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Extending a Padé approximant method used for studying compactons in the Rosenau-Hyman �RH� equation,
we study the numerical stability of single compactons of the Cooper-Shepard-Sodano �CSS� equation and their
pairwise interactions. The CSS equation has a conserved Hamiltonian which has allowed various approaches
for studying analytically the nonlinear stability of the solutions. We study three different compacton solutions
and find they are numerically stable. Similar to the collisions between RH compactons, the CSS compactons
re-emerge with same coherent shape when scattered. The time evolution of the small-amplitude ripple resulting
after scattering depends on the values of the parameters l and p characterizing the corresponding CSS equation.
The simulation of the CSS compacton scattering requires a much smaller artificial viscosity to obtain numerical
stability than in the case of RH compacton propagation.

DOI: 10.1103/PhysRevE.82.066702 PACS number�s�: 45.10.�b, 05.45.�a, 63.20.Ry, 52.35.Sb

I. INTRODUCTION

Following their discovery �1�, compactons or solitary
waves defined on a compact support have found diverse ap-
plications in physics �2,3�, ocean dynamics �4�, magma dy-
namics �5,6�, mathematical physics �7–9�, nonlinear lattice
dynamics �10–16�, and medicine �17�. Multidimensional
compactons have also been discussed in �18,19�, and com-
pact structures have been studied in the context of the dis-
crete Burridge-Knopoff model �20�, and in the context of
discrete and continuous Klein- Gordon models �21–23�. A
recent review of nonlinear evolution equations with cosine/
sine compacton solutions can be found in Ref. �24�.

The K�l , p� compactons discussed first by Rosenau and
Hyman �RH� are examples of a class of traveling-wave so-
lutions with compact support resulting from the balance of
both nonlinearity and nonlinear dispersion. RH discovered
these compactons in their studies of pattern formation in liq-
uid drops using a family of fully nonlinear Korteweg–de
Vries �KdV� equations �1�,

ut + �ul�x + �up�xxx = 0, �1.1�

where u�u�x , t� is the wave amplitude, x is the spatial co-
ordinate, and t is time. Equation �1.1� is known as the K�l , p�
compacton equation. The RH compactons have the remark-
able soliton property that after colliding with other compac-
tons they reemerge with the same coherent shape. The colli-
sion site is marked by the creation of a compact ripple. The
positive- and negative-amplitude parts of the ripple decay
slowly into low-amplitude compactons and anticompactons,
respectively �1�. De Frutos et al. showed �25�, and Rus and

Villatoro confirmed recently �26�, that shocks are generated
during compacton collisions.

In general, Eq. �1.1� does not exhibit the usual energy
conservation law. Therefore, Cooper, Shepard, and Sodano
�CSS� proposed a different generalization of the KdV equa-
tion based on the first-order Lagrangian �27�

L�l,p� =� �1

2
�x�t +

��x�l

l�l − 1�
− ���x�p��xx�2�dx ,

�1.2�

which leads to the equation

ut + ul−2ux − p�up−1�ux�2�x + 2��upux�xx = 0. �1.3�

Here, we have u=�x. Since then, various other Lagrangian
generalizations of the KdV equation have been considered
�28–32�. The equation for the solitary waves is obtained by
substituting u�x , t�= f�x−ct�� f�y� into Eq. �1.3� and then
integrating twice and setting the integration constants to
zero. One obtains

c

2
f2 −

f l

l�l − 1�
+ ��f��2fp = 0. �1.4�

Anticompacton solutions correspond to the transformation
f →−f . Therefore, from Eq. �1.4�, we find that for anticom-
pactons to exist, l− p must be an even integer. Moreover,
when p is odd c changes sign and the anticompacton travels
with negative velocity, whereas for p even the velocity of the
anticompacton is positive.

