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Environmental stability of quantum chaotic ratchets
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The transitory and stationary behavior of a quantum chaotic ratchet consisting of a biharmonic potential under
the effect of different drivings in contact with a thermal environment is studied. For weak forcing and finite 7z, we
identify a strong dependence of the current on the structure of the chaotic region. Moreover, we have determined
the robustness of the current against thermal fluctuations in the very weak coupling regime. In the case of strong
forcing, the current is determined by the shape of a chaotic attractor. In both cases the temperature quickly
stabilizes the ratchet, but in the latter it also destroys the asymmetry responsible for the current generation.
Finally, applications to isomerization reactions are discussed.
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I. INTRODUCTION

Directed transport, understood as transport phenomena
in periodic systems out of equilibrium, has attracted much
attention in recent years [1,2]. As a consequence the field has
developed into a well-established area of statistical physics,
which involves many interdisciplinary aspects. In this respect,
many classical questions and very recently many quantum
issues have been answered. The breaking of all spatiotemporal
symmetries leading to momentum inversion has been found
to be the general mechanism to engineer ratchet systems [3].
For the Hamiltonian case, an efficient sum rule explaining the
values of the resulting net current has been devised [4]. For a
classical deterministic ratchet with dissipation an asymmetric
chaotic attractor has been obtained [5]. Quantum effects were
considered to analyze the first so-called quantum ratchets [6],
while recently purely quantum ratchets have been found to
exist [7]. Floquet theory has provided a general explanation for
the appearance of a quantum current in periodic systems [8].

Ratchet systems are interesting in a very broad range
of situations, such as in applications to molecular motors
in biology [9] or to nanotechnology [10]. Cold atoms in
optical lattices are one of the main examples of successful
implementations and theoretical developments [11,12]. Also,
Bose-Einstein condensates have been transported (for par-
ticular initial conditions) by using purely quantum ratchet
accelerators [13]. In this case, the current has no classical
counterpart [ 14], and the energy grows ballistically [15,16]. A
possible application field that has not been much explored yet
is represented by molecular processes such as isomerization,
for example. This particular type of chemical reaction has a
tremendous relevance in important biological processes such
as human vision [17] or proton transfer [18], and its control has
also been considered in the literature [19]. Actually, some of us
have very recently proposed a method to perform this control in
a realistic model for LINC<==LiCN [20], which is an adequate
prototypical example for this kind of process. Notice that in
these studies the main ingredients used in the present paper,
namely, dissipative dynamics associated with thermal noise
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and external perturbations [21,22], are included. However, they
were not formulated and studied from the directed transport
perspective. Here we focus on the behavior of a dissipative
ratchet in regimes that can also be of interest for this kind of
experiment.

In this paper we study the influence of the environment on a
quantum chaotic ratchet. Our model consists of a mass particle
in a biharmonic potential subjected to different periodic driving
forces. In the dissipative case, the environment can be directly
responsible for the transport generation. Let us remark that the
results for this regime are still scarce since the calculations
are difficult to carry out, and then many questions remain
unsolved [23-25]. New results seem to provide some solutions
to these problems [26,27]. Among them, determining the
stability of the current is of great relevance and has recently
raised high interest [28]. We show that for weak forcing and
finite 72 values the current strongly depends on the structure
of the chaotic region. Thermalization brings stability, without
completely washing out the asymmetric structures that give
rise to it. In the strong forcing scenario, the current is explained
by the asymmetry of a chaotic attractor. A stable classical and
quantum current is achieved at short times, and the effect of
moderate temperature consists of making these times even
shorter, but at the price of diminishing the current value.

The organization of this paper is as follows. In Sec. II
we present our model for the system and the environment,
also describing the methods used to investigate the current
behavior. In Sec. III we show the results, and the roles of the
coupling strength and the temperature are analyzed in detail.
Finally, in Sec. IV we summarize our conclusions.

