1 1
2 1 2 3
4 5 32

3
55
3

6 61 544
5

1687
9

8 1385 63488
35

8651
3

10 50521 2830336
63

5047691
81

12 2702765 357892096
231

437804783
243

14 199360981 30460116992
429

16325727605
243

16 19391512145 26862763900928
6435

6868768364827
2187
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sion the atoms merely exchange their velocities). In particular
it is possible to choose a uniform velocity distribution for
−umax < u < umax. In this case the total rate [Eq. (135b)]
can be calculated exactly and Eq. (136) can be enforced very
efficiently. In this situation we were able to stochastically
update the velocity and positions of 108 particles, which
allowed us to simulate the joint distribution F (X,V ) (see
Fig. 1). It is interesting to note how the exponential character
of the speed distribution F (V ) is also present for F (V,X = 0).
In the same way the character of the density distribution N (X)
persists for F (V = 0,X). In the contour plot (top panel of
Fig. 1) we observe that the equiprobability lines always cross
the V axis perpendicularly while they cross the X axis at acute
(obtuse) angle for X < Xc (X > Xc), where Xc ∼ 0.8. This
has the consequence that for any given velocity the maximum
probability is always at X = 0 (green dash-dotted line in Fig. 1)
while for fixed X the maximum probability is at V = 0 only
for X < Xc (blue dashed line in Fig. 1). The numerical result
clearly show the lack of factorization: The joint distribution
F (X,V ) is not a product of functions of X and V .

In two dimensions, we have also used a “brute-force”
MD simulations to investigate the case when the atoms
interact between themselves and with the particle through
the potential U ∼ r−λ. This simulation scheme is much more
time-consuming than the stochastic update of the position
and velocity of the particle. For this reason we were able
to simulate only 104 particles. This is sufficient to check the
scaling of the average velocity and displacement with time,
but does not allow us to check the full distribution. In our
system the background atoms are affected by other atoms
and insensitive to the presence of the particle; the particle
is affected by the atoms. Computationally, this property is
implemented in a simple way. At each time step of the MD
simulation we calculate the total force acting on a background
atom summing only the contributions from the other atoms
(no contribution from the particle). The total force acting on
the particle is obtained summing all the contributions from the
atoms.

Numerically, it is convenient to simulate many independent
particles in the same background gas of atoms. Usually, even
if the particle-particle potential is set to zero, particles interact
indirectly via the background gas. In our case, the particles do
not affect the background atoms and are totally independent
from each other. We have simulated 104 independent particles
in the same background gas of 5 × 103 atoms. For the reason
explained before, this simulation scheme is equivalent to 104

runs of a single particle in a background gas of 5 × 103

atoms.
The equations of motion have been numerically integrated

using the velocity-Verlet algorithm [29]. The time step of the
numerical integration was reduced during the time evolution
in order to keep the average particle’s displacement during
a single time step constant and smaller than the mean-free
path of the gas. The initial positions of the background
atoms and of the particles were randomly drawn from the
uniform distribution inside the simulation box with periodic
boundary conditions. The initial velocity of the particles were
drawn from the distribution δ(v − v0)/2π while the initial
velocity of the atoms were generated from the Maxwell-
Boltzmann distribution and were rescaled in order to ensure
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FIG. 8. (Color online) Average particle velocity and displacement
in two dimensions with a particle-atom interaction potential diverging
as U � r−λ for r → 0. In all cases the density of the background
gas is ρ = 25%. The slopes of the fitting curves (dashed lines) are
0.5,0.66,0.74,0.79 (bottom to top), all in excellent agreement with
the theoretical prediction λ/(λ + 2). The solid black line has slope 1
and is a guide for the eye.

that the total energy (∼T ) of the background gas had a fixed
value.

The results of different simulations at fixed density and
fixed interaction exponent are shown in Figs. 8 and 9,
respectively; these results are in excellent agreement with
theoretical predictions.