Compacton solutions are constructed by patching a com-
pact portion of a periodic solution that is zero at both ends to
a solution that vanishes outside the compact region to give a
weak solution to the equation. We see that for there to be a
solution of that type, p�2 and l� p. The condition for a
weak solution is that the jump across the boundary of the
equation of motion at x0, where f�x0�=0 is zero. That is
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Disc��f��2fp�x0
= 0. �1.5�

This is always satisfied if there is no infinite jump in the
derivative of the function. The stability analysis of the solu-
tions relies on the fact that the equation of motion for f�y�
can be obtained from an Action functional:

��f� =� dy� c

2
f2 −

f l

l�l − 1�
+ ��f��2fp� . �1.6�

We recognize this functional as the value of

P�f�c + H�f� , �1.7�

where P�f� and H�f� are the values of the conserved momen-
tum and Hamiltonian respectively for the solitary wave f .
The once integrated equation of motion for the solitary wave
is obtained from the equation

��

�f
= 0, �1.8�

and the unintegrated equation of motion for f�y� is given by

�y
��

�f
= 0. �1.9�

For the RH equation, stability of the compacton has been
demonstrated numerically as well as by a linear stability
analysis of the radiation induced by the numerical method
�33�. For the CSS equation, because of the existence of a
Hamiltonian formulation, various other methods of studying
nonlinear stability have been explored such as Lyapunov sta-
bility �30,34� and stability of the solutions under scale trans-
formations �30,35�. However, apart from a numerical study
of the evolution and scattering of the compactons in the gen-
eralized CSS equation by Cooper, Khare, and Hyman �29�
using pseudospectral methods, there has been no systematic
study until now of the stability of the compacton solutions to
the CSS equation. Nor has there been any study of whether
the solutions that arise from a Hamiltonian dynamical system
behave differently from those obeying the four conservation
laws of the RH equation �1�. �without energy conservation�.
It is this gap in our knowledge that we hope to fill by this
study.

To study stability under scale transformations it is suffi-
cient to study the change in the Hamiltonian for fixed mo-
mentum P �30�. That is we let

f�x� → �1/2f��x� , �1.10�

which leaves P=	dxf2 /2 unchanged. The Hamiltonian

H =� dx��f l�f��p −
1

l�l − 1�
f l� � H1 − H2, �1.11�

is then transformed into

H1��� = ��1/2��l+3p−2�H1 − ��1/2��l−2�H2. �1.12�

The exact solution satisfies


 �H

��



�=1
= 0. �1.13�

This yields

�l − 2�H2 = �p + 4�H1. �1.14�

The second derivative at �=1 can then be written as


 �2H

��2

�=1

=
1

4
�p + 4��p − l + 6�H1.

Since H1 and H2 are positive definite we find that the solu-
tions are stable to a small scale transformation when

2 	 l 	 p + 6. �1.15�

This includes all the solutions we will be studying here.
In a recent paper �36�, we performed a systematic deriva-

tion of a Padé approximants method �37� for calculating de-
rivatives of smooth functions on a uniform grid by deriving
higher-order approximations using traditional finite-
difference formulas. Our derivation contained as special
cases the Padé approximants first introduced by Rus and Vil-
latoro �26,33,38�. We note that the L�lp� compactons feature
higher-order nonlinearities and terms with mixed-derivatives
that are not present in the K�p , p� equations. Therefore, in
this paper we will extend our earlier approach �36� so that we
can study the compactons that occur in the CSS equation.
This approach can also be applied to the recent PT generali-
zations of that equation �32�.

This paper is outlined as follows. In Sec. II, we review
briefly the main findings with respect to the numerical
schemes based on Padé approximants derived in Ref. �36�.
Our numerical approach to solving the CSS equation is de-
scribed in Sec. III. In Sec. IV we study numerically the sta-
bility of several compacton solutions of the CSS equation,
and we also study the pairwise interactions of these compac-
tons. We compare our results on stability with our previous
numerical study of the K�2,2� equation �36�. We summarize
our main findings in Sec. V.