II. MODEL AND METHODS

Our system consists of a particle moving in a time-
dependent potential given by

V(x,t) =1 —cos(x) — Acos(2x + ¢,)
+ Fsin(x) [cos(?) + B cos(2t + ¢p)], (1)
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where F is the strength of the time periodic forcing, A and
¢, are parameters that allow the introduction of a spatial
asymmetry, and B and ¢, have an analogous effect in the
time domain. Throughout this paper we will set A =1/2
and ¢, = 7 /2. This expression may simulate the situation
in which a molecule with two stable isomers is subjected to
a bichromatic laser field pulse, the term sin(x) representing
the (approximate) dipole coupling (see, for example, [21]).
The effects of the environment are introduced by means of
a velocity-dependent damping and thermal fluctuations. This
leads to the integration of the equation

mi=—-Tx—V'(x,t)+E. )

In this expression x is the spatial coordinate of the particle,
m is its mass, and IT" is the dissipation parameter (we have
only studied weakly dissipative cases). The thermal noise (a
Gaussian white noise of zero mean) £ is related to I', according
to < E()E(t") >=2I'kpT 8(t — t), where kp is the Boltzmann
constant and 7 is the temperature, thus making the formulation
consistent with the fluctuation-dissipation relationship. In the
following we setm = 1 and kg = 1.

At the quantum level, we perform the evolution of the
density matrix of the system, p, by means of a modified
split operator method [29]. We use a composition of uni-
tary steps given by the kinetic and potential terms of the
Hamiltonian (representing the system dynamics), and other
purely dissipative steps. The latter come as the result of
incorporating dissipation and thermalization to the quantum
particle by coupling it to a bath of noninteracting oscillators
in thermal equilibrium at a temperature 7. The degrees of
freedom of the bath are eliminated by means of the usual
weak coupling, Markov, and rotating wave approximations
[30]. As a result, we arrive at a Lindblad equation for
the density matrix of the system that can be written as a
completely positive map D, (dt) in the operator-sum (or Kraus)
representation

2

p(t +dt) =D rydD) [p(1)] = Y KfpKE, (3
n=0

where

2
1 P
KOZH_E E KM'K,
pn=1

N—1
K= Z edt[1 4+ a(k)] k | paxs1) Pkl €]
=1

N1
K = Z edtii(k) k | pai) (psisil
=1

are the infinitesimal Kraus operators satisfying ) K f Klf =
1 to first order in d¢ [31], and p is the momentum conjugated
to the x coordinate. Note that the superscript £ defines two
different operators (standing for the positive and negative
values of the p spectrum), and does not apply to the K
operator. In these equations & is a system-bath coupling
parameter that can be directly associated to the classical
velocity-dependent damping I' (which at T =0 gives the
contraction rate of the phase space). The population densities
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of the bath are given by ii = {exp[AE;/(kpT)] — 1}, where
we have set E; = p,% /2, and AE} is the energy difference
between the neighboring levels connected by the operators. In
this way, we extend our method [25], originally developed for
maps, to general fluxes.

III. RESULTS

In directed transport studies the main quantity that charac-
terizes the system is the current J(¢) = (p;), where ( ) means
the average taken with respect to the initial conditions and
time, up to a given instant ¢. In the quantum case, we consider
J(t) = (Tr(pp)), where the same kind of average is taken. The
initial conditions have been taken inside the chaotic region of
phase space, both classically and quantum mechanically (in the
last case by means of coherent states). We study the transitory
and stationary behavior. Given that phase space distributions
are also of great interest, in the following we will also focus
on their analysis.

We have considered two cases: weak and strong forcing.
In the first case (F ~ 0.02 —0.05) we have broken all
spatiotemporal symmetries that forbid a net current (namely, a
generalized parity and time reversal) by means of the potential
built-in asymmetry (we have taken B = 0.2 and ¢, = 0). In
this situation the phase space of the closed system is mixed
and the current depends on the structure of the chaotic sea,
which has to be asymmetric. Moreover, we have tested the
robustness of this mechanism against dissipation and thermal
fluctuations. In the second case (F = 2.5) we have chosen a
simpler, harmonic forcing (B = 0), and an asymmetric spatial
potential (¢, = m/2) in order to investigate the interplay
among forcing, dissipation, and thermal fluctuations. Now, the
current comes from the asymmetry of a strange attractor. In
fact, dissipation induces this asymmetry, which is responsible
for the directed transport [23]. But this same dissipation
mechanism contracts phase space and makes the higher
energies inaccessible for the system. So higher dissipation
and asymmetry do not necessarily translate into higher
values of J. Additionally, thermal noise compensates for the
energy loss caused by dissipation. However, the associated
diffusion tends to homogenize the strange attractor, reducing
its asymmetry, and these two effects compete with each other
[25].

