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The paper studies the nonlinear mechanisms at work in magnetized plasmas when wave packets interact
resonantly with particle distributions presenting loss-cone-like structures. Lower hybrid waves are considered
in view of the great importance, in space and laboratory plasmas, of waves with frequencies below the electron
cyclotron frequency. Owing to a three-dimensional Hamiltonian model and a numerical symplectic code, the
authors study the nonlinear stage of the loss-cone instability for various particle distributions and wave spectra
involving symmetric and asymmetric features. In particular, the wave-particle interaction process of dynamical
resonance merging, which results from an instability of the trapped particles’ motion and leads to complex
stochastic phenomena, is discussed. Whereas interactions at normal cyclotron resonances are mostly consid-
ered, the role of the Landau and the anomalous cyclotron resonances is also studied to explain thoroughly the
nonlinear wave-particle dynamics as well as the competition between loss-cone, fan, and beam instabilities.
The relaxed particle distributions and the saturated wave spectra are analyzed. The time necessary for filling
the loss-cone structures is determined as a function of the characteristics of the particle distributions. Whereas
most of the previous works analyzed the asymptotic stage of the system’s evolution in the frame of the
well-known quasilinear theory, the paper considers the case when the energy carried by the wave packet is
sufficiently large so that the description of the physical processes at work cannot be limited to the frame of
weak turbulence theories.
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I. INTRODUCTION

Particle velocity distributions presenting loss-cone-like
structures can be encountered in various space and laboratory
plasmas as, for example, planetary magnetospheres, solar
and stellar atmospheres, or plasma containment experiments
�1–6�. Such nonequilibrium distributions typically arise
when a plasma is confined in a magnetic bottle where par-
ticles are trapped locally and bounce back and forth between
mirror points, being reflected by the converging magnetic
field lines. They can drive so-called loss-cone instabilities
that are responsible for important linear and nonlinear phe-
nomena in magnetized plasmas �1–10� as, for example, in
experiments with confinement in “open-ended” containment
fields �e.g., mirror machines �1�� or in the earth ionized sur-
rounding, notably in the auroral regions, where ion and elec-
tron fluxes with loss-cone-like structures are commonly ob-
served by satellites �2–4�. Let us cite among others the
observations recorded by the Ulysses spacecraft in the solar
wind that reveal the existence of suprathermal electron dis-
tributions with loss-cone features �5� and, more recently, by
the Wind spacecraft that report the simultaneous presence of
whistlers very well time correlated with Langmuir waves and
loss-cone electron distributions �6�.

Although both electron and ion velocity distributions can
present loss-cone structures, the paper is focused on instabili-
ties driven by electrons. Early studies have shown that non-
relativistic electron distributions fe�vz ,v�� vanishing near
the perpendicular velocity v�=0 could excite electrostatic
waves propagating obliquely with respect to the ambient

magnetic field B0 �7�. Linear studies concerning wave exci-
tation by loss-cone structures were performed owing to ana-
lytical developments and numerical computations, for vari-
ous types of particle distributions and waves, including or
not relativistic effects �11–18�. More recently, the authors
presented theoretical results and simulations �19� on the in-
teractions of electrostatic waves with electron fluxes at nor-
mal cyclotron resonances. In particular, the linear and the
nonlinear stages of the loss-cone instability mechanisms
were investigated thoroughly for a single and a few waves
�discrete wave spectrum�.

In the present paper, the main attention is paid to study the
nonlinear mechanisms at work when many waves forming
dense and almost continuous spectra interact resonantly with
particle distributions presenting loss-cone-like structures.
The question is to investigate the nonlinear stage of the loss-
cone instability as the result of wave-particle interactions at
cyclotron and Landau resonances and, in particular, the
physical mechanisms governing the relaxation of the particle
distributions and the saturation of the wave spectra. To our
knowledge, these topics have not been solved up to now. The
difficulties inherent in such problems require obviously to
perform numerical simulations. But to date most of them
have been focused on the nonlinear processes at work when
the anisotropy of the particle velocity distributions leads to
the so-called cyclotron maser instability �20–27� and only
few works were devoted to simulations of wave instabilities
in anisotropic plasmas presenting loss-cone-like structures
and negligible relativistic effects �28–31�. However, nonrel-
ativistic electron populations which exist in space plasmas
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often present positive gradients in their perpendicular veloc-
ity distributions ��fe /�v��0� and can excite intense electro-
static waves. In particular, such waves can be destabilized by
loss-cone-like distributions �32–34�. Therefore we focus our
study on loss-cone instabilities involving nonrelativistic par-
ticle interactions with finite amplitude waves of wide and
dense spectra.

The nonlinear mechanisms governing the interactions be-
tween electromagnetic whistler waves or electrostatic lower
hybrid waves and loss-cone particle distributions in magne-
tized plasmas are of great importance if one considers the
major role that waves of frequency below the electron cyclo-
tron frequency �c are playing in space and laboratory plas-
mas. Moreover note that, for waves with frequencies �
��c propagating oblique to B0, as whistlers and lower hy-
brid waves �which are considered in the present paper�, it is
possible to neglect the dependence of �= �1−v2 /c2�−1/2 on
the velocity v in the resonance condition �−n�c /�=kzvz �kz
and vz are the wave vector and the particle velocity along B0�
and to consider nonrelativistic loss-cone instabilities, espe-
cially if kz�vz��k�n�cv�v /c2, where �v and �vz are the
modulus and the parallel component of �v, which is the
variation in the velocity of the particle during its interaction
with the wave, and supposing that the resonance width is of
the order of the linear growth rate �k.

Our study is performed by means of a self-consistent
Hamiltonian model, which describes the three-dimensional
�3D� dynamics of resonant interactions between wave pack-
ets and nonequilibrium particle distributions in magnetized
plasmas, and a corresponding numerical symplectic code that
already provided interesting results �19,35–39� in what con-
cerns the linear and nonlinear stages of the fan and the beam
instabilities at the anomalous cyclotron and Landau reso-
nances. The paper is mainly focused on the nonlinear stage
of the loss-cone instability, considering wave packets of vari-
ous characteristics and typical particle distributions: the
single-sided loss-cone, the doubled-sided loss-cone, and the
Maxwellian with loss-cone distributions; each of them al-
lows one to take simultaneously into account various kinds
of wave-particle interaction resonances and mechanisms.

One essential aspect of our approach �19,35–37� consists
in dividing the plasma in two groups of particles: a thermal
bulk, which governs the dispersion of the waves, and the
resonant electrons, of much smaller density than the bulk,
which are responsible for the wave-particle interactions in-
volving significant transfers of momentum and energy; only
these electrons are considered in our simulations so that the
computing time and the numerical noise are reduced cru-
cially �compared to usual particle-in-cell simulations�, mean-
while clearly interpretable results are obtained. Hereafter we
consider first the case of two waves; in particular, a complex
wave-particle interaction process, so-called “dynamical
merging of resonances” �36�, is discussed, which results
from an instability of the trapped particles’ motion, leading,
in its amplification stage, to a significant growth of the
waves’ amplitudes and to the appearance of multitrapping
phenomena �37�. Then the problem is generalized to many
waves: the dynamics of wave packets interacting resonantly
with loss-cone structures is studied, considering wave and
particle distributions with various symmetric and asymmetric

features. In this case, most of the particles involved in the
resonant interactions perform complex oscillatory motions
which cannot be fully described in the frame of the well-
known quasilinear theory �37,40,41�. Moreover, the authors
estimate analytically, as well as owing to numerical simula-
tions, the time necessary for filling the loss-cone structures,
as a function of the characteristics of the particle distribu-
tions considered. Note that in the previous works dealing
with the relativistic cyclotron maser instability �20–27�, the
stage of the wave saturation by loss-cone-like distributions
was mainly studied in the frame of the quasilinear theory
�22,27�, whereas our paper considers the case when the en-
ergy carried by the wave packet is sufficiently large so that
the description of the physical processes at work cannot be
limited to the frame of weak turbulence theories.