II. PADÉ APPROXIMANTS

We consider a smooth function u�x�, defined on the inter-
val x� �0,L�, and discretized on a uniform grid, xm=mh,
with m=0,1 , . . . ,M, and h=L /M. Padé approximants of or-
der k of the derivatives of u�x� are defined as rational ap-
proximations of the form

um
�i� =

A�E�
F�E�

um + O�
xk� , �2.1�

um
�ii� =

B�E�
F�E�

um + O�
xk� , �2.2�

um
�iii� =

C�E�
F�E�

um + O�
xk� , �2.3�

um
�iv� =

D�E�
F�E�

um + O�
xk� , �2.4�
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where we have introduced the shift operator, E, as

Ekum = um+k. �2.5�

Even- and odd-order derivatives require approximants that
are symmetric and antisymmetric in E, respectively. The fa-
miliar second-order accurate approximation of derivatives
based on finite differences are trivial examples of Padé ap-
proximants

A1�E� =
1

2
x
�E − E−1� , �2.6�

B1�E� =
1


x2 �E − 2 + E−1� , �2.7�

C1�E� =
1

2
x3 �E2 − 2E + 2E−1 − E−2� , �2.8�

D1�E� =
1


x4 �E2 − 4E + 6 − 4E−1 + E−2� , �2.9�

corresponding to F1�E�=1 �33�. Still keeping F1�E�=1, but
incorporating the additional grid points, �xm�2�, we can ob-
tain fourth-order accurate approximation for the derivatives
um

�i� and um
�ii� as

Ã1�E� = −
1

12
x
�E2 − 8E + 8E−1 − E−2� , �2.10�

B̃1�E� = −
1

2
x2 �E2 − 6E + 10 − 6E−1 + E−2� . �2.11�

Previously �36�, we showed on general grounds that the
Padé-approximant approach allows one to improve the nu-
merical representations of only three of the four lowest-order
derivatives of u�x�, when involving only the grid points
�xm ,xm�1 ,xm�2�. To obtain a fourth-order accurate approxi-
mation of the derivatives, we can either begin by improving
the third-order derivative, um

�iii�, or the fourth-order deriva-
tive, um

�iv�. Because in the compacton-dynamics problem
�1,25,26,33,39–41�, the fourth-order derivative enters only
through the artificial viscosity term needed to handle shocks,
in Ref. �36� we chose to improve the approximation corre-
sponding to the third-order derivative, um

�iii�, and focused on
obtaining fourth- or higher-order accurate Padé approximants
of um

�i�, um
�ii�, and um

�iii�, on the subset of grid points,
�xm ,xm�1 ,xm�2�.

Using Eqs. �2.3�, we introduced an operator, F�E�, sym-
metric in E as

F�E�um
�iii� =

1

a
��E2 + E−2� + b�E + E−1� + c�um

�iii�,

�2.12�

such that

F�E�um
�iii� = C1�E�um + O�
xk� , �2.13�

and showed that for

a = 4�, b = � − 4, c = 2�� + 3� , �2.14�

we obtain

um
�iii� =

C1�E�
F�E�

um − um
�vii� 1

60
−

1

�
�
x4

4
− um

�ix� 43

2520
−

1

�
�
x6

24

+ O�
x8� . �2.15�

Correspondingly, the Padé approximant of the first-order de-
rivative, um

�i�, is obtained as

um
�i� =

A2�E�
F�E�

um − um
�v� 1

30
−

1

�
�
x4

4
− um

�vii� 1

105
−

1

4�
�
x6

6

+ O�
x8� , �2.16�

with

A2�E� =
1

24
x
�E2 + 10E − 10E−1 − E−2� , �2.17�

and the Padé approximant of the second-order derivative,
um

�ii�, is

um
�ii� =

B2�E�
F�E�

um − um
�vi� 7

180
−

1

�
�
x4

4
− um

�viii� 29

840
−

1

�
�
x6

24

+ O�
x8� , �2.18�

with

B2�E� =
1

6
x2 �E2 + 2E − 6 + 2E−1 + E−2� , �2.19�

and the Padé approximant of the fourth-order derivative,
um

�iv�, is

um
�iv� =

D1�E�
F�E�

um + um
�vi�
x2

12
+ O�
x4� . �2.20�

In order to numerically study the stability and dynamical
properties of compactons, we will consider a suite of differ-
ent fourth-order accurate approximation schemes to make
sure that results are independent of the peculiarities of a par-
ticular approximation scheme. Therefore, just like in Ref.
�36�, we will consider here several sets of approximants that
mix fourth-order accurate approximations for two of the de-
rivatives um

�i�, um
�ii�, and um

�iii�, with a sixth-order accurate Padé
approximant for the third one, together with an “optimal”
fourth-order approximation scheme that minimized the ex-
tent of the radiation train in our previous study of K�2,2�
compactons.