Finally, the quasirecurrent relation (108) has been itera-
tively solved (as shown in Fig. 2 and explained in the text)
using MATHEMATICA. This has allowed us to calculate exactly
the moments of the spatial distribution 〈R2n〉 up to n = 500
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FIG. 9. (Color online) The same system as in Fig. 8 with fixed
interaction exponent λ = 8 and varying density. The slope of the
fitting curves (dashed lines) is � = 0.79 in all cases, while the
intercepts are b = 0.79,1.60,2.41 (bottom to top). Note these values
are in the ratio 1:2.02:3.05, in excellent agreement with the theoretical
prediction (29) bi/bj = (ρi/ρj )�, which gives 1:2.08:3.03. The solid
line has slope 1 and is a guide for the eye.
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for the hard-sphere gas in d = 1,2,3. In Fig. 3 we show
the ratio (2n)2〈R2n〉/〈R2(n+1)〉, which allows us to extract the
asymptotic exponential decay of the density distribution.

X. SUMMARY

We have analyzed the behavior of a very light particle in an
equilibrium background gas. We have shown that in the long
time limit, the average particle displacement grows linearly
with time and proportionally to the thermal velocity of the
background atoms; the density of the gas, the size of atoms, and
the details of the interaction between the particle and the atoms
do not affect the asymptotic. The average particle velocity
also grows in a rather universal way and the scaled velocity
distribution approaches a scaling form which is generically
non-Gaussian (the only exception is when the particle-atom
interaction is described by a Maxwell potential).

For the hard-sphere particle-atom interaction in arbitrary
dimensions, we have computed the asymptotically exact
velocity distribution, position distribution and joint velocity-
position distribution. The most complete results for the joint
distribution have been derived using a combination of Fourier
and Laplace transforms.

In one dimension, we have also determined the probability
density for the particle displacement using a less standard
moment approach. Specifically, we have guessed an exact
expression for the moments 〈r2n〉, which we verified by exact
(MATHEMATICA-assisted) calculations of the moments up to
〈r1000〉, and we found the probability density that results in
these moments. We have also guessed an exact expression
for the moments 〈r2n〉 in two dimensions and we have
confirmed to the same depth as in one dimension. Further,
we have used the moments to establish the large displacement
tail of the probability density and to study the correlations
between the velocity and displacement of the particle.

Our theoretical predictions are in perfect agreement with
the numerical simulations, providing strong evidence that our
simulation scheme is correct and that the simplification of the
collision integral and the replacement of the convective term
by effective diffusion are indeed asymptotically exact in the
limit when the particle velocity greatly exceeds the thermal
velocity of atoms.

The Lorentz model was originally suggested [2] as an
idealized model of electron transport. Quantum mechanics
is, of course, essential for this problem. In the context of
the quantum particle in a container of fixed volume with
boundaries deforming in a chaotic manner (a stochastic model
for Fermi’s acceleration of the quantum particle), some mostly
numerical work has been done (see, e.g., [30]). A quantum
linear Boltzmann equation that probably can be used as a
mathematical framework of the quantum version of our model
has also been studied (see [31] and references therein). An
interesting extension of the present work is to analyze the
quantum version of our model.
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APPENDIX A: APPROACH TO SAILING

In one dimension, atoms merely exchange their velocities,
so there is no relaxation and any velocity distribution P (u)
can be taken as an equilibrium distribution. As an example,
consider the bimodal velocity distribution

P (u) = δ
(
u − 1

2

) + δ
(
u + 1

2

)
. (A1)

(The bimodal distribution is often used in studies of the one-
dimensional Boltzmann equation; see, e.g., [17].) Note that for
the bimodal velocity distribution the condition of Eq. (3) holds;
further, the density and the temperature of the background gas
are ρ = 2, T = 1/4. Therefore, τ = 2ρT t = t and the scaling
solution (7) becomes

f (v,t) = 1

2t
e−|v|/t .