Note that several new physical aspects are discussed in
the paper. Our previous works �35–39� were focused on the
nonlinear interaction processes between wave spectra and
fluxes or beams of energetic particles at Landau and anoma-
lous cyclotron resonances, in the frame of beam and fan
instabilities. Here, interactions at normal cyclotron reso-
nances involving electron velocity distributions with loss
cone-type structures and dense wave spectra are considered,
for which energy and momentum exchanges are quite differ-
ent, so that the nonlinear system’s evolution is unlike, even if
similar fundamental processes as dynamical merging occur.
Moreover the simultaneous competition between the three
types of interaction resonances are studied, that is, the Lan-
dau, the normal and the anomalous cyclotron resonances.
Finally, the dependence of some specific features of the loss
cone-type structures and the wave spectra on the nonlinear
system’s dynamics is examined, notably the influence of
asymmetries with respect to the ambient magnetic field.

II. HAMILTONIAN MODEL AND SYMPLECTIC
CODE

The analytical developments and the numerical simula-
tions discussed below are based on a self-consistent three-
dimensional Hamiltonian model �35–37� which describes the
dynamics of electrostatic waves interacting resonantly with
charged particles in a magnetized plasma �nonlinear wave-
wave interactions are neglected compared to wave-particle
ones�. In this model, we suppose that the plasma electrons
can be divided in two groups: a thermal bulk of density n0
and a nonequilibrium distribution of resonant particles with a
much smaller average density, nres�n0. The thermal compo-
nent determines the waves’ dispersion and is described in the
linear approximation using hydrodynamic equations. How-
ever, the resonant particles have to be considered owing to a
kinetic approach which takes into account their full nonlinear
dynamics in the waves’ fields.

For electrostatic oscillations in a homogeneous magne-
tized plasma, the electric field E is derived from the scalar
potential ��r , t�=Re �k�k�t�exp�ik ·r− i�kt� which consists
in the superposition of plane waves with slowly varying am-
plitudes �k�t� so that the average electric field energy density
for the wave ��k ,k� is given by �Ek

2 /8	�= 	k�k	2 /16	; �k is
the frequency of the wave with Fourier component Ek and

KRAFFT, VOLOKITIN, AND ZASLAVSKY PHYSICAL REVIEW E 82, 066402 �2010�

066402-2



wave vector k. The wave-particle system can be described
by the following Hamiltonian �16,35–37�:

H = �
p=1

N 
 �Pp + eA0�rp�/c�2

2me
− e Re �

k
�kei�k·rp−�kt��

+ V�
k

�k
�
k

��k

	k�k	2

16	
, �1�

where Pp=mevp−eA0�rp� /c is the generalized particle mo-
mentum, rp �r�p ,zp� and vp�v�p ,vzp� are the position and the
velocity of the particle p, A0�rp�= �B0�rp� /2 is the vector
potential and B0=B0z is the constant ambient magnetic field,
directed along the axis z; −e�0 and me are the electron
charge and mass, respectively; c is the speed of light; 
k
=
�k ,�k� is the dielectric permittivity constant for electro-
static waves in a cold magnetized plasma; k�k� ,kz� is the
wave vector, where kz and k� are the wave vectors along to
and across B0; V is the volume occupied by the wave-particle
system; N is the number of resonant particles of density nres
inside the volume V.

The conservation of the total energy H and parallel mo-
mentum Pz is given by

H = cst, Pz = �
p

mevzp + V�
k

kz

�k
Wk = cst , �2�

where the total energy density of the electrostatic waves is

�
k

Wk = �
k

�k
�
k

��k

	k�k	2

16	
. �3�

Using the Newton and the Poisson equations as well as the
Liouville theorem, which allows one to express the integral
over the phase space volume by the sum on the N resonant
particles located in the volume V=LzL�

2 , according to

�
V

d2rdz

LzL�
2 � dvfres�v,r,t�ei��kt−k·r� →

1

N
�
p=1

N

ei��kt−k·rp�,

�4�

we obtain the quasilinear equation for the time evolution of
the wave potentials as

d

dt

e�k

me
� i

2�p
2

	k	2 
 �
k

��k
�−1nres

n0

1

N
�
p=1

N

ei��kt−k·rp�. �5�

The average density of the resonant electrons is nres
=fres�v ,r , t�dvdr, where fres�v ,r , t� is the corresponding
distribution function; n0 is the background plasma density.

Equation �5� is solved self-consistently with the motion of
each particle

dvp

dt
+ �vp � z��c = Re

ie

me
�
k

k�kei�k·rp−�kt�,
drp

dt
= vp,

�6�

where �p= �4	n0e2 /me�1/2 and �c=eB0 /mec are the electron
plasma and cyclotron frequencies, respectively.

Dimensionless variables will be used in the next sections
�in the text as well as in the figures� according to the nor-

malization �k /�c, �ct /2	, v /v�, kv� /�c, and e�k /mev�
2,

where v� is an arbitrary velocity. Then, Eq. �5� can be pre-
sented in normalized variables as

d

dt
�k � i

p�k

	k	2
1

N
�
p=1

N

ei��kt−k·rp�, �7�

where p is a dimensionless parameter which characterizes
the intensity of the wave-particle interaction

p =
2�p

2

�c
2�k


 �
k

��k
�−1nres

n0
. �8�

For lower hybrid waves, which propagate in the frequency
range �lh=�pi�c / ��c

2+�p
2�1/2��k��c �at arbitrary �c /�p�

with the approximate dispersion relation

�k
2

�c
2 �

�p
2

�c
2 + �p

2

kz
2

k2 , �9�

where �lh and �pi are the lower hybrid and the ion plasma
frequencies, the interaction intensity is given by

p =
�p

2

�c
2 + �p

2

nres

n0
� 1, �10�

where the derivative of the dielectric constant of lower hy-
brid waves, �
k /��k=2��c

2+�p
2� /�c

2�k, has been used.
These waves can be destabilized by particle distributions

at the resonance conditions vzn= ��k−n�c� /kz, where n is the
harmonic number and vzn is the corresponding resonant ve-
locity; the loss-cone instability results from wave-particle in-
teractions at the normal cyclotron resonances n1 �for the
most intense resonance, n=1, we use below the notation
vz1= ��k−�c� /kz�.

For one wave with fixed amplitude one can show that
�36,42�

K = me�v�
2 /2�c − nvz/kz� = cst �11�

is an integral of the motion for each particle �vz and v� are
the velocity components along to and across B0�. This con-
dition is fulfilled with a good enough accuracy in many cases
involving two and more waves with slowly varying ampli-
tudes, such as those considered below. Indeed, our numerical
simulations show that when the wave amplitudes are grow-
ing up to some significant levels, the constant of motion
holds.

Owing to the Hamiltonian structure of the model, the nu-
merical simulations have been performed using a symplectic
mover �35,39� with normalized time steps �c�t�0.1–0.2,
whereas checking the accuracy of the calculations by moni-
toring the H and Pz conservations �2�. The symplectic prop-
erty guarantees the preservation of the phase space volumes
of the system. As one can separate the Hamiltonian �1� as
H=H1+H2, where H1=�p=1

N �Pp+eA0�rp� /c�2 /2me, the sym-
plectic operator �43,44� L��t�=L1��t /2�L2��t�L1��t /2�
+o���t�3� of order 2 in time step can be used for advancing
the Hamiltonian H; L1 and L2 are canonical transformations
applying to H1 and H2, respectively.

