
Coarsening of capillary drops coupled by conduit networks

Henrik B. van Lengerich,1 Michael J. Vogel,2 and Paul H. Steen1,3,*
1Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA

2Independent Researcher, Voorhees, New Jersey 08043, USA
3Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA

�Received 13 September 2010; published 17 December 2010�

A system of n spherical-cap drops, coupled by a network of conduits, coarsens due to surface tension forces.
The total interfacial energy drives the fluid through the conduits such that, with time, the volume becomes
increasingly localized into fewer large drops. The coarsening rate is predicted heuristically for drops coupled
by orthogonal networks, a porous medium, and fractal networks of various dimensions. The predicted coars-
ening law as it depends upon the type and dimension of network, total number of drops, and initial drop
volume is compared against numerical simulations of large n. Additionally, distributions of large drop volumes
are obtained using a Lifshitz-Slyozov-Wagner �LSW� model. The predicted distributions are independent of
network topology; in contrast, simulation results depend weakly on the network dimension. The heuristic
coarsening rate laws are recovered using the LSW model for all but a square network topology.
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I. INTRODUCTION

A system of spherical-cap drops coupled by a network of
uniform conduits will coarsen as the capillary force causes
some drops to gain volume at the expense of others. We
consider a system of n drops. Each has contact-line pinned
on identical circles of radii B. The pressure P of each drop is
related to the volume V through the surface tension � by the
Young-Laplace equation, cf. Fig. 1. The difference in pres-
sure between drops drives the flow through the conduits.
This system is dominated by viscous and surface tension
forces �small Bond, Weber, and Reynolds number�, and the
dissipation within the drop is negligible compared to that
through the conduits. The system is started close to a state of
almost identical superhemispherical drops �referred to as
“large” henceforth� and coarsens as some drops become sub-
hemispherical �referred to as “small” henceforth� by giving
volume to the remaining large drops. The surface area is a
maximum value initially and decreases monotonically until
only a single large drop remains �1�. We seek coarsening
laws which predict the number of large drops n� as a func-
tion of time.

A simple experiment illustrates capillary coarsening cf.
Fig. 2. A 4�6 array of holes is drilled in a plate. The plate is
sealed along its outer edges to a reservoir below and the total
volume of water in the reservoir and the drops is controlled
by a syringe pump. Initially, by pumping with the syringe, 24
drops are caused to protrude to large volumes. Pumping is
then stopped, the total volume fixed, and coarsening ensues.
The number of large drops decreases, while the distance be-
tween large drops and the difference in volumes between
large drops increase.

Coarsening of spherical-cap drops has a central role in the
strength of adhesion, both before and after grabbing, for a
grab-release adhesion device that we have designed and built
�2�. This device, inspired by a leaf beetle �3�, uses surface

tension to grab onto and release from a substrate. The device
works on a principle of parallel action; when many large
drops of similar sizes are brought close to a substrate they
form liquid bridges, and the total adhesion force is the sum
of the forces of individual bridges. Before grabbing, coars-
ening redistributes liquid in the drops which can decrease the
number of bridges formed and, thereby, decrease the total
initial adhesive force. After grabbing, the bridges may
coarsen over longer time scales which also changes the ad-
hesion. Our focus is on drops, but coarsening of bridges can
be studied with a similar approach. Another application
where coarsening of capillary drops has been utilized is in
microfluidic devices where surface tension forces are used to
pump fluid through conduits �4�. This method is attractive in
the life sciences due to its compatibility with existing tech-
nologies �5�. Although we shall discuss a model of the ex-
periment, Fig. 2, our main interest in this paper is capillary
coarsening as a prototype for more general coarsening pro-
cesses �6–9�.