Let us now try to establish exact results starting with initial
condition

f (v,t = 0) = δ(v). (A2)

The velocity distribution cannot approach the smooth distri-
bution (7). For the bimodal velocity distribution (A1) and the
initial condition (A2), the particle velocity can be only integer:

f (v,t) =
∞∑

n=−∞
Pn(t)δ(v − n). (A3)

The amplitudes Pn(t) are still expected to behave as

Pn(t) = 1

2t
e−|n|/t (A4)

in the limit |n| → ∞ and t → ∞, with n/t being finite.
To probe the exact behavior we insert (A1) and (A3) into

the Boltzmann equation (1) and deduce an infinite set of rate
equations,

Ṗn = (
n − 1

2

)
Pn−1 + (

n + 1
2

)
Pn+1 − 2nPn, (A5)

for n � 1 and

Ṗ0 = P1 − P0. (A6)

[It suffices to consider Pn with n � 0; with initial condition
(A2), the particle velocity is a manifestly even function of v

and, therefore, P−n ≡ Pn.]
To treat (A5) and (A6), let us use the generating function

P(t,z) = P0(t) + 2
∑
n�1

Pn(t)zn. (A7)

Note that

P(t,z = 1) =
∞∑

n=−∞
Pn(t) = 1, (A8)

explaining why we have chosen the definition (A7) of the
generating function instead of

∑
n�0 Pn(t)zn.

Utilizing the generating function (A7), we recast an infinite
set of rate equations (A5) and (A6) into a single partial
differential equation:

∂P

∂t
= (1 − z)2 ∂P

∂z
+ (1 − z)2

2z
P0(t) − 1 − z2

2z
P. (A9)
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We want to solve (A9) subject to the initial condition Pn(t =
0) = δn,0, or equivalently,

P(t = 0,z) = 1, (A10)

and the boundary condition (A8).
Using ζ = 1/(1 − z) instead of z, we rewrite (A9) as

∂P

∂t
= ∂P

∂ζ
+ P0(t)

2ζ (ζ − 1)
+ 1 − 2ζ

2ζ (ζ − 1)
P. (A11)

The transformation ξ = (t + ζ )/2,η = (t − ζ )/2 recasts
(A11) into

∂P

∂η
= P0(ξ + η) + [1 − 2(ξ − η)]P

2(ξ − η)(ξ − η − 1)
. (A12)

To solve (A12) we note that its homogeneous version,

∂P

∂η
= 1 − 2(ξ − η)

2(ξ − η)(ξ − η − 1)
P,

has a general solution

P(ξ,η) =
√

(ξ − η)(ξ − η − 1)Q(ξ ),

where Q(ξ ) is an arbitrary function of ξ . Then a solution to
the full equation (A12) can be sought using the variation of
constant technique. In the present case we must actually vary
the function Q(ξ ); namely, we should seek a solution of the
form

P(ξ,η) =
√

(ξ − η)(ξ − η − 1)Q(ξ,η). (A13)

Plugging (A13) into (A12) we obtain a simple equation for Q

which is integrated to find a final solution. Returning back to
the variables (t,ζ ) we get

P(t,ζ ) =
√

ζ (ζ − 1)Q(t,ζ ), (A14)

with

Q = 1√
(t + ζ )(t + ζ − 1)

+ 1

2

∫ t

0
dτ

P0(τ )

[(t − τ + ζ )(t − τ + ζ − 1)]3/2
. (A15)

Equations (A14) and (A15) give rather formal results as
we have not yet extracted P0(t). However, on this stage
we can already confirm the emergence of scaling (A4).
Indeed, assuming that P0(t) decays and approaches to zero
as t → ∞, we conclude that the integral term on the right-
hand side of (A15) is asymptotically negligible and therefore
Q � 1/(t + ζ ). Therefore, (A14) becomes P � ζ/(t + ζ ),
where we additionally consider the large ζ limit. Hence,
P � 1/(1 + t/ζ ) = 1/(1 + t − tz). Expanding this result we
get

Pn(t) = 1

2

tn−1

(1 + t)n
,

which in the scaling limit n → ∞ and t → ∞ with n/t being
finite is indeed equivalent to (A4).