The transformation L1 acts on the normalized particles’

coordinates and velocities as rp�=rp+ T̂rvp and vp�= T̂vvp, with
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the following nonvanishing matrix elements: T̂r11= T̂r22

=sin ��, T̂r33=��, T̂r12=−T̂r21=cos ��−1 and T̂v11= T̂v22

=cos ��, T̂v33=1, T̂v12=−T̂v21=−sin ��, where ��=�c�t.
The transformation L2 for the particles’ velocities vp and

the waves’ normal amplitudes Ck is performed keeping con-
stant positions rp; it can be presented as follows ��k, k, and
Ck are normalized values�: Ck�=Ck+�Ck and vp�=vp

−�k�kk�Im�C̄keik·rp���+Re��Ckeik·rp� /�k�, with C̄k

=�pe−ik·rp and �Ck= �Ck− C̄k��e−i�k��−1�.
The model allows to choose arbitrary sets of waves

�k ,�k� for which the periodicity conditions have to be veri-
fied, i.e., kx,y,zLx,y,z /2	= �1, �2. . ., where �Lx ,Ly ,Lz� is a
3D spatial simulation box of volume V=LxLyLz. Initially the
resonant particles are randomly distributed within the box
with the same probability to occupy any position. The system
is supposed to be periodic in space.

The initial velocity distribution of the resonant electrons
is modeled by loss-cone functions of the type

fe�vz,v�� = f0�vz
2 + v�

2 ���v�
2 − vz

2 tan2 �lc�/C, C = cos �lc,

�12�

where f0�v2�=	−3/2vth
−3e−v2/vth

2
is a Maxwellian with thermal

velocity vth; �lc is the so-called loss-cone angle; � is a more
or less sharp Heaviside-type function.

III. DYNAMICAL RESONANCE MERGING

In previous works �35–37� the authors have shown, con-
sidering the case of a wave packet destabilized by energetic
electron fluxes at anomalous cyclotron resonances n�−1
through the fan instability, that a nonlinear process, occurring
after wave saturation due to particle trapping is fulfilled, may
cause the waves to gain significant energy and the particle
fluxes to relax asymptotically to a “quasilinear” distribution
which is reached when the growth rates of the waves tend to
zero. This nonlinear process, so-called “dynamical merging
of resonances” by the authors �36�, is connected with some
instability of the motion of the particles trapped in the po-
tential well of a wave due to the presence of the other waves.
This instability leads to a significant increase in the waves’
amplitudes and thus to the widening of their resonant veloc-
ity widths; finally it is completed when these resonant do-
mains effectively overlap, forming complex potential struc-
tures where the particles encounter multitrapping processes
�37�.

Nevertheless, the understanding of the mechanisms gov-
erning this nonlinear instability remains to date incomplete;
notably, the exact growth rates and instability thresholds
have still to be determined as a function of the interaction
parameter p �Eq. �10�� and the nature of the resonant inter-
action. Here our aim is to show and explain how such pro-
cess develops in the case of the loss-cone instability, and
under what physical conditions it can occur; although it has
been observed for many waves �see the next section�, we
discuss hereafter, for simplicity, the case of two waves.

A. Merging mechanism

As a first step, we performed numerical simulations in-
volving two monochromatic waves interacting with a loss-
cone distribution �Eq. �12�� at n=1 resonances, by varying p
�Eq. �10�� until the dynamical resonance merging process
occurred, as shown by Fig. 1 which presents the time evolu-
tion of the energy Wk� 	Ek	2 of two lower hybrid waves, for
two different values of p. At p=0.02 �as well as for suffi-
ciently small interaction intensities p�0.02�, the two waves
evolve independently �Fig. 1�a��: for �ct /2	�150, the am-
plitudes of both waves increase until they saturate by particle
trapping around close levels; during the saturation stage
��ct /2	�150�, each of them interacts with its own popula-
tion of trapped particles, showing typical oscillations around
a mean energy level. At a slightly larger p=0.025, the waves’
amplitudes are significantly increased �see Fig. 1�b�, for
400��ct /2	�600� and the waves’ resonant widths �vk1
and �vk2

begin to overlap and merge. Figures 1�c� and 1�d�
show the corresponding parallel velocity distributions fz�vz�
=0

�2	fe�vz ,v��v�dv� at the final simulation time �ct /2	
�800, when the merging process is fulfilled; for p=0.02
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FIG. 1. Dynamical merging of resonances: interaction of two

lower hybrid waves �k1 ,�k1� and �k2 ,�k2� with a loss-cone particle
distribution fe�vz ,v�� �Eq. �12�� at n=1 resonances. ��a�, �c�, and
�e�� p=0.02 and no merging occurs; ��b�, �d�, and �f�� p=0.025 and
the merging process develops. ��a� and �b�� evolution of the energy
Wk� 	Ek	2 of both waves as a function of the normalized time
�ct /2	; ��c� and �d�� parallel velocity distribution fz�vz�
=0

�2	fe�vz ,v��v�dv�, at �ct /2	�800; ��e� and �f�� contour lines
of fe�vz ,v��, at �ct /2	�800. The vertical lines in �c�–�f� represent
the resonant velocities vz1,1 and vz1,2 �vz1,i= ��ki−�c� /kzi�. The
main normalized parameters are k1= �0.3,0 ,−0.22�, k2= �0.2,
−0.2,−0.19�, �k1=0.56, �k2=0.53, vz1,1=2.0, vz1,2=2.5, vth=5,
�lc=	 /3, and N=106.
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�Fig. 1�c��, fz�vz� is only slightly perturbed in the close vi-
cinity of each resonant velocity vz1,i= ��ki−�c� /kzi, whereas
when p is increased �Fig. 1�d��, a plateau is formed in the
resonance region, showing that the particles’ motion is
strongly perturbed. Moreover, the contour lines of the veloc-
ity distribution fe�vz ,v�� at �ct /2	�800 show that for p
=0.02 �Fig. 1�e�� and p=0.025 �Fig. 1�f��, the resonant par-
ticles are accelerated �respectively, decelerated� along the
parallel �respectively, perpendicular� direction. However, an
essential difference can be observed: for p=0.02, two groups
of particles are oscillating along the motion invariant K
=v�

2 /2�c−vz /kz=cst �Eq. �11��, whereas for p=0.025, the
two resonant structures have merged, i.e., some particles
with velocities between the resonant velocities vz1,1 and vz1,2
interact strongly with the waves.

Let us introduce the dimensionless overlap parameter s as
the sum of the individual resonance widths of each wave,
�vk1

and �vk2
, divided by the width �vR= 	vz1,1−vz1,2	 of the

resonant domain �45�

s = 2
�vk1

+ �vk2

	vz1,1 − vz1,2	
, �13�

where �vki�v�
��e	�ki	s /mev�

2�	J1�k�i�p�	max; �p is the Lar-
mor radius of the particle p; J1 is the Bessel function of order
1; 	�ki	s is the potential amplitude of the wave ki at satura-
tion. Figure 2 shows that for p=0.02 �and thus, for p
�0.02�, no merging occurs, s remaining approximately con-
stant during the saturation stage, around s�0.5. For p
=0.025, due to the trapping of particles, s increases up to s
�0.65 �at �ct /2	�200�; then, as a result of some instability
of the trapped particles, it grows slowly to reach s�0.8 near
�ct /2	�400 meanwhile the motion of the particles be-
comes chaotic; the consequent amplifications of the waves’
amplitudes �which rise strongly between 400��ct /2	
�600, see Fig. 1�b�� lead to its growth until s�1.3
��ct /2	�600�, where the waves’ resonant widths are
largely overlapped and the merging process is fulfilled. One
should note that the merging process can develop below the
stochasticity threshold s=1, what is not expected a priori
from the well-known Chirikov criterion �45,46�.