A numerical simulation of the coarsening of n=100 drops
in Fig. 3 shows the volume of each drop as it varies with
time. To observe the coarsening rate, we prefer to plot the
time course of the number of large drops n� as a fraction of
the total number n �inset, Fig. 3�. At the start, as the distur-
bance grows from the unstable equilibrium, there is a plateau
where n��n after which there is a transient 1�n /n��4
until a coarsening regime develops during which time
�n /n���� t, with some exceptions to power-law growth, as
we shall discuss below. The coarsening exponent � and the
constants that make this expression an equality are the focus
of this paper. At the end of coarsening, as a single drop
emerges to take all the volume and the final equilibrium state
is slowly approached, there is another plateau where n�→1.
The initial and final plateaus can be studied using standard
linear stability analysis, while the transient that leads to the
coarsening regime is more complicated; this coarsening re-
gime is our focus. In this paper we will compare numerical
simulations to derived scaling laws.

The time to transfer volume depends on the flow rate
through the conduits. Suppose the flow rate Q is driven by a*phs7@cornell.edu
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pressure difference �P against resistance due to liquid vis-
cosity 	. For a single conduit of hydraulic radius R and
length L, Q�R4�P /	L �e.g., Hagen-Poiseuille flow�. For a
system of two drops coupled through a single conduit and
otherwise isolated, the flow rate will change due to changing
�P since the capillary pressure of the drops varies as volume
is drained from the smaller to the larger drop. In the two drop
system, �P scales as � /V0

1/3, where V0 is the average volume
of the drops. When many drops are connected through a
network, the relevant driving pressure is that across nearest
large-volume neighbors �P�. The relevant resistance de-
pends on the network of paths available to move volume
between these neighboring large drops and the distance W
between large drops. More precisely, the flow rate between
the large drops depends �i� on the pressure drop between
nearest large neighbors which depends on the extent of

coarsening n /n� through the volume difference of nearest
large drops and �ii� on the resistance between large drops
which depends on the extent of coarsening through W, and
on the network topology though the arrangement of conduits
separating large drops. This suggests the following scales,
�P���� /V0

1/3�h1�n /n�� and W=Lh2�n /n��, where functions
h1 and h2 of n /n� are unknown at this stage. For drops con-
nected in a line, it follows that Q�R4�P� /	W and, finally,
that a characteristic coarsening time V0 /Q scales as
	LV0

4/3 /�R4h3�n /n�� where h3 is �yet another� dimensionless
function of n /n�, unknown for now. We may summarize by
defining a time scale, useful for all networks considered,

T � c	LV0
4/3/�R4. �1�

Here, we have added a dimensionless constant c which de-
pends on prescribed network type and dimension. We shall
specify c when we specify the network connectivity in Sec.
II and this will facilitate the final dimensionless formulation.
Closely related to the network of Hagen-Poiseuille conduits
is a Darcy porous medium �permeability 
�. It turns out that
the above time scale is suitable for porous media provided
the hydraulic radius is defined through the geometric mean
of B2 and 
, R2��B2
�1/2. The main subject of this paper
may now be stated as the determination of the dependence of
coarsening time on the dimensionless group n /n�.

We study two kinds of coupling conduits �Fig. 4�. Or-
thogonal networks �ON� have identical conduits and fractal
networks �FN� have conduits of varying length. The unit cell
of an ON has a drop at the origin of and conduits aligned
along the coordinate axis of a d-dimensional Cartesian space.
This unit cell does not repeat forever; the network is
bounded. An ON with d=1 corresponds to a “linear array,”
d=2 to a “square lattice,” and so forth. Here, all but the
drops at the boundary are connected to 2d other drops. A
“completely connected” ON has dimension d=n−1 with pe-
riodic boundary conditions along each dimension; each drop
is directly connected to every other drop twice. FN can take
on any fractal dimension df by adjusting the ratio of lengths
of the conduits. Both d and df in these networks are consis-
tent with the “similarity dimension” �10�. We note that the
dependence of coarsening rates on the dimension of the sys-
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FIG. 1. �Color online� Exact pressure-volume response of a
single spherical-cap drop �solid/blue online�. Approximate response
of a full sphere works well at large volumes �dashed/red online�. In
this figure only, pressure is scaled by � /B and volume by 2�B3 /3.
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FIG. 2. Coarsening dynamics of a 4�6 array of water drops
protruding from 500 	m holes coupled below through a frit with
5 	m pore diameter. Elapsed time i=0 s, ii=2.0 s, iii=21.3 s,
iv=31.9 s.
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FIG. 3. �Color online� A single numerical simulation of a linear
network with 100 drops, where the initial disturbance is randomly
chosen from a hypersphere of radius r0=0.1 centered about identi-
cal drop volumes of five hemispheres. Inset: n� /n against time.
Volume is in hemispheres, time in scale Ton, defined in text.
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tem has been studied in a diverse range of systems �see
�11,12�, and references therein� but we are not aware of any
previous work regarding fractal networks.