APPENDIX B: ANGULAR INTEGRALS

Let us first prove the validity of relation (24a) with A defined
in (25). The integral in (24a) is equal to (J · u), where J =

∫
De(g · e)e. Due to symmetry, the vector J must be directed

along g. Hence,

J = Ag, (B1)

where the amplitude A is independent on g since J scales
linearly with g. Computing the scalar product of g and J we
obtain

A = 1

g2
(J · g) = 1

g2

∫
De(g · e)2. (B2)

Using (B1) we arrive at∫
De(u · e)(g · e) = (u · J) = A(u · g),

which together with (B2) lead to (24a).
To establish (24b) with B defined in (25) we note that the

integral in Eq. (24b) is equal to (u · T · u), where

T =
∫

De(g · e)2ee. (B3)

Tensor T depends only on vector g, so it must read

T = C1gg + C2g
2U , (B4)

where U is the unit tensor. To determine the amplitudes C1

and C2, we compute the trace of tensor T and the product
(g · T · g). Using (B4) we find

Tr(T ) = (C1 + dC2)g2, (B5a)
(g · T · g) = (C1 + C2)g4. (B5b)

If instead we use (B3) we get

Tr(T ) = ∫
De(g · e)2 = Ag2, (B6a)

(g · T · g) = ∫
De(g · e)4 = Bg4, (B6b)

where we have used the definitions of A and B [see (25)].
Comparing (B5) with (B6) we express the amplitudes C1 and
C2 via A and B,

C1 = dB − A

d − 1
, C2 = A − B

d − 1
, (B7)

yielding indeed (24b).
For the three-dimensional hard-sphere gas, the integration

measure is given by Eq. (13) and therefore

A = 1

g3

∫
d2eθ (g · e)(g · e)3,

(B8)

B = 1

g5

∫
d2eθ (g · e)(g · e)5.

Let us now introduce spherical coordinates with the axis along
g. We have d2e = 2π sin ϑdϑ , (g · e) = g cos ϑ ; the term θ (g ·
e) limits the integration over the range 0 � ϑ � π/2. Thus,

A = 2π

∫ π/2

0
sin ϑ(cos ϑ)3dϑ = π

2
,

and similarly B = π/3. Thus, we obtain (15a) and (15b). (See
Ref. [4] for the computation of integrals similar to (15); such
integrals often appear in kinetic theory of the hard-sphere gas.)

For the d-dimensional hard-sphere gas, we have the same
expression (B8) for A and B, the only difference is that
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de = 
d−1(sin ϑ)d−2dϑ . Computing A yields

A = 
d−1

∫ π/2

0
(sin ϑ)d−2(cos ϑ)3dϑ = π (d−1)/2

�
(

d+3
2

) . (B9)

APPENDIX C: EXACT SOLUTION OF EQ. (26) AND
ANLYSIS OF SOLUTIONS OF EQ. (32)

Let us first solve Eq. (26) using the Laplace transform. Note
that in Eq. (26) the variable v varies in the range (0, + ∞)
and therefore we use the Laplace transform rather than, for
example, the Fourier transform. In any number of dimension
we define

g(k,τ ) = 
d

∫ ∞

0
dvvd−1e−vkf (v,τ ), (C1)

where 
d = 2πd/2

�(d/2) is the area of the unit sphere in d dimension.
According to this definition, the function g satisfies the
boundary condition g(k = 0,τ ) = 1 and the initial condition

g0(k) ≡ g(k,τ = 0) = 
d

∫ ∞

0
dvvd−1e−vkf (v,τ = 0).