B. Chaotic motion of particles

The dynamical resonance merging process, which devel-
ops when the saturation by the usual trapping mechanism is
fulfilled, results from the complex dynamics of the trapped
particles that oscillate in the two overlapped waves’ reso-
nance widths �or potential wells�. The chaotic behavior of
such particles can be pointed out by examining their trajec-
tories. Figure 3 shows, for p=0.025 and three representative
test particles involved in the process of merging, the varia-
tion with time of their parallel velocity vz and their phases
with respect to each of the two waves, �1,2=kz1,2zp+�p
−�k1,2t−arg��k1,2� ��p is the azimuthal angle of the particle�.
As shown by Figs. 3�a� and 3�b�, during the stage of satura-
tion by trapping ��ct /2	�400�, the particles may be alter-
natively trapped by one wave or by the other, keeping a quite
constant phase relation with it, i.e., d�1,2 /dt
�kz1,2�e	�k1,2	 /me�1/2, and undergoing fast oscillations due
to the perturbation of their motion by the other wave. Figure
3�c� presents an example where the particle is not trapped by
any wave for �ct /2	�400; its phase relatively to each wave
evolves monotonically. After the merging of the two resonant
domains ��ct /2	�600�, the particles can be alternatively
trapped by one wave, by the other one or by both simulta-
neously, performing in the latter case oscillations over the
overlapped velocity region. Anyway, as the particles are, dur-
ing their motion, performing a large number of stochastic
transitions between the states where they are trapped or pass-
ing �39�, it is reasonable, in order to derive analytical esti-
mates of the waves’ amplitudes and the relaxed electron dis-
tributions, to assume that the motion of the particles in the
overlapped waves’ potential region is randomlike �see next
paragraph�.

C. Asymptotic stage of the wave-particle system

As the merging process is fulfilled when the waves’ reso-
nance widths have overlapped, it is possible, assuming that
the particles’ motion is randomlike in the overlapped domain
of width �vRM, to estimate the energy gained by the waves
during the process by using the conservation of the momen-
tum �Eq. �2��. Let us assume that �vRM is approximately
equal to the width �vR= 	vz1,1−vz1,2	 between the two reso-
nant velocities �as shown by the numerical simulations� and
much larger than the resonant widths �vki of each individual
wave at the saturation stage of the linear instability, that is

�vRM � 	vz1,1 − vz1,2	 �
�k1,2

kz1,2
, 
 e	�k1,2	s

me
�1/2

, �14�

where �k1,2 are the linear growth rates of the waves. One can
observe that, because �vRM ��k1,2 /kz1,2, the variation �Pm
of the momentum after the merging has occurred strongly
exceeds its variation �Ps after the individual saturation of the
waves by trapping is achieved: �Pm��Ps. Then, on the basis
of the wave-particle momentum balance �Eq. �2��, one can
deduce that the waves’ amplitudes are several times larger at
the asymptotic stage of the merging process than at the time
when the saturation due to trapping by individual waves is
reached.

0 200 400 600
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FIG. 2. �Color online� Dynamical merging of resonances: varia-
tion in the parameter s �Eq. �13�� with time, for p=0.02 �no merg-
ing� and p=0.025 �merging�. The main parameters are the same as
in Fig. 1.
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If the waves’ resonance widths are not overlapping and
Eq. �14� is valid, each wave interacts with its own resonant
group of particles so that the saturation levels reached by the
waves result from usual trapping processes �see Fig. 1�a��. In
the opposite case, when the resonance widths are overlap-
ping, i.e., when Eq. �14� is no more valid, the particles inter-
act with the two waves simultaneously, and their motion be-
comes stochastic: the merging process takes place, leading to
a significant increase in the waves’ amplitudes �see Fig. 1�b�,
�ct /2	�400�. This mechanism results from the complex
dynamics of the resonant particles moving in the field of one
wave under the perturbation of the other one and can be
considered in a first approximation as a parametric instability
with a threshold depending on the wave-particle interaction
parameter p and with a frequency modulation proportional to
the ratio of the waves’ amplitudes reached at saturation by
trapping �36�. The threshold is defined by Eq. �14�, but its
exact expression as a function of p and the other character-
istic parameters �as �p /�c, �lc , . . .� has not been determined
yet.

Figure 4 shows the relaxed distribution fe�vz ,v�� after its
interaction with the two waves �i� when no dynamical reso-
nance merging occurs �Fig. 4�a�� and �ii� when the process
takes place �Fig. 4�b��. It clearly shows that in the first case,
the two waves behave independently, each of them trapping
electrons with velocities vz close to its resonant velocity. The

structure of the relaxed distribution is then the superposition
of the two perturbations due to a single wave, the particles
moving along the invariant line K=me�v�

2 /2�c−vz /kz�=cst.
On the contrary, when the merging process takes place, the
two structures merge in a larger one of similar shape �Fig.
4�b��. The process generates a large amplification of the
waves’ energies �see also Fig. 1�b�� which finally saturate
due to phase mixing of particles in the domain �vRM.

IV. SATURATION AND RELAXATION PROCESSES

Numerical simulations involving dense wave spectra with
different initial distributions in k space have been performed,
meanwhile various types of particle distributions presenting
loss-cone structures have been considered: �i� the so-called
single-sided loss-cone fslc�vz ,v�� �see, e.g., Fig. 10, upper
left panel�, �ii� the double-sided loss-cone fdlc�vz ,v�� �see,
e.g., Fig. 10, middle left panel� and �iii� the Maxwellian with
loss-cone fmlc�vz ,v�� �see, e.g., Fig. 10, bottom left panel�.
Such kinds of distributions and combinations thereof are
close to those observed in space and laboratory plasmas;
however, in spite of the fact that loss-cone structures are
usually the result of some physical processes, they can also
be used as initial distributions, in order to study the further
evolution of wave-particle systems. Moreover, the three
types of loss-cone distributions studied hereafter are suitable
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FIG. 3. �Color online� Trajectories of three test particles �a�–�c� oscillating in the overlapped potential wells of two waves. The upper row
shows the variation in the parallel velocity vz of the test particles as a function of �ct /2	; the horizontal lines represent the unperturbed
cyclotron resonant velocities of the waves, vz1,1 and vz2,2. The middle and lower rows show the variation in the particle phases relatively to
each wave, �1,2=kz1,2zp+�p−�k1,2t−arg��k1,2�. The main parameters are the same as in Fig. 1, with p=0.025.
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for numerical modeling and allow us to provide a rather
simple description of the physical results obtained.

A. Waves’ and particles’ nonlinear dynamics

Let us first discuss the case of a single-sided loss-cone
distribution fslc�vz ,v��, with vz�0 for all particles. Thus,
only waves propagating with kz�0 can interact with them at
normal cyclotron resonance velocities vzn= ��k−n�c� /kz�0,
n1. Note that the distribution of the wave vectors in the
perpendicular plane is chosen quite isotropic and most of the
waves verify 	kz /k�	�1 and �k /�c�1, correspondingly.