The adhesion device design, shown in cross-section in
Fig. 5, has a porous medium �PM� adjacent to the top plate to
slow the coarsening time. This design consists of a large
number of orifices with radii B and center-to-center distances
L, below which is a membrane or frit of thickness HF and
Darcy permeability 
F, and below that is a water reservoir of
thickness HR. Two limiting cases of drop coupling may be
identified: �i� flow vertically through the frit and then hori-
zontally through a low-resistance reservoir and �ii� flow only
horizontally through the frit. Additionally, fabrication defects
can allow drops to communicate through gaps between the
frit and the top plate. Scenarios �i� and �ii� are further dis-
cussed in the Appendix. We model the coupling of the first
case by a complete network. The second case and the cou-
pling through a defect region are modeled with flow through
a PM between drops arranged in a linear or square configu-
ration. This study is motivated by the question “can the
coarsening exponent distinguish between cases �i� and �ii�
�e.g., detect a defect�?.”

Classical studies of coarsening of conserved quantities
have focused on two types of governing equations. One type

is a backward heat equation plus a higher-order �usually bi-
harmonic� term, such as the Cahn-Hilliard equation. This
equation occurs in application such as spinodal decomposi-
tion �6,13� and dewetting of thin films �14,15�. The higher-
order term leads to a nonzero most unstable growth rate
which determines the early stage of the coarsening into dif-
ferent phases �6,15�. The cluster size of the two phases grow
at the late times due to coalescence of clusters �13,14,16,17�.
The second type of governing equation is a discretized back-
ward heat equation. This equation is ill-posed in the con-
tinuum limit, where the most unstable mode has zero wave-
length, but in a system with discrete elements the system can
be posed as a set of ordinary differential equations. This type
of equation arises in granular mechanics �7,18,19�, image
enhancement �9�, population dynamics �8�, as well as the
drop coarsening that we study. The methods used to find
coarsening rates and size distributions are similar for both
partial and ordinary differential equations. Rigorous upper
bounds on the decay of energy have been found for both
Cahn-Hilliard type equations �20� and discrete backward
heat equations �21�.

In this work we study orthogonal and fractal networks,
both of arbitrary dimension, as formulated in Sec. II. A coars-
ening law is derived for each of these networks in Sec. III.
For networks such as the square, the rates are not simple
exponents, and logarithmic terms arise. The coarsening laws
are then compared to simulation of the exact equations. The
derived laws predict the correct functional relation between
pre-exponential factors and the number of drops n, the initial
volume, and the size of the disturbance. The distribution of
the large drops is predicted in Sec. IV. Although the growth
rate of large drops depends on the network, the distribution
of the large drops for all networks collapses onto one curve.

II. GOVERNING EQUATIONS

We write three types of governing equations to capture the
various conductivities between drops described above. The
simplest is an ODE model of drops coupled in orthogonal
networks �Fig. 4�. Alternatively, a model of drops coupled by
a Darcy porous medium is constructed �cf. Fig. 5�. This
model involves solving a PDE, but we will show in Sec. III
that the coarsening law is identical to that for the network of
orthogonal conduits. Finally, we consider a fractal network
�cf. Fig. 4� where by changing the lengths of the conduits,
one can achieve a range of coarsening exponents.

A. Orthogonal networks

Consider a system of drops coupled by a d-dimensional
network of orthogonal conduits. The change in the volume of
drop i is determined by the flow through the conduits con-
necting it to its adjacent neighbors

v̇i =
1

2d
�

k

2d

qk,i for i = �1, . . . ,n� , �2�

where the sum over k denotes the 2d nearest neighbors of
drop i. The dot is a derivative with respect to time and qk,i
denotes the volumetric flow rate from drop k to drop i. All

L1

L2

L3

FIG. 4. �Color online� Linear �d=1�, square �d=2�, complete
�d=n−1�, and fractal �fractal dimension df� networks of conduits
connecting drops. Complete network has been flattened from d=6,
therefore the conduits appear to have unequal lengths; periodic
boundary conditions for this network means each line represents
two conduits.