�6,4,4� scheme: this approximation scheme is an exten-
sion of the scheme introduced by Sanz-Serna et al. �25,39�
using a fourth-order Petrov-Galerkin finite-element method,
and corresponds to choosing �=30 in Eqs. �2.15� and �2.16�.
We have

F�644��E� =
1

120
�E2 + 26E + 66 + 26E−1 + E−2� .

�2.21�
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�4,6,4� scheme: a sixth-order accurate approximation for
um

�ii�, can be obtained by requiring �=180 /7. Then, we have

F�464��E� =
1

720
�7E2 + 152E + 402 + 152E−1 + 7E−2� .

�2.22�

�4,4,6� scheme: For �=60, the coefficient of 
x4 vanishes
in Eq. �2.15� and we obtain a sixth-order accurate approxi-
mation for um

�iii�, as

F�446��E� =
1

240
�E2 + 56E + 126 + 56E−1 + E−2� .

�2.23�

This scheme is an extension of the scheme introduced first
by Rus and Villatoro �26,33�.

�4,4,4� scheme: finally, for �=5, the smallest value of �
leading to integer positive values of a, b, and c, we obtain

F�444��E� =
1

20
�E2 + E + 16 + E−1 + E−2� . �2.24�

While only leading to a fourth-order accurate approximation
scheme, the above choice of � was shown to minimize the
extent of the radiation train in our previous study of K�2,2�
compactons.

III. NUMERICAL APPROACH

We will apply the numerical schemes based on the Padé
approximants discussed above to the case of the equation

ut − c0ux + uxxxx +
1

l − 1
�ul−1�x − �p�up−1ux

q�x + �q�upux
q−1�xx

= 0, �3.1�

where the subscripts t and x indicate partial derivatives with
respect to t and x, respectively. Here, u�x , t� is time evolved
in the moving frame of reference with velocity c0, and in the
presence of an artificial dissipation �hyperviscosity� term
based on fourth spatial derivative, �4u /�x4. The hypervis-
cosity term is needed to damp out explicitly the numerical
high-frequency dispersive errors introduced by the lack of
smoothness at the edge of the discrete representation of the
compacton �see, e.g., discussion in Ref. �29��. The addition
of artificial dissipation is responsible for the appearance of
tails and compacton amplitude loss. In our dynamics simu-
lations we choose  as small as possible to reduce these
numerical artifacts without significantly changing the solu-
tion to the compacton problem. We note that in the CSS-
compacton simulations discussed here, we required a hyper-
viscosity value an order of magnitude smaller than the
hyperviscosity used in our previous simulations of K�2,2�
compactons. Unless otherwise specified, we use =10−5.

Setting q=2 in Eq. �3.1�, leads to the case of the CSS
compacton derived from the Lagrangian Eq. �1.2�, i.e.,

ut − c0ux + uxxxx +
1

l − 1
�ul−1�x − �p�up−1ux

2�x

+
2�

p + 1
�up+1�xxx = 0, �3.2�

whereas for �= �q−1�−1 and q an even integer, we obtain the
compacton equation for the PT-symmetric case discussed in
Ref. �32�. Hence, even though in the following we focus on
the discussion of the properties of the CSS compactons, the
numerical methods developed here apply also to the case of
PT-symmetric compactons.