The variation with time of the waves’ and particles’ energy
densities is presented in Figs. 5�d�–5�f�. The first saturation
stage of the wave amplitudes’ growth, due to particle trap-
ping, is followed by a sharper increase resulting from the
dynamical resonance merging process �200��ct /2	�600�:
Fig. 5�d� shows the strong growth of the total wave energy
density W=�kWk, which saturates near �ct /2	�900 and
then decreases to some lower level, in agreement with the
variation in the total particle kinetic energy E�nres�v2� /2 for
�ct /2	�900 �Fig. 5�f��. During the wave-particle interac-
tions, the perpendicular �respectively, parallel� kinetic energy
density E��nres�v�

2 � /2 �respectively, Ez�nres�vz
2� /2� is de-

creasing �respectively, increasing�, indicating that particles
are accelerated along the magnetic field, whereas they loose
energy during their perpendicular motion �Fig. 5�f��. The
time variation in the energy densities Wk of the waves with
the largest saturation amplitudes is shown in Fig. 5�e�. The
particle distribution fslc�vz ,v�� is presented at the initial time
�Fig. 5�a��, during the merging process �Fig. 5�b�� and after
its completion, when the loss cone is filled with particles
�Fig. 5�c��. Note that, after the wave energy W has reached
its maximum near �ct /2	�900, it starts to decrease be-
cause, owing to the partial filling of the loss-cone at this
stage, the instability growth rates change sign for a part of
the waves �those which reached first the saturation�. Never-
theless, this does not stop the filling of the cone and a near
equilibrium particle distribution is established, whose energy
exchanges with most waves vanish. However, a full balance
is not yet realized: the wave spectrum and the particle distri-
bution continue to slowly evolve. Indeed, some of the waves
do not stop to grow whereas others damp; the particles which
fill the cone loose perpendicular kinetic energy ��E��0�
but gain parallel one ��Ez�0�; the total kinetic energy E
starts to increase slowly, whereas W is reduced correspond-
ingly �see Figs. 5�d� and 5�f��. As shown below, the existence
of interactions at Landau �n=0� or anomalous cyclotron �n
�−1� resonances modifies the dynamics of the waves.
Therefore, in the case when only normal cyclotron reso-
nances n1 are considered, we do not study the further
waves’ evolution as well as the question whether a full bal-
ance can be reached and what energy is finally carried by the
waves.

Particles’ trajectories have also been examined and their
behavior is qualitatively very close to that described in the
previous section as well as in the case of the fan instability at
n�−1 �36,37�. Typically, the particles’ dynamics is stochas-
tic and cannot be described in its totality by a classical dif-
fusion as in the frame of the quasilinear theory nor by usual
trapping processes at work in the presence of several wave
troughs. The particles oscillate in the potential well formed
by a subset of the most intense waves which are able to trap
them, jumping from the potential well formed by a subset of
waves to another one.

B. Influence of the wave spectrum characteristics
on the merging and the saturation processes

Figure 6 shows the time variation in the total wave energy
density W calculated for three different wave packets inter-
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FIG. 4. Relaxation stage of the particle distribution fe�vz ,v��.
�a� No dynamical resonance merging occurs �p=0.02�; the vertical
lines represent the maximum velocity accessible to the particles
trapped in the two waves’ potentials �dashed �respectively, solid�
lines for the first �respectively, second� wave�; the curves show
correspondingly, for each wave, the minimum value of the motion
invariant K=me�v�

2 /2�c−vz /kz�=cst. �b� The dynamical resonance
merging process occurs �p=0.025�; the vertical lines show the
boundaries of the overlapped domain of width �vRM, whereas the
curve represents the minimum value of the invariant K for the par-
ticles moving within �vRM. The main parameters are the same as in
Fig. 1.
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acting with the same particle distribution; they contain Nw
=100, 200, and 300 waves, respectively, and present differ-
ent distributions in k space. In spite of the noticeable differ-
ences between the energy spectra of the three wave packets
�see Fig. 7�—and thus between the time histories of their
relaxation processes—their energy densities W reach close
levels at saturation. Moreover, the final relaxed particle dis-
tributions are very similar too �not shown here�. This result
indicates that, if the waves are distributed in k space rather
continuously �i.e., without large gaps between their resonant
velocities�, the initial wave-packet distribution does not in-
fluence essentially on the system’s evolution. Moreover, rel-
evant numerical calculations indicate that, if the main param-
eters as the particle velocity distribution along z, fz�vz�
=0

�fe�vz ,v��d�	v�
2 �, and the total width �vR of the reso-

nant velocities are fixed, the general features of the relaxed
particle flux and of the waves’ energy evolution weakly de-
pend on the waves’ distribution. Figure 7 shows the energy
spectra of the wave packets corresponding to Fig. 6, i.e., the
energy density of the waves, Wk, versus their resonant ve-

locities vz1= ��k−�c� /kz �n=1�, at different times during the
merging process �200��ct /2	�800� and in the asymptotic
saturation stage �800��ct /2	�1035�. One observes that
the dynamical resonance merging depends on the number of
waves Nw and occurs with different rates for various domains
of the resonant velocities vz1. As result, a few perturbations
appear in the particle distribution at intermediate times �not
shown here�; in the further evolution they merge in a com-
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mon structure which fills the empty loss-cone �see also Fig.
5�c��.

C. Role of the Landau damping

The numerical calculations show that the role of the Lan-
dau resonances n=0 �waves with kz�0� in the evolution of a
single-sided loss-cone distribution fslc�vz ,v�� is not essen-
tial, because �fslc /�vz�0 in the considered region vz�0
where the particles are located, so that no bump-on-tail in-
stability can develop. However, that is not true near vz�0,
but this domain is out of our scope because, according to our
model, it is occupied by the bulk formed by the nonresonant
electrons. So, all waves interacting at n=0 are supposed to
be strongly damped. The small role of the Landau damping
is illustrated by Fig. 8�a� which shows the variation in W as
a function of time, when the Landau resonant waves are
present or not: the two curves are almost indistinguishable.
The time evolution of the energy density WL of the Landau
resonant waves is presented in Fig. 8�c�, which shows their
negligible contribution, as WL /W�1. The wave energy spec-
tra, i.e., the variation in Wk with the resonant velocities vzn,
are shown for the final simulation time, when the Landau
resonant waves are present �Fig. 8�d�� or not �Fig. 8�b��.

D. Loss-cone filling by particles

Moreover, simulations have also been performed for dif-
ferent values of the loss-cone angle �lc �Eq. �12��, keeping
the same plasma parameters and wave packet. Figure 9 pre-
sents the variations with tan2 �lc of the wave energy density

at saturation, Wmax, and the time �s when it is reached. Ex-
amining the corresponding distributions fe�vz ,v�� shows that
for �ct /2	�s, the loss-cone is almost filled so that �s can
be considered as a good estimate of the filling time. One
could expect that �s

−1��max �where �max is the maximum
growth rate of the waves�, but this is not proved by the
simulations. However, at small �lc one can explain the ob-
served dependence of Wmax using the balance of energy

Wmax = �
k

k2	�k	s
2 � ��
� v2fe�v,��dv�� , �15�

where dv=2	v2dvd�sin ��. First, note that during the wave-
particle interactions, kinetic energy is exchanged between the
parallel direction and the perpendicular plane, whereas the
variation �E of the total kinetic energy is essentially smaller
so that the isotropization of the velocity distribution
fe�vz ,v�� occurs. Second, for small �lc, one can assume that
in the area out of the cone, fe�vz ,v�� slightly varies; indeed,
it is only reduced by a factor �1+sin �lc�−1, i.e., it changes its
normalization, which corresponds to the increase in the
phase-space volume in which the total number of particles is
distributed after the cone is filled. Then, the integral variation
in Eq. �15� is caused by the reduction in the number of par-
ticles out of the cone and by the changes occurring in the
cone area after its filling. It is natural to assume that inside or
outside the cone, the distributions fe�vz ,v�� do not differ.
Then, the integral variation
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FIG. 9. Variation as a function of tan2 �lc of the wave energy
density at saturation, Wmax, and of the inverse of the time �s when it
is reached. Single-sided loss-cone distributions are considered. The
main parameters are �p /�c=1, p=0.02, N=500 000, and Nw=200.
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��
� v2fe�v,��dv�� � ��
�lc

	/2 
1 −
1

1 + sin �lc
�d�sin ��

− �
0

�lc d�sin ��
1 + sin �lc

� � sin2 �lc � �lc
2

�16�

appears to be proportional to �lc
2 , in good agreement with the

results presented in Fig. 9�a� for �lc�1, revealing that
Wmax� tan2 �lc. Moreover, for small �lc, Fig. 9�b� shows that
1 /�s��lc

2 so that the filling time �s decreases when �lc in-
creases. For large �lc, the made above assumptions are bro-
ken, and it is not possible to use simple arguments to explain
the results of Fig. 9, which show that Wmax grows slowly
with �lc.