FIG. 5. �Color online� Sketch of adhesion device while coars-
ening. The height of the frit is HF; reservoir depth HR; distance
between nearest drops L; and distance between nearest large drops
W. For flow horizontal through the a porous media region, the pres-
sure of the drop is applied at a radius A to account for the vertical
flow entering from the orifice of radius B.
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the variables have been made dimensionless, with scales V0
for volume, Ton for time and V0 / �2dTon� for flow rate �see
below in this paragraph for definition of Ton�. The factor of
2d has been added so that when the number of connections
to drop i is varied through the network dimension d, and the
total dimensional flow rate to a drop i is held constant, then
the dimensionless variable qk,i also remains constant. We use
a no-flux condition at the edges for linear and square net-
works and use a periodic boundary condition for completely
connected networks, as mentioned. For example, for a linear
network the sum at the edges is over just one element �rather
than two�. The flow rate between any two drops is assumed
to be a linear function of the pressure drop

qk,i = p�vk� − p�vi� , �3�

where the capillary pressure of an average sphere
2� / �3V0 / �4���1/3 has been used to scale the pressure. From
here on we assume fully developed Hagen-Poissuelle flow so
that the flow rate Q= �� /8�R4�Pk− Pi� /	L. This determines
the time-scale Ton�c	LV0

4/3 /�R4 where c=61/3 / �d�4/3�,
consistent with Eq. �1�. Combining Eqs. �2� and �3� gives a
set of ordinary differential equations for the volume of the
drops

v̇i = − p�vi� +
1

2d
�

k

2d

p�vk� , �4a�

with corresponding initial conditions

vi�t = 0� = 1 + �i/v0, �4b�

where k denotes drops adjacent to i, v0 is scaled by a hemi-
sphere 2�B3 /3, and �i is an n-dimensional vector assigning
to each drop a randomly chosen volume �in hemispheres�
from the surface of an n-dimensional hypersphere of radius
r0=���i

2 with the constraint ��i=0. Simulations of Eqs. �4�
use the exact pressure behavior of spherical-cap drops �c.f.
Fig. 1�, available in closed form. Note that the length scale B
enters the scaling only through the initial conditions �Eq.
�4b�� and since the initial conditions have “washed out” by
the coarsening regime, the coarsening rate is independent of
B, contrary to the case for porous media, described next.

B. Porous media

Consider a system of drops protruding from a
d-dimensional surface, arranged in an orthogonal grid, with
the drops coupled through a Darcy porous medium below the
surface �cf. Fig. 5�. Recall that the Darcy’s law has the fluid
velocity proportional to pressure gradient with a coefficient

 /	, where 
 is the Darcy permeability of the porous me-
dium and 	 the fluid viscosity. Scaling the typical flow ve-
locity by flow through the orifice, V0 / ��B2Tpm�, time by Tpm,
pressure by 2� / �3V0 / �4���1/3, and L for the gradient length
scale, the dimensionless Darcy’s law becomes

u = − �p , �5�

provided the time-scale Tpm�c	LV0
4/3 /B2
� is chosen with

c=31/3 / �25/3�4/3�. This reconciles with Eq. �1� for R4=B2
.
Inserting Darcy’s law into the continuity equation gives

0 = �2p . �6�

The boundary conditions to this equation are determined by
the pressures of each of the drops. The pressure of a drop
p�vi� is specified at a dimensionless “cutoff” radius a
�A /L from the center of the base of drop i, to account for
the finite orifice area �B2 where the drop joins the frit �cf.
Fig. 5�. This cutoff distance scales with the orifice radius A
�B. To simplify the formulation we assume the flow through
the frit happens in the same number of dimensions as the
arrangement of drops. Therefore, the spherical hypershell at
which the pressure is applied is d−1-dimensional, consistent
with the Laplacian in Eq. �6� which is d-dimensional. The
evolution the volume of drop i can be obtained by a balance
of a shell of radius a to give

v̇i = − 	
i

u · nids , �7�

where the surface i of radius a and normal vector ni depend
on d. The dimensionless surface area i is scaled by the
orifice area �B2. Once the volume of the drops are specified,
the pressure field can be solved using Eq. �6� and the vol-
umes can be iterated using Eq. �7�. The initial condition can
be specified in terms of drop volumes, as in Eq. �4b�.