A. Weak forcing

The biharmonic spatial potential we have considered has
two minima. For weak time-periodic forcing there is a chaotic
region that connects two corresponding main regular islands
that are related to these minima. In fact, a chaotic region fills
the portion of phase space among many regular islands, in the
shape of a network of branches, with almost no bulk portion.
As a consequence, there is a high sensitivity to variations
in the intensity of the driving field, since this introduces
relevant modifications in this kind of ballistic network. This
phenomenon can be clearly seen in Fig. 1, which displays
the phase space for F = 0.02 (upper row) and F = 0.05
(lower row) at time ¢ = 50. In all cases the coupling with
the environment is very weak, I' = 10~*. In addition, we
take # = 0.041, which is far from the semiclassical limit. The
classical and quantum distributions are obtained by evolving
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FIG. 1. Classical (contour lines) and quantum (gray scale density
plot) phase space distributions for = 50 (in units of the period of the
forcing). In the upper row F = 0.02 and in the lower one F = 0.05.
We display the cases (from left to right) for 7 =0, T = 0.01, and
T =0.1.Inall cases ' = 10~* and /# = 0.041.

a set of analogous initial conditions inside the chaotic region
with initial p = 0. The contour lines indicate different level
surfaces of the classical distributions while the density plots
show the quantum ones (where darker means higher values).
The imbalance between the positive and negative p regions
of phase space, which is responsible for the current, is
significantly altered by varying the parameter F. For FF = 0.02
and T =0 (see Fig. 1, upper row, leftmost panel) there
is a branch of the chaotic region that develops for p < 0
and that is not present for p > 0. For F =0.05 and T =0
(see Fig. 1, lower row, leftmost panel) the distribution looks
more symmetric. This behavior persists at low temperatures
(T =0.01) as can be seen in the middle column of Fig. 1, for
both values of F. Finally, for a higher temperature (7' = 0.1)
the situation changes, and the distributions look more alike,
although some features of the phase space structure seem to
survive the thermal fluctuations.

In order to assert if this is the case, we show the current
values as a function of time (in units of the period of the
forcing) in Figs. 2(a) for F = 0.02 and 2(b) for F = 0.05.
We notice that at T = 0 (blue dot-dashed lines) there are
strong fluctuations that can be associated with the very weak
coupling with the environment and the finite 7 value. At
T = 0.01 (orange dashed lines) the same behavior is present,
but at 7 = 0.1 (black solid lines) the situation changes and
the current stabilizes at very short times (¢ ~ 15), so that a
value for the current J can be defined. Moreover, this is valid
for both values of F. At this point it is worth mentioning
that for F = 0.02 the current is greater than for F = 0.05,
so we can conclude that the quantum distributions preserve
the main features of the original structure of phase space at
T = 0. This makes the current generation mechanism robust
against environmental perturbations in the weak coupling
regime. Moreover, temperature also helps to stabilize the
ratchet.

To conclude this subsection, we would like to mention
that our choice of parameters is suitable for modeling many
isomerization reactions induced by laser fields [17,19,21,
22]. The interactions with the solvent can account for the
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FIG. 2. (Color online) Quantum current as a function of time ¢
(in units of the period of the forcing) for the cases shown in Fig. 1.
In panel (a) F = 0.02 and in (b) F = 0.05. Blue dot-dashed lines
correspond to 7' = 0, orange dashed lines to 7 = 0.01, and black
solid lines to 7 = 0.1. In all cases I" = 10~* and s = 0.041.

interaction with a thermal environment of the kind that we
have analyzed. In this respect, it is interesting to note that
the main features for current generation (isomerization rate
in this case) survive a weak coupling with the environ-
ment, and that this in turn can be beneficial. This suggests
that this mechanism is applicable to actual experimental
situations.

B. Strong forcing

The same system considered previously can behave in a
quite different way if the strength of the forcing is increased.
In fact, when this happens the regular island structure present
in the previous case is completely lost, and then the current
arises as a consequence of the asymmetry of a chaotic attractor.
In this case, it is easier to define an asymptotic current given
the fact that the attractor is usually formed in a very short
time. To illustrate this effect, we present in Fig. 3 the classical
and quantum phase space distributions for ' = 2.5, " = 0.05,
and i = 0.041 at t = 50. In it, we show from left to right and
top to bottom the cases corresponding to 7 = 0, T = 0.001,
T =0.01, and T = 0.1, respectively. As in the previous case,
the influence of the temperature is noticeable only for its
higher value, namely, T = 0.1, while for the rest of the cases
the quantum distribution remains almost unchanged. Thermal
fluctuations need to be greater than the quantum ones to
manifest themselves. This is not the case for the classical
attractor, which gradually loses all its finer details. For the
set of parameters that we have chosen in this case, the time
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FIG. 3. Classical (contour lines) and quantum (gray scale density
plot) phase space distributions for # = 50 (in units of the period
of the forcing). From left to right and top to bottom we show the
results correspondingto 7 = 0, T = 0.001, T = 0.01, and T = 0.1,
respectively. In all cases F = 2.5, = 0.05, and 7 = 0.041.