To obtain the spatial numerical discretization of Eqs. �3.1�
and �3.2�, suitable for our fourth-order accurate Padé-
approximant approach, we introduce a uniform spatial grid in
the interval x� �0,L� by defining the grid points xm=m
x,
with m=0,1 , . . . ,M and the grid spacing 
x=L /M. Then,
we have

0 = F�E�
dum

dt
− �c0A�E� − D�E��um + A�E�� 1

l − 1
�um�l−1

− �p�um�p−1��ux�m�q� + �qB�E���um�p��ux�m�q−1� . �3.3�

In Eq. �3.3�, um�t� is a numerical approximation to u�xm , t�,
and we assume that um�t� obeys periodic boundary condi-
tions, uM�t�=u0�t�. Also in Eq. �3.3�, we introduced the no-
tation u�xm , t�, and �ux�m to denote a numerical approxima-
tion to �xu�xm , t�. The latter is calculated using Eq. �2.10�.
The optimal discretization for the study of CSS compactons
corresponds to Eq. �3.3�. As such, for q=2, we have

0 = F�E�
dum

dt
− �c0A�E� − D�E��um + A�E�� 1

l − 1
�um�l−1

− �p�um�p−1��ux�m�2� +
2�

p + 1
C�E���um�p+1� . �3.4�

In order to numerically calculate the dynamics, we dis-
cretized the time- dependent parts of Eqs. �3.3� and �3.4� into
Eqs. �3.1� and �3.2� by implementing the midpoint rule in
time, similar to previous studies �24,36�. The resulting ap-
proximate equation for Eq. �3.3� is

0 = F�E�
um

n+1 − um
n


t
− �c0A�E� − D�E��um

n+1 + um
n

2
�

+
1

�l − 1�
A�E�um

n+1 + um
n

2
�l−1

− �pA�E�

��um
n+1 + um

n

2
�p−1 �ux�m

n+1 + �ux�m
n

2
�q� + �qB�E�

��um
n+1 + um

n

2
�p �ux�m

n+1 + �ux�m
n

2
�q−1� . �3.5�

Here we introduced the notations, um
n =um�tn� and um

n+1

=um�tn+
t�, to indicate evaluations at two different mo-
ments of time.

For CSS compactons the discretization is
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0 = F�E�
um

n+1 − um
n


t
− �c0A�E� − D�E��um

n+1 + um
n

2
�

+
1

�l − 1�
A�E�um

n+1 + um
n

2
�l−1

− �pA�E�

��um
n+1 + um

n

2
�p−1 �ux�m

n+1 + �ux�m
n

2
�2� +

2�

p + 1
C�E�

�um
n+1 + um

n

2
�p+1

. �3.6�

IV. RESULTS AND DISCUSSION

In the following, we discuss the case of the CSS compac-
ton equation, given in the laboratory frame by Eq. �1.3� or, in
a frame moving with velocity c0, by Eq. �3.2�, where in the
latter we set the hyperviscosity to zero, =0. We study the
properties of the three exact compacton solutions described
in Ref. �27�. The first two of these compactons correspond to
a class of solutions with l= p+2. The width of these compac-
tons is independent of the compacton velocity, c, and the
compactons have the general form

u�x,t� = � c�p + 1��p + 2�
2 ��1/p�

cos�2/p�� p��x,t�
�4��p + 1��p + 2�

� ,

�4.1�

where we introduced the notation

��x,t� = x − x0 − �c − c0�t , �4.2�

with x0 the position of the compacton maximum at t=0. For
p=1 and �= 1

2 , Eq. �4.1� gives the compacton solution

u1�x,t� = 3c cos2� 1

2�3
��x,t��, ���x,t�� � �3� , �4.3�

whereas for p=2 and �=3 we obtain the compacton solution

u2�x,t� = �6c cos�1

6
��x,t��, ���x,t�� � 3� . �4.4�

The third compacton to be discussed next corresponds to the
values, p=2 and l=3, and the width of this compacton de-
pends on velocity. Choosing �= 1

4 , we find

u3�x,t� = 3c −
1

6
�2�x,t�, ���x,t�� � 3�2c . �4.5�

u
(x

,t
=

7
5
)

-
u

(x
,t

=
0
)

K
(2

,2
)