C. Fractal networks

We formulate the governing equations for a system of n
=2sn drops arranged in a fractal configuration �for sn=3, see
Fig. 4�. The length of the shortest conduits is L1, the length
of conduits that connects the midpoints of two L1 segments is
L2, and so on for all sn lengths. The lengths are scaled by the
shortest length li=Li /L1, thus l1=1. The governing equations
are constructed by first writing a balance equation on the
volume of all n drops assuming we know the pressures
�pa , pb , . . .� at the intersection of the l1 and l2 conduits. For
example

v̇1 =
2

l1
�pa − p1� ,

v̇2 =
2

l1
�pa − p2� ,

] �8�

Scales for volume, pressure, and volumetric flow rate are the
same as for orthogonal networks. Each drop is connected to
only one conduit, therefore the time scale corresponds to that
of the ON with d=1 /2. The time-scale Tfn�c	L1V0

4/3 /�R4

with c=2�61/3 /�4/3 results.
To determine the pressures at the intersections �pa , pb , . . .�

we write a volume balance around all the intersections of
conduits of length l1 and l2. For example, a balance about the
midpoint of drops 1 and 2 gives

0 =
2

l1
�p1 − pa + p2 − pa� +

2

l2
�pb − pa� , �9�

where pb is the pressure at the midpoint of the conduit of
length l2 connecting the conduit of length l1 from above, to
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another conduit of length l1. Balances of the form of Eq. �9�
are written with a recursive code for all n−2 intersections,
giving n−2 equations for n−2 unknown intersection pres-
sures. By solving for all intersection pressures in terms of
drop pressures we obtain a system of n equation for the
dynamics of the drops,

v̇i = �
j=1

n

cij�pi − pj� , �10a�

vi�t = 0� = 1 + �i/v0, �10b�

where cij is the adjacency matrix of the conduit network and
�i and v0 are as for orthogonal networks. Numerical simula-
tion of Eqs. �10�, like Eqs. �4�, uses the exact pressure rela-
tion of spherical-cap drops �c.f. Fig. 1�. To obtain self-similar
networks, we set the lengths of the conduits as

l1 = 1,

li = �i−2�� − 1� for 2 � i � sn, �11�

where ��1. When one drop is eliminated from the end of
each conduit of length l1, the system can be rescaled by �
and overlaid on half the original image. This elimination of
half the large drops and rescaling by � can be done for all sn
lengths. Therefore �10�, the fractal dimension is

df � log�2�/log��� . �12�

This dimension �the “similarity dimension”� can be used to
recover the dimension d of the ON �10�.

III. COARSENING RATES: HEURISTIC PREDICTIONS
AND SIMULATION RESULTS

A heuristic argument can be made to find the number of
large drops as a function of time. To do this, we write an
equation for the evolution of a typical growing large drop at
some intermediate time. We assume the large drops are
evenly distributed in space because any more closely spaced
large drops will more quickly coarsen due to the lower resis-
tance between them. A typical large drop will be connected
to other large drops a dimensionless distance w�W /L away.
Small drops cannot become large as no drop can have more
pressure than a hemisphere. Therefore, the majority of the
flow transferred to a �growing� large drop must originate
from another �shrinking� large drop. We can solve for the
pressure profile below the small drops to calculate the resis-
tance to flow between large drops. The coarsening rate will
depend on the network resistance through w and on the net-
work connectivity.

A. Orthogonal networks: Large drop growth

The resistance between two large drops in an orthogonal
network will be determined by the flow through a network of
conduits below the small drops �since small drop growth is
negligible, v̇s
0�. Substituting this into Eq. �4a� gives a
standard discretized version of the Laplace equation which,
for large w, takes the continuum form,

0 = �2p . �13�

For linear networks, this approximation is true for all w since
the solution to Laplace’s equation is identical to that for dis-
crete resistors in series. For square networks, a comparison
against discrete resistors shows that it also works well down
to very small w �Fig. 6�.