Applying the Laplace transform to Eq. (26) yields

∂g

∂τ
= −dkg − k2 ∂g

∂k
. (C2)

The right-hand side can be rewritten as −k2−d ∂
∂k

(kdg), thereby
suggesting to use the function h = kdg instead of g. One gets
hτ = −k2hk , or equivalently,

∂h

∂τ
= ∂h

∂κ
, κ = k−1. (C3)

A general solution to the simple wave equation (C3) is
h(κ,τ ) = H (κ + τ ), where H is determined by the initial con-
dition: h(κ,τ = 0) = H (κ). Returning to the original function
g we arrive at the general solution for the Laplace transform:

g(k,τ ) = (1 + τk)−dg0

(
k

1 + kτ

)
. (C4)

As an example of the initial distribution with a compact
support (that is, vanishing for sufficiently large velocities),
consider the isotropic distribution with fixed initial speed v0.
In other words, let

f (v,τ = 0) = δ(v − v0)


dv
d−1
0

. (C5)

In this case [32] the solution reads

g(k,τ ) = 1

(1 + τk)d
exp

[
− v0k

1 + τk

]
.

Expanding the exponential and separately performing the
inverse Laplace transform of each term we obtain

f (v,τ )= 1


d�(d)τ d

∞∑
n=0

(−v0/τ )n

n!
1F1

[
n + d; d; −v

τ

]
, (C6)

where 1F1 is the confluent hypergeometric function. The
asymptotic behavior (τ � v0) of (C6) is given by the first

term (n = 0) in the sum and is equal to

f (v,τ ) = 1


d�(d)

e−v/τ

τ d
, (C7)

where we have used the identity 1F1[d; d; z] = ez.
As an example of an initial distribution with infinite support,

consider an exponential distribution

f (v,τ = 0) = 1


d�(d)

e−v/v0

vd
0

. (C8)

In this case, the velocity distribution remains exponential
throughout the evolution

f (v,τ ) = 1


d�(d)

e−v/(v0+τ )

(v0 + τ )d
. (C9)

The asymptotic (τ � v0) behavior of the solution (C9) is again
given by (C7).

These two examples illustrate the general behavior which
can be deduced from the general solution (C4): If the
initial velocity distribution decays exponentially or faster, the
asymptotic behavior of the velocity distribution is universal
(that is, independent of the initial velocity distribution) and
given by (C7). If the initial velocity distribution decays
slower than exponentially in the v → ∞ limit, the long-time
asymptotic behavior is given by Eq. (C7) apart from the
tail region. For instance, if f (v,τ = 0) ∼ v−ν as v → ∞,
the asymptotic velocity distribution is given by (C7) when
0 � v 	 (ν − d)τ ln τ , while for v � (ν − d)τ ln τ the initial
distribution dominates: f (v,τ ) ∼ v−ν .

Essentially the same qualitative behavior is valid in the
general case of the potential particle-atom interaction (28).
The governing kinetic equation (32) describing the long-
time behavior is substantially more difficult than Eq. (26)
corresponding to the hard-sphere interaction; for example,
applying the Laplace transform to Eq. (32) does not lead to
a closed equation for g(k,τ ). Therefore, it is much harder to
prove rigorously that the asymptotic is given by (34) and (35).
A nonrigorous, but physically convincing, argument relies on
the existence of a one-parameter family of exact solutions
generalizing the scaling solution (34) and (35). Indeed, let us
start with an initial velocity distribution [32],

f (v,τ = 0) = C

vd
0

exp

{
− �2

(
v

v0

)1/� }
, (C10)

where v0 is a parameter and the constants C and � are the
same as in Eqs. (34) and (35). A solution of Eq. (32) subject
to the initial condition (C10) reads [33]

f = C
(
τ + v

1/�

0

)−�d
exp

{
− �2 v1/�

τ + v
1/�

0

}
. (C11)

Obviously, the velocity distribution (C11) approaches the
scaling form [Eqs. (34) and (35)] in the long-time limit.
This strongly suggests that for an arbitrary initial velocity
distribution that decays as exp{−const. × v1/�} or faster,
the asymptotic behavior is given by (34) and (35). For the
initial velocity distribution decaying slower than the preceding
stretched exponential, the asymptotic velocity distribution is
still given by Eqs. (34) and (35) in the major range and only
the tail region is dominated by the initial velocity distribution.
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