K
(2

,2
)
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FIG. 1. �Color online� Study of the CSS compacton stability. CSS results are compared with those obtained in the K�2,2� case. Here, u1

and u2 are CSS compactons with velocity-independent width, corresponding to the case l= p+2, with p=1 and p=2, respectively, whereas
u3 is a CSS compacton with velocity-dependent width, corresponding to the case p=2 and l=3. The numerically induced radiation train
results at time t=75 were obtained using the �6,4,4� scheme described in the text. The compactons were propagated in their comoving frames
�c0=c� with 
t=0.1 and 
x=0.1, 0.05, and 0.025. In all cases, the radiation appears to be a numerical artifact that is suppressed by reducing
the grid spacing, 
x. This indicates that indeed these compactons are stable.
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Using Eq. �1.4�, one can study the possibility that the
above compactons, u1, u2, and u3, have anticompacton coun-
terparts. We infer that the CSS equation corresponding to the
u1 compactons �p=1, l=3� allows for anticompacton coun-
terparts traveling with a negative velocity, similar to the RH
compactons. The u2 equation �p=2, l=4� allows for com-
pact solutions with negative amplitude, but these anticom-
pactons have a positive velocity and travel in the same di-
rection as u2. Finally, the u3 CSS equation �p=2, l=3� does
not allow for anticompacton solutions.

We will compare results of simulations for the above
compacton solutions of the Lagrangian Eq. �1.2�, with results
of similar simulations for compacton solutions of the RH
generalization of the KdV equation �Eq. �1.1��: for p re-
stricted to the interval 1	 p�3, the K�p , p� equation allows
for compacton solutions of the form �26,41,42�

uc�x,t� = A� cos2�����x,t��, ���x,t�� �
1

2�
� , �4.6�

where

A =
2cp

p + 1
, � =

p − 1

2p
, � =

1

p − 1
. �4.7�

For illustrative purposes, we will consider the case of the
K�2,2� equation �p=2�, with the exact compacton solution

uc�x,t� =
4c

3
cos2�1

4
��x,t��, ���x,t�� � 2� . �4.8�

A. Study of compacton stability

To numerically demonstrate the stability of the CSS com-
pacton solutions, we performed a numerical study of the
compacton propagation in the compacton comoving frame
�c0=c�, using the Padé approximations discussed above, and
we compare with results of similar simulations performed in
the case of the K�2,2� compacton that are known to be
stable.

As shown in Fig. 1, the numerical compactons propagate
with the emission of forward and backward propagating ra-
diation. If the compactons are numerically stable, then the
amplitude of this radiation train is suppressed by reducing
the grid spacing, 
x, which shows that the radiation train is a
numerical artifact. In Fig. 1, we illustrate results obtained
with the �6,4,4� Padé- approximant scheme. Here we chose a
snapshot at t=75 after propagating the compacton in the ab-
sence of hyperviscosity �=0� with a time step, 
t=0.1, and
grid spacings, 
x=0.1, 0.05, and 0.025. The amplitude of the
radiation train is at least 4 orders of magnitude smaller than
the amplitude of the compacton. Using the grid refining tech-
nique, we can show that indeed the radiation is a numerically
induced phenomenon. The noise is suppressed by reducing
the grid spacing, 
x, indicating that all studied CSS compac-
ton Eq. �4.8� solutions are stable.
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FIG. 2. �Color online� Comparison of compacton stability results as a function of numerical scheme. The CSS-compactons stability study
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those obtained in the K�2,2� case. Here we plot the radiation trains obtained at t=75, by propagating the compactons in their comoving
frames �c0=c� with 
t=0.1 and 
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These results are robust with respect to the choice of the
fourth-order accurate Padé-approximant numerical scheme.
As shown in Fig. 2, the extent and amplitude of the radiation
train is a characteristic of the chosen numerical scheme, and
results for the CSS compactons are “identical” with results
obtained for the K�2,2� compactons, albeit for a scaling in
the amplitude of the radiation for a given choice of the time
step �
t=0.1� and grid spacing �
x=0.05�. This scaling is
indicative of the higher nonlinearity of the CSS equation
relative to the K�2,2� equation, as observed also when one
compares the results for the K�2,2� and K�3,3� equations
�33�.