Next, we solve Eq. �13� in radial coordinates with one
drop at the origin and 2d drops at a distance w. The boundary
condition for the drop at the origin is p�r=a�= p�. The pres-
sure at the nearest-neighbor large drops at a distance w is set
to the mean-field pressure p�. Therefore the pressure at the
surface of the disk of radius w /2 is p�r=w /2�= �p�+ p�� /2.
Applying these boundary conditions we obtain

p =
1

2

p� − p�

a2−d − �w/2�2−d �r2−d − a2−d� + p� for d � 2,

�14a�

p =
1

2

p� − p�

ln�a� − ln�w/2�
�ln�r� − ln�a�� + p� for d = 2.

�14b�

Evaluating this expression at the location of the nearest-
neighbor drops �r=1� and inserting this into the dynamical
system for the orthogonal networks �Eq. �4a�� gives

v̇� =
1

2

p� − p�

a2−d − �w/2�2−d �1 − a2−d� for d � 2, �15a�

v̇� = −
1

2

p� − p�

ln�a� − ln�w/2�
ln�a� for d = 2. �15b�

In the limit a�1, growth of large drops is given by

v̇� =
p� − p�

2�w/2�2−d for d = 1, �16a�
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FIG. 6. �Color online� Network resistance for flow between two
drops in square network: continuous �solid� vs discrete �squares�
resistance. The continuous curve is fit to the discrete curve with a
value of ln�a�=−1.7. Inset: diamond-shaped domain through which
flow travels for w=4.
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v̇� =
p� − p�

2
for d � 2. �16b�

For d=1, the resistance between drops of a distance w is
equal to w, as the resistors add in series. From Eq. �15a� we
see that this corresponds to a=0. For d�2, a is negligible
for a different reason. There, the exponent on a makes the
equations in the limit of small a more accurate. For d=2 the
approximation is least valid, and therefore, we will leave a in
the prediction of these coarsening rates. The value of a is
determined by comparing the resistance through a diamond-
shaped domain to the resistance given by Eq. �15b�, cf. Fig.
6. A value of ln�a�=−1.7 is found as a best fit to match the
resistance in a continuous porous medium with a discrete
network model.

B. Porous medium: Large drop growth

For the porous medium, start by noting that Eq. �13� also
governs the pressure in porous media �c.f. Eq. �6��. Applying
the same boundary conditions as for the orthogonal networks
leads to the same solutions, Eqs. �14�, for the pressures. We
then insert the pressure profiles �Eqs. �14�� into Eqs. �5� and
�7� and observe that, by rescaling the time with scales,

Tpm
� � Tpm

1 − a2−d

�2 − d�	
�r=1�

ds

for d � 2, �17a�

Tpm
� � Tpm

− ln�a�

	
�r=1�

ds

for d = 2, �17b�

one arrives at Eqs. �15�. Here, the subscript on the integral
indicates the radius of the surface is unity. In summary, the
equations for the growth of large drops are the same for the
porous medium and orthogonal networks. The main differ-
ence is that, for networks, a is a fixed quantity and, for po-
rous media, it is a material parameter that depends on the
ratio of B /L as well as the exact experimental setup. The
close relationship between ON and PM has been anticipated
by �22�, among others �23�. It is included here for complete-
ness and because of its relevance to the motivating applica-
tion. The pressure in hexagonal, triangular, and other regular
networks are also determined by a d dimensional Laplace
equation �cf. �22��; the dynamics of drops on these networks
are equivalent to those on ON and PM modulo a change in
the time scale.