E. Influence of the particle distribution on the system’s
dynamics

As mentioned above, for fe= fslc, when all resonant par-
ticles have positive velocities vz�0, their interactions with
the waves at n=0 do not influence noticeably on the dynam-
ics of the system during the instability development. But
when particles with vz�0 are present, the role of the reso-
nances n=0 rises, in agreement with simulations performed
for double-sided loss-cone fdlc and Maxwellian with loss-
cone fmlc distributions. Indeed, Fig. 10 shows for comparison
the time evolution of three kinds of initial distributions in-
volving a loss-cone, for the same wave packet, which is an-

isotropic in k space and whose waves verify kz�0. In the
first case �Fig. 10, top row, fe= fslc�, no �respectively, all�
particles interact at n=0 �respectively, n1� with the waves;
in the second case �Fig. 10, middle row, fe= fdlc�, the un-
stable waves which interact at n1 with particles of veloci-
ties 2�vz�6 also interact at n=0 with particles in the range
−3�vz�−1. In the third case �Fig. 10, bottom row, fe
= fmlc�, a part of the waves interact at n�−1 with particles of
velocities vz�−3; the share of particles getting to such reso-
nances is essentially larger than in the second case.

For the three cases presented in Fig. 10, the evolution of
fe�vz ,v�� in the region vz�0 is similar and the cone is fi-
nally filled. But unlike the case when fe= fslc �top row�, the
second distribution fe= fdlc reveals the formation of a particle
“tail” extending along −B0 �middle row, right panel�. It re-
sults from the interaction of particles with Landau resonant
waves, but not only; indeed, some analysis �36� �not pre-
sented here� shows that if the density of the particles inter-
acting with waves at vzn= ��k−n�c� /kz �n1� is large �i.e.,
p�0.02� and, accordingly, if the wave amplitudes are high
enough, it is necessary to take into account the resonant in-
teraction of particles with the beatings of some waves. The
stabilizing influence of the particles with vz�0 leads to the
reduction in the total growth rate of the loss-cone instability,
for fdlc in comparison with fslc, and to the reduction in Wmax
due to the acceleration of particles with vz�0. This is illus-
trated by Fig. 11 which shows the time variation in W for the
three distributions considered in Fig. 10: the curves �1�, �2�,
and �3� correspond, respectively, to fe= fslc, fe= fmlc, and fe
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= fdlc. Note that for the curve �3� �see also the middle row of
Fig. 10� the particle density in the region of the loss-cone is
twice less than for the curve �1� �see also the top row of Fig.
10�; however, this cannot explain the different energy levels
reached at saturation. In particular, the curve �2� essentially
differs from the two other ones; although one can expect a
stronger stabilizing effect due to the particles with vz�0, the
wave energy grows to a higher level than for the case of a
bilateral cone of losses �curve �3��; moreover, the kinetic
energies Ez and E� are reduced and no exchanges between
them is observed, as it is for the cases �1� and �3�. This
feature will be considered in more details below �Figs. 14
and 15�.

F. Competition between the resonances

1. Landau and normal cyclotron resonances

Let us now consider the role of the n=0 and n�−1 reso-
nances on the system’s evolution for distributions fe involv-
ing particles at vz�0. Above we considered a double-sided
loss-cone distribution fdlc�vz ,v�� interacting with an asym-
metric spectrum of waves with kz�0 �Fig. 10�. Let us com-
pare these results with the case of a symmetric spectrum
containing also waves with kz�0, all of them being distrib-
uted rather regularly. Figure 12 presents the corresponding
variation in W with time for three different distributions fe
with the same loss-cone angle �lc: the difference between the
results obtained using a double-sided loss-cone with a sym-
metric �curve �1�� and an asymmetric �curve �2�� wave spec-
trum is not significant and consists mainly in a more or less
small decrease in W in the saturation stage; for the curve �3�
with fe= fmlc, W reaches a higher value than in both other
cases. Figure 13 shows three moments of the time evolution
for the distributions considered in Fig. 12. One can see that,
for an asymmetric wave spectrum, the process of cone filling
develops asymmetrically �top row�; thus, as already marked
above �Fig. 10�, the appearance of particles inside the cone at
vz�0 results from their interactions with waves at n=0 and
with the beatings of some waves. The latter effect depends
nonlinearly on the waves’ amplitudes �36�, it weakens or
almost disappears when the number of resonant particles is
reduced whereas the wave amplitudes accordingly decrease.
The filling of the cone in the case of symmetric wave spectra

occurs symmetrically �Fig. 13, middle row�; the asymmetries
appearing at intermediate stages of the evolution are con-
nected with the different values of the waves’ growth rates,
which depend on the initial conditions. In the case of a sym-
metric spectrum and a Maxwellian with loss-cone distribu-
tion fmlc �Fig. 13, bottom row�, not only filling of the cone
occurs but also some essential deformation of the distribu-
tion at vz�0, in the region where it is supposed that the
interactions of waves with particles lead to their attenuation,
i.e., where the particles get energy from the waves. However,
it appears that it is not so.

2. Role of the anomalous cyclotron resonances

As we explain below, Fig. 14 presents the evolution of the
three considered distributions as a function of vz, i.e.,
fz�vz�=0

�2	v�fe�vz ,v��dv�, for two moments of time. For
a symmetric wave spectrum, some particles interact at n
1 resonances with waves, causing their instability. The
same waves get to Landau resonances n=0 with particles of
small velocities �i.e., 	vz	�2.5 for Fig. 13�; however, if con-
ditions of loss-cone instability are realized, these particles do
not stabilize the growth of the waves but produce some flat-
tening in the region where 	vz	�2.5 �Fig. 14, middle row�.
After the wave amplitudes grow up to noticeable levels,
these particles start to get energy from �or to give to� the
waves and their parallel velocities vary within the range of
the Landau resonance velocities vz0=�k /kz. For an asymmet-
ric spectrum, note the formation of an appreciable plateau for
−2.5�vz�−1 at �ct /2	=8021 �Fig. 14, top row�, which
results from the interaction of particles with waves at n=0
resonances; the further appearance of a tail �Fig. 13, top row�
is most likely connected with the acceleration of particles
under the influence of wave beatings, as direct resonant
wave-particle interactions are absent in this velocity range.