reversal invariance is only broken by dissipation. Moreover,
dissipation is not only responsible for the current generation,
but also for its quick stabilization. This can be seen in Fig. 4,
where the classical (thin lines) and quantum J as a function
of time ¢ are shown. As can be seen, for 7 = 0and T = 0.01
the attractor needs ~10 periods of the forcing to set in; at
this point the current is very well defined, both classical and
quantum mechanically. Actually, the correspondence between
the quantum and classical results is remarkable. For T = 0.1
the setting in of the attractor is even faster (only ~6 periods
are needed), but in this case the effect of temperature on the
quantum current is rather drastic, that is, J goes to 0. It is
interesting to point out that the classical current stabilizes
approximately at the same value for T =0 and T = 0.1.

0.6

0.4

FIG. 4. (Color online) Classical (thin lines with symbols) and
quantum current as a function of time ¢ (in units of the period of
the forcing) for some of the cases shown in Fig. 3. Blue dot-dashed
lines (and circles for the classical case) correspond to 7' = 0, orange
dashed lines (and squares for the classical case) to 7 = 0.01, and
black solid lines (and diamonds for the classical case) to 7 = 0.1. In
allcases F' = 2.5, = 0.05, and 2 = 0.041. In the inset we show the
stabilization region enlarged for the sake of clarity.
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FIG. 5. (Color online) Classical (left panel) and quantum (right
panel) phase space distributions at time ¢t = 50 corresponding to
T =0.Inall cases F =2.5,T =0.05and 7 ~ 0.0015.

This is because the effect of temperature is still not enough
to compensate for the imbalance between the positive and
negative p regions of the chaotic attractor. At the quantum
level, the finite 7 value combined with the effect of temperature
at T = 0.1 turns out to be sufficient in order to wash out this
difference. We have further verified this behavior by using a
highly efficient diagonalization method [32]. This allowed us
to look into the details of the superoperator spectrum, for which
the spectral gap is around 0.4 (this gap is the distance between
the modulus of the leading eigenvalue—equal to 1—and the
modulus corresponding to the next eigenvalue, in descending
order of this quantity). We have also obtained the associated
equilibrium eigenvector (corresponding to the eigenvalue one)
that became indistinguishable from the chaotic attractor found
by means of the time evolution.

In order to show the ability of our method to reach the
semiclassical limit we consider the classical and quantum
chaotic attractors corresponding to 2 >~ 0.0015 and 7 = 0 in
Fig. 5. Let us mention here that the study of the evolution
of different quantities as a function of time is an interesting
subproduct of our approach. Thanks to this, we have found
that despite the greater accuracy in the details of the phase
space distributions attained in this case, the values of J
as a function of 7 remain essentially the same as for 7 =
0.041.

IV. CONCLUSIONS

In this paper, we have studied a ratchet system consisting
of a particle moving in a biharmonic potential subjected to
a time periodic forcing and in contact with a heat bath at
finite temperature. The rich structure of the phase space for
different values of the involved parameters has been analyzed
both classical and quantum mechanically.

We have found that for weak forcing and very weak
coupling with the environment, the mechanism leading to
current generation survives. In fact, the quantum distributions
keep “memory” of the original structure of the chaotic region
at T = 0. Moreover the effect of the temperature is beneficial,
rather than destructive, and the current stabilizes after short
times. This makes us suggest a possible experimental verifi-
cation of these results in chemical isomerization reactions,
to which the dynamics we have analyzed can be directly
applicable. In the case of the strong forcing regime, the effect of
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temperature also shorten the times for which the stabilization
of the current occurs. But in this case, the current vanishes for
higher values of T, due to the blurring of the chaotic attractor
details (and asymmetry).

Finally, it is worth mentioning the high precision and
simplicity of our integration method. By developing a modified
split operator scheme, we have been able to reach very
low values of 7. This, combined with a highly efficient
diagonalization method, will allow us to implement in the near
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future an alternative approach for studying time dependent
dissipative quantum systems [32].
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