C. Orthogonal networks and porous media:
Prediction and simulation

We can now calculate the coarsening rates from Eqs.
�15b�, �16a�, and �16b� �for d�2�. The majority of the vol-
ume is in the large drops and the total volume of the system
is constant, therefore

v�n� 
 n , �18�

regardless of network topology. For all large drops the pres-
sure can be approximated as

p� 
 v�
−1/3, �19�

which is the pressure of a sphere. This approximation is
more accurate for larger volumes, as shown in Fig. 1. The
large drops dominate the dynamics, therefore the mean-field
pressure should depend on the pressure of the large drops.
For simplicity we choose the mean field pressure to be di-
rectly proportional to the pressure of the large drop

p� = �1 + ��p�, �20�

where � is undetermined.
For linear networks �d=1�, after turning “approximate”

relationships into “equality,” we insert Eqs. �18�–�20� as well
as a relation between the distance of large drops w
n /n�


v� into Eq. �16a� and integrate to give

� n

n�
�7/3

− 1 =
7

3
�t . �21�

The lower bound of integration has a negligible effect and
was chosen to be zero for convenience. This coarsening law
not only gives us the time it takes for small drops to coarsen,
it also includes the dependence on the total number of drops,
and shows no dependence on initial disturbance size and
initial volume. These dependencies are verified against nu-
merical simulations of Eq. �4� shown in Fig. 7. The value of
the mean-field pressure determines the intercept in the coars-
ening plot; a value of �=0.15 was used to match the simu-
lation results. The value of � did not need to be adjusted
when r0, v0, or n was varied.

Numerical integration of Eq. �4� �cf. Fig. 7� show that the
initial coarsening rate is slower, and then faster, than that
which is predicted. For smaller disturbances, the time until
the first large drop becomes small increases. As the size of
the disturbance r0 decreases the initial condition is getting
closer to an unstable fixed point, therefore it takes longer to
escape the neighborhood of the fixed point and start to
coarsen. Once the first drop becomes small, many others
quickly follow. The validity of the heuristic coarsening law
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FIG. 7. �Color online� Coarsening of linear network according
to Eq. �21�. Simulations for n=100, r0=0.1, and v0=5 �typical�,
unless otherwise noted in legend. Each simulation curve is an av-
erage of 100 simulations each with random initial condition. Simu-
lations are cut off before they reached steady state for presentation
purposes.
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at early times is related to the distribution of large drop vol-
umes, discussed in Sec. IV. The initial time is exaggerated by
the log scale; discrepancies between the theory and experi-
ment at initial times have a negligible effect on the long-time
coarsening.

We do not observe any effects from the finite size of the
network. As the number of drops is increased, a smaller frac-
tion of drops are affected by the boundaries, however, the
numerical data collapses onto a single curve for the three
values of n simulated.

For orthogonal networks where d�2 and a�1 we insert
Eqs. �18�–�20� into Eq. �16b� and integrate to obtain

� n

n�
�4/3

− 1 =
2

3
�t . �22�

This coarsening law is compared against simulations of Eq.
�4� for the completely connected network in Fig. 8. By in-
cluding the dimension d in the time scale, the simulations
collapse using n� /n even though the number of connections
per drop increases with n since d=n−1 for the complete
network.

For square networks �d=2� where a is not negligible, we
insert Eqs. �18�–�20� as well as the relation w2
n /n�
v�

into Eq. �15b� and integrate to obtain

� n

n�
�4/3

− 1�3

4
+ 2 ln�2a�� − � n

n�
�4/3

ln� n

n�
� =

4 ln�a�
3

t ,

�23�

where the value of a, mentioned previously, is given by
ln�a�=−1.7.

The derived coarsening law for the square network �Eq.
�23�� matches the simulations of Eq. �4� as can be seen in
Fig. 9. The difference between the −3 /4 coarsening law,
which would be obtained in the limit of a→0, and the coars-
ening law including logarithmic terms due to finite a �Eq.
�23�� can also be seen in Fig. 9.