We note that the origin of the radiation observed in the
propagation of a compacton was shown previously to be of
numerical origin in the case of the K�p , p� equation by Rus
and Villatoro �33�, who also showed that this self-similarity
depends strongly on the time-integration method �43�. The
induced radiation depicted in Figs. 1 and 2 is similar to that
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FIG. 3. �Color online� Collision of two CSS compactons,
u1�x , t�, with c1=1 and c2=2. The width of u1 compactons is inde-
pendent of the compacton velocity and they correspond to the
choice of parameters, p=1 and l=3. The simulation is performed in
the comoving frame of reference of the first compacton, i.e., c0

=c1, using the �6,4,4� scheme and a hyperviscosity, =2�10−5. In
the left panels, the collision is shown to be inelastic, despite the fact
that the compactons maintain their coherent shapes after the colli-
sion: the first compacton �c1=1� is “at rest” before the collision
occurs. As shown in the left panels, after the collision the centroid
of this compacton changes position. The right panels depict the
early development of the ripple created in the collision process.
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FIG. 5. �Color online� We study the correlations between the
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�a�. We use this snapshot to initialize two additional simulations: �1�
a simulations in which we drop the large compacton and �2� a
simulation in which we drop both compactons. In panel �b�, we
compare results of the three simulations at t=430. We show that the
differences between �0� and �1� are lower than the order of magni-
tude of the noise induced by the numerical discretization of the
problem �compare with the noise depicted in Fig. 1. The differences
between �1,2� are of the order of the machine precision errors. The
above indicate a lack of correlations between the ripple and the
reemerging compactons.
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of Ref. �33� and therefore one would expect that the self-
similarity of the radiation is also a feature of the CSS equa-
tion.

B. Pairwise interaction of CSS compactons

In the following we will show that the CSS compactons
also have the soliton property of remaining intact after the
collisions. The ripple generated following the reemergence
of the CSS compactons decomposes into compactons with or
without anticompacton counterparts, depending on the values
of the l and p parameters in the corresponding CSS equation.
In this context, it is important to recall that the u1 compac-
tons are the only CSS compactons that have anticompacton
counterparts traveling with a negative velocity, similar to the
RH compactons. The u2 CSS equation allows for anticom-
pacton solutions with negative amplitude, but with positive
velocity, traveling in the same direction as u2. Finally, the u3
CSS equation does not allow for anticompacton solutions.
No evidence of shock formation accompanying the collision
was observed.

All simulations described next involve collisions between
two CSS compactons with velocities c1=1 and c2=2. The
compactons are propagated in the comoving frame of refer-
ence of the first compacton, i.e., c0=c1, using the �6,4,4�

Padé approximant scheme. All simulations were performed
in the presence of an artificial hyperviscosity. Unless other-
wise stated, the hyperviscosity value was =10−5, an order
of magnitude less than the hyperviscosity used in our previ-
ous simulations of the K�2,2� compacton collisions �36�.

We consider first the collision between two CSS u1�x , t�
compactons �see Eq. �4.3�� with parameters p=1 and l=3.
The width of the u1 compactons is independent of the com-
pacton velocity.
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Case 1: p=1, l=3. In Fig. 3, we depict a series of snap-
shots of this collision process. Just like in the K�2,2� com-
pacton case, the collision is shown to be inelastic, despite the
fact that the compactons maintain their coherent shapes after
the collision. The first compacton is “at rest” before the col-
lision occurs. As shown in the left panels of Fig. 3, after
collision this compacton emerges with the centroid located at
a new spatial position. The early development of the ripple
created as a result of the pairwise compacton collision is
illustrated in the right panels of Fig. 3.

In Fig. 4 we illustrate the emergence of the first compac-
ton from the ripple. We note the very sluggish decay process,
just like in the RH-compacton case �1�.