In the case of a Maxwellian with loss-cone distribution,
the situation is more complicated, because interactions at n
�−1 resonances become essential too. Note that such effect
is not significant for the above considered cases with double-
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and single-sided loss-cone distributions when only few par-
ticles interact at n�−1 with the waves. To this resonant ef-
fect is superposed a process of plateau formation, which oc-
curs at small velocities and is well appreciable �Fig. 14,
bottom row�. As a result of these two factors, the conditions
for wave stabilization change and some instability of the fan
type can develop, if fz�vz� is anisotropic and interactions at
n�−1 prevail �35,37,38� �note that, because waves with fi-
nite amplitudes are considered, it would be more proper to
speak here of resonant interactions of waves with particles
and not of linear instability�. The waves with kz�0 gain
some energy due to their interactions at n�−1 with particles
of velocities vz�0, which loose parallel kinetic energy Ez,
that is partly transferred to the perpendicular motion and to
the waves. This process manifests itself by an appreciable
reduction in fz�vz� for −7�vz�−2.5 �see Fig. 14, bottom
row, right panel�. Thus, unlike the distributions fslc and fdlc,
not only E� but also Ez decreases. This effect is more visible
for a widely open loss-cone distribution �see Fig. 15, left
panel, �lc=67.6°�. After the formation of a plateau in the
region of the Landau resonant velocities vz0, only interac-
tions at n1 �for vz�0� and at n�−1 �for vz�−2� start to
compete; at the same time, in both cases the waves gain on
average energy from the particles. But for �lc=45°, by scat-
tering on the waves, E� decreases whereas Ez increases �Fig.
15, right panel�; for �lc=67.6° �Fig. 15, left panel�, the ex-
changes of kinetic energy between the parallel direction and
the perpendicular plane work in another way, as the total
energy balance depends on the relative number of particles
involved in each kind of resonant interaction. When �lc in-
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creases, the relative number of particles involved in interac-
tions at n1 decreases, what explains the sign inversion in
the variation in Ez when passing from �lc=45° to �lc=67.6°
�compare right and left panels of Fig. 15, bottom row�.

To support this picture we present in Fig. 16 the variation
with time of the parallel velocity vz of three typical test par-
ticles. The resonant velocities vzn= ��k−n�c� /kz for n= �1
and n=0 are represented by horizontal lines. One observes
that each particle interacts strongly with the waves: the first

one oscillates mainly around the normal cyclotron resonant
velocities vz1, with 0�vz�3; the second �respectively, third�
one, with −2.5�vz�−0.3 �respectively, −5.5�vz�−1�, in-
teracts mainly at n=0 �respectively, n=−1� with the waves.
Each particle is successively trapped by different subsets of
waves, according to the complex process of multitrapping
�37�. In particular, the third one is trapped by waves at n=
−1 �respectively, n=0�, for �ct /2	�4300 �respectively,
�ct /2	�4300�; after Landau resonant interactions, the sec-
ond particle is no more trapped by any wave and is freely
accelerating in the range 3300��ct /2	�4300. Trajectories
are also shown in the �vz ,v�� plane �Fig. 16, right panels�.
The first and third test particles move roughly according to
the conservation law K=me�v�

2 /2�c−nvz /kz�=cst �Eq. �11��;
the perpendicular velocities v� of the second particle �inter-
actions at n=0� and of the third one �for vz�−2 and
�ct /2	�4300� are conserved.

V. CONCLUSION

The paper studies the nonlinear mechanisms at work in
magnetized plasmas when wave packets with dense and al-
most continuous spectra interact resonantly with particle dis-
tributions presenting loss-cone-like structures. Lower hybrid
waves are considered in view of the great importance, in
space and laboratory plasmas, of waves with frequencies be-
low the electron cyclotron frequency. Owing to a 3D self-
consistent Hamiltonian model and a numerical symplectic
code, the authors study the nonlinear stage of the loss-cone
instability for various particle distributions and wave spectra,
involving symmetric and asymmetric features.

At first, particle distributions and wave packets interacting
at normal cyclotron resonances only are considered. Using
single-sided loss-cone distributions, numerical simulations
reveal that: �i� the first saturation stage of the wave energy
growth due to particle trapping is followed by a sharper in-
crease due to the process of dynamical resonance merging,
that amplifies crucially the wave energies and leads to sto-
chastic particle motion; �ii� the resonant electrons are accel-
erated along the magnetic field whereas their perpendicular
kinetic energy decreases, the waves gaining partly the energy
released by the particles; �iii� the filling of the loss-cone
structure occurs in a time depending notably on the cone
angle, leading to a near-equilibrium relaxed particle distribu-
tion that exchanges vanishingly small energy with most
waves; �iv� for small values of the loss-cone angle �lc, the
wave energy at saturation and the inverse of the cone filling
time grow linearly with �lc

2 ; and �v� the motion of the reso-
nant particles in the saturation stage is stochastic and does
not reveal a classical diffusivelike character, showing that the
phenomena observed cannot be fully described in the frame
of the quasilinear theory of weak turbulence.

The dynamics of the wave-particle system becomes more
complex when interactions not only at normal cyclotron
resonances but also at Landau and anomalous cyclotron reso-
nances can occur. In this case, distributions involving par-
ticles moving along the ambient magnetic field in both direc-
tions are considered. The presence of additional interaction
resonances and mechanisms leads to the modification of the
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energy and momentum transfers between the waves and the
particles as well as of the asymptotic stage of the system’s
evolution and to the subsequent appearance of physical phe-
nomena as particle acceleration and tail formation, wave
damping, etc.

In order to provide a full description of the nonlinear pro-
cesses at work, an exhaustive study is performed using vari-
ous wave spectra and characteristic particle distributions: the
single-sided loss-cone, the double-sided loss-cone, and the
Maxwellian with loss-cone distributions; each case consid-
ered allows one to take simultaneously into account various
kinds of interaction resonances and mechanisms. In the case
of bilateral loss-cone distributions, the filling of the cone
occurs as a result of wave-particle interactions at normal cy-
clotron resonances, as for the case of single-sided distribu-
tions; but an appreciable difference is revealed, which con-
sists in the formation of a particle tail extending opposite to
the magnetic field and resulting from interactions of particles
with waves at Landau resonances as well as with beatings of

some waves. For Maxwellian distributions with loss-cone
structures, the wave-particle dynamics is more complex be-
cause interactions at anomalous cyclotron resonances respon-
sible for the development of fan-type instabilities become
essential and compete with loss-cone instabilities driven by
normal cyclotron resonant interactions. It is shown that, for
such distributions, the wave energy level at saturation is sig-
nificantly increased, compared to single- and double-sided
distributions with similar loss-cone structures and wave
spectra.

ACKNOWLEDGMENTS

The authors acknowledge the Centre National de la Re-
cherche Scientifique �PICS Grant No. 4960, CNRS, France�,
the Russian Academy of Sciences, and the Russian Founda-
tion for Fundamental Research �Grant No. 09-02-91052� for
their financial support. They thank Dr. Marie Flé �Direction
Informatique, Université Paris Sud� for her technical support.

�1� D. E. Baldwin, Rev. Mod. Phys. 49, 317 �1977�.
�2� P. F. Mizera and J. F. Fennell, Geophys. Res. Lett. 4, 311

�1977�.
�3� D. R. Croley, P. F. Mizera, and J. F. Fennell, J. Geophys. Res.

83, 2701 �1978�.
�4� L. Eliasson, L. A. Homlgren, and K. Rönmark, Planet. Space

Sci. 27, 87 �1979�.
�5� J. L. Phillips, W. C. Feldman, J. T. Gosling, C. M. Hammond,

and R. J. Forsyth, in Solar Wind Eight, edited by D. Winterh-
alter et al. �American Institute of Physics, New York, 1996�;
AIP Conf. Proc. 382, 293 �1996�.

�6� O. Moullard, D. Burgess, C. Salem, A. Mangeney, D. E. Lar-
son, and S. D. Bale, J. Geophys. Res. 106, 8301 �2001�.

�7� M. N. Rosenbluth and R. F. Post, Phys. Fluids 8, 547 �1965�.
�8� R. F. Post and M. N. Rosenbluth, Phys. Fluids 9, 730 �1966�.
�9� C. S. Wu and L. C. Lee, Astrophys. J. 230, 621 �1979�.