D. Fractal network: Prediction and simulation

In the fractal network the n /2 pairs of drops closest to
each other will coarsen first because the resistance between
them is the lowest. In the next stage of the process �denoted
si=2� the n /4 pairs of drops next closest to each other
coarsen, and this process continues until only one drop is
left. We neglect the pressure of the small drops, since the
flow between the larger drops does not pass below these. The
total resistance between drops depends only on the length
between the remaining large drops, which goes as � j=1

si lj
= �2si��, where ��1 /df and the stage si is given by si
=log2�n /n��. The growth rate of a large drop goes as

v̇� =
p� − p�

�
i=1

sn

li

=
p� − p�

v�
� . �24�

Inserting the approximation for the pressure �Eq. �19��, the
mean-field pressure �Eq. �20��, and the conservation of vol-
ume �Eq. �18��, and then integrating gives the coarsening law

� n

n�
�4/3+1/df

− 1 = �4/3 + 1/df��t . �25�

Comparison of Eq. �25� against simulations of fractal sys-
tems Eq. �10� is shown in Fig. 10. The pre-exponential factor
in the coarsening law was chosen as �=1 /4, and this fit
matched the numerical simulations for df =1 /2,1,2, and 70;
however, for small dimensional systems a range of fitting
factors could have been justified. As seen in Eq. �25�, sys-
tems can be created with any coarsening exponent between
−3 /4 and 0 by changing the fractal dimension of the net-
work. In Fig. 10 the simulations show a “staircasing” behav-
ior due to the coarsening stages. Each step in the staircase
halves the number of large drops. Staircasing is more promi-
nent at smaller dimensions where the resistance, and there-
fore also the time, between the si and si+1 stages is larger. For
df =1 the system coarsens at the same rate as that for the
linear networks. For df =2 the drops coarsen as n�� t−6/11 in
contrast to the square coarsening rate of n�� t−3/4 plus loga-
rithmic terms. This was verified by numerical simulations
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FIG. 8. �Color online� Coarsening of complete network accord-
ing to Eq. �22�. Simulations for n=100, r0=0.1, and v0=5 �typical�,
unless noted in legend. Each simulation curve is an average of 100
simulations each with random initial condition. Simulations are cut-
off before they reached steady state for presentation purposes.
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FIG. 9. �Color online� Coarsening of square network �d=2� ac-
cording to Eq. �23�. Simulations for n=100, r0=0.1, and v0=5
�typical�, unless noted in legend. The predicted coarsening rate does
not have a −3 /4 exponent due to the nonzero value of a.
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and is shown in Fig. 10. The coarsening rate n�� t−6/11 would
be obtained in the square network only if the resistance be-
tween large drops would be proportional to w instead of
ln�w�. The coarsening for orthogonal networks is quicker
than that for fractal networks for 1�df ��. In orthogonal
networks the resistance between large drops is lower due to
the multiple flow paths in parallel, whereas the resistances
add in series for the fractal networks. In the limit �→1 the
infinite dimensional fractal network becomes identical to the
completely connected network to within a constant scaling
factor of time; simulations and predictions confirm this lim-
iting behavior.

IV. DISTRIBUTION OF LARGE DROP VOLUMES AND
SELF-SIMILAR COARSENING RATES

To determine the difference between the large drop vol-
umes throughout the coarsening we seek a self-similar dis-
tribution of the large drop volumes. From the distribution
some of the heuristic coarsening laws from the previous sec-
tion can be recovered. We follow the formulation presented
by Gratton and Witelski �24� to apply the Lifshitz-Slyozov-
Wagner �LSW� �25,26� model to our system of drops. It is
assumed that the system has coarsened for long enough so
that the initial perturbation has evolved into a self-similar
distribution of volumes, but not so long that the number of
large drops is too few to justify a continuous distribution. We
write a conservation law of the number density of large drops
� as

��

�t
+

�

�v
��v̇� = 0, �26�

where v̇ is given by Eqs. �16a� and �16b�, or �24� for linear
networks, orthogonal networks where d�2 and a→0, or
fractal networks, respectively. We can integrate the number
distribution to obtain the number of large drops, the average
large drop volume or the average large drop pressure

n� = 	
0

�

�dv , �27�

v̄ =
1

n�
	

0

�

v�dv , �28�

p̄ =
1

n�
	

0

�

v−1/3�dv . �29�

We construct a similarity variable z�v /v� where v� is a
mean-field volume and seek a self-similar solution of the
form

� = t−�f�z� . �30�

We assume the mean-field volume scales as v�=�t� and the
relation between the mean-field volume and average volume
is given by �=v� / v