To demonstrate the lack of correlations between the ripple
and the two reemerged compactons after collision, we use
the result of the simulation at t=400 �denoted as �0� in panel
�a� of Fig. 5� to initialize two additional simulations: �1�: a
simulation in which we drop the large compacton and �2� a
simulation in which we drop both compactons. In panel �b�
of Fig. 5, we compare results of the three simulations at t
=430. Here, we note that the differences between �0� and �1�
are lower than the order of magnitude of the noise induced
by the numerical discretization of the problem �e.g., compare
with the noise depicted in Fig. 1�. The differences between
�1,2� are of the order of the machine precision errors.

Assuming that the correlations between the ripple and the
two reemerging compactons are negligible, we can study the
dynamics of the ripple at late times. For illustrative purposes,
we shift the ripple, such that the position of the first emerg-
ing compacton is kept fixed. In Fig. 6, we depict snapshots of
the ripple decomposition for t�2100. Here, we note the
emergence of a first anticompacton in the t=1200 graph, and
the emergence of a second compacton at t=2100. In the p
=1 and l=3 case, the emerging compactons and anticompac-
tons are moving in opposite directions relative to the remain-
ing ripple, which is considerably reduced in amplitude.

Case 2: p=2, l=4. Similar to the collision process de-
picted in Fig. 3, in Fig. 7 we present a series of time snap-
shots illustrating the collision of two CSS u2�x , t� compac-
tons. The width of the u2 compactons is also independent of
the compacton velocity and these compactons correspond to
the choice of parameters p=2 and l=4. The results depicted
in Fig. 7 are similar to those in Fig. 3, albeit for the differ-
ences in the shape of the emerging ripple.

The dynamics of the u2 ripple is illustrated in Fig. 8. In
order to compare the shapes of the ripple at different times
after the ripple “separated” from the reemerging compactons,
in Fig. 8 we plot them such that they all cross the x axis at
the point indicated in the figure. The shape of the ripple is
shown to be evolving very slowly, likely as a result of the
fact that in the u2 case compacton and anticompacton solu-
tions travel in the same direction. As going to later times in
this simulation was deemed too expensive computationally,
we chose to terminate it before any compacton or anticom-
pacton emerged from the ripple.

Case 3: p=2, l=3. In Fig. 9, we illustrate the dynamics of
the ripple created as a result of the collision of two CSS
u3�x , t� compactons. The u3 compactons correspond to

parameters, p=2 and l=3, and their widths depend on the
compacton velocity. We note that the ripple “decays” in a
suite of compactons, without any anticompacton counter-
parts, as the CSS equation for p=2 and l=3 does not allow
for anticompacton solutions. The amplitude of the ripple in
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this case is much larger than in the case of collisions between
RH compactons or CSS compactons with compacton
velocity-independent widths, and this may explain why the
dynamics of the ripple-decomposition process is much faster
in the p=2 and l=3 case.

V. CONCLUSIONS

To summarize, in this paper we presented a systematic
study of the stability and dynamical properties of CSS com-
pactons. Several numerical schemes based on fourth-order
Padé approximants have been employed and the results were
found to be independent of the numerical scheme. We find
that for the propagation of the CSS compactons in time using
the implicit midpoint rule leads to stable results. The simu-
lation of the CSS compacton scattering requires a much
smaller artificial viscosity to obtain numerical stability than
in the case of RH compactons propagation.

Based on our study, we verified numerically the conclu-
sion of stability regarding the CSS compactons first derived
based on criteria such as Lyapunov stability �34� and stability

of the solutions under scale transformations �35�.
Just like in the case of RH compactons, the CSS compac-

tons preserve their coherent shapes after the collision. The
ripple generated following the reemergence of the CSS com-
pactons depends on the values of the parameters l and p
characterizing the CSS compactons: For a given set of l and
p values, the ripple decomposition gives rise to compactons
and anticompacton counterparts, depending on the presence
and character of the anticompacton solutions allowed by the
corresponding CSS equation. The decomposition of the
ripple is much faster for a class of CSS compactons for
which the width of the compacton depends on its velocity.
No evidence of shock formation accompanying the collision
was observed after the collisions between CSS compactons.
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