�10� E. Ungstrup, A. Bahnsen, H. K. Wong, M. André, and L. Mat-
son, J. Geophys. Res. 95, 5973 �1990�.

�11� R. A. Dory, G. E. Guest, and E. G. Harris, Phys. Rev. Lett. 14,
131 �1965�.

�12� R. A. Treumann and W. Baumjohann, Advanced Space Plasma
Physics �Imperial College Press, London, 1997�.

�13� D. B. Melrose, Instabilities in Space and Laboratory Plasmas
�Cambridge University Press, Cambridge, 1989�.

�14� V. I. Karpman, Ju. K. Alekhin, N. D. Borisov, and N. A. Rja-
bova, Plasma Phys. 17, 361 �1975�.

�15� L. C. Lee and C. S. Wu, Phys. Fluids 23, 1348 �1980�.
�16� L. F. Ziebell, J. Plasma Phys. 39, 431 �1988�.
�17� W. A. Perkins and W. L. Barr, Phys. Fluids 11, 388 �1968�.
�18� J. A. Byers and M. Grewal, Phys. Fluids 13, 1819 �1970�.
�19� A. Zaslavsky, C. Krafft, and A. Volokitin, Phys. Plasmas 14,

122302 �2007�.
�20� J. Schneider, Phys. Rev. Lett. 2, 504 �1959�.
�21� J. L. Hirshfield and J. M. Wachtel, Phys. Rev. Lett. 12, 533

�1964�.
�22� M. J. Aschwanden, Astron. Astrophys. 237, 512 �1990�.
�23� P. L. Pritchett, Phys. Fluids 27, 2393 �1984�.
�24� P. L. Pritchett, Phys. Fluids 29, 2919 �1986�.

�25� J. S. Wagner, L. C. Lee, C. S. Wu, and T. Tajima, Geophys.
Res. Lett. 10, 483 �1983�.

�26� J. S. Wagner, L. C. Lee, C. S. Wu, and T. Tajima, Radio Sci.
19, 509 �1984�.

�27� L. F. Ziebell and P. H. Yoon, Phys. Plasmas 2, 1285 �1995�.
�28� H. Okuda and A. Hasegawa, Phys. Fluids 12, 676 �1969�.
�29� Y. Omura and H. Matsumoto, J. Geophys. Res. 92, 8649

�1987�.
�30� M. Ashour-Abdalla, J. N. Leboeuf, J. M. Dawson, and C. F.

Kennel, Geophys. Res. Lett. 7, 889 �1980�.
�31� T. Umeda, M. Ashour-Abdalla, D. Schriver, R. L. Richard, and

F. V. Coroniti, J. Geophys. Res. 112, A04212 �2007�.
�32� W. S. Kurth, L. A. Frank, M. Ashour-Addalla, D. A. Gurnett,

and B. G. Burek, Geophys. Res. Lett. 7, 293 �1980�.
�33� W. S. Kurth, J. D. Craven, L. A. Frank, and D. A. Gurnett, J.

Geophys. Res. 84, 4145 �1979�.
�34� K. Rönnmark, H. Borg, P. J. Christiansen, M. P. Gough, and D.

Jones, Space Sci. Rev. 22, 401 �1978�.
�35� A. Volokitin and C. Krafft, Phys. Plasmas 11, 3165 �2004�.
�36� C. Krafft, A. Volokitin, and A. Zaslavsky, Phys. Plasmas 12,

112309 �2005�.
�37� C. Krafft and A. Volokitin, Phys. Plasmas 13, 122301 �2006�.
�38� C. Krafft and A. Volokitin, Ann. Geophys. 22, 2171 �2004�.
�39� A. Zaslavsky, C. Krafft, and A. Volokitin, Phys. Rev. E 73,

016406 �2006�.
�40� A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fu-

sion 2, �Suppl.�, 465 �1962�.
�41� W. E. Drummond and D. Punes, Nucl. Fusion 3, 1049 �1962�.
�42� A. B. Kitsenko, I. M. Pankratov, and K. N. Stepanov, Sov.

Phys. JETP 40, 860 �1974�.
�43� J. R. Cary and I. Doxas, J. Comput. Phys. 107, 98 �1993�.
�44� J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian

Problems �Chapman and Hall, London, 1994�.
�45� Y. Elskens and D. Escande, Microscopic Dynamics of Plasmas

and Chaos �Institute of Physics, University of Reading, Berk-
shire, 2003�.

�46� B. Chirikov, Phys. Rep. 52, 263 �1979�.

KRAFFT, VOLOKITIN, AND ZASLAVSKY PHYSICAL REVIEW E 82, 066402 �2010�

066402-14

http://dx.doi.org/10.1103/RevModPhys.49.317
http://dx.doi.org/10.1029/GL004i008p00311
http://dx.doi.org/10.1029/GL004i008p00311
http://dx.doi.org/10.1029/JA083iA06p02701
http://dx.doi.org/10.1029/JA083iA06p02701
http://dx.doi.org/10.1016/0032-0633(79)90150-8
http://dx.doi.org/10.1016/0032-0633(79)90150-8
http://dx.doi.org/10.1063/1.51401
http://dx.doi.org/10.1029/2000JA900144
http://dx.doi.org/10.1063/1.1761261
http://dx.doi.org/10.1063/1.1761740
http://dx.doi.org/10.1086/157120
http://dx.doi.org/10.1029/JA095iA05p05973
http://dx.doi.org/10.1103/PhysRevLett.14.131
http://dx.doi.org/10.1103/PhysRevLett.14.131
http://dx.doi.org/10.1088/0032-1028/17/5/006
http://dx.doi.org/10.1063/1.863148
http://dx.doi.org/10.1017/S002237780002674X
http://dx.doi.org/10.1063/1.1691914
http://dx.doi.org/10.1063/1.1693160
http://dx.doi.org/10.1063/1.2799621
http://dx.doi.org/10.1063/1.2799621
http://dx.doi.org/10.1103/PhysRevLett.2.504
http://dx.doi.org/10.1103/PhysRevLett.12.533
http://dx.doi.org/10.1103/PhysRevLett.12.533
http://dx.doi.org/10.1063/1.864542
http://dx.doi.org/10.1063/1.865492
http://dx.doi.org/10.1029/GL010i006p00483
http://dx.doi.org/10.1029/GL010i006p00483
http://dx.doi.org/10.1029/RS019i002p00509
http://dx.doi.org/10.1029/RS019i002p00509
http://dx.doi.org/10.1063/1.871459
http://dx.doi.org/10.1063/1.1692531
http://dx.doi.org/10.1029/JA092iA08p08649
http://dx.doi.org/10.1029/JA092iA08p08649
http://dx.doi.org/10.1029/GL007i011p00889
http://dx.doi.org/10.1029/2006JA012124
http://dx.doi.org/10.1029/GL007i005p00293
http://dx.doi.org/10.1029/JA084iA08p04145
http://dx.doi.org/10.1029/JA084iA08p04145
http://dx.doi.org/10.1007/BF00210876
http://dx.doi.org/10.1063/1.1715100
http://dx.doi.org/10.1063/1.2118727
http://dx.doi.org/10.1063/1.2118727
http://dx.doi.org/10.1063/1.2372464
http://dx.doi.org/10.5194/angeo-22-2171-2004
http://dx.doi.org/10.1103/PhysRevE.73.016406
http://dx.doi.org/10.1103/PhysRevE.73.016406
http://dx.doi.org/10.1006/jcph.1993.1127
http://dx.doi.org/10.1016/0370-1573(79)90023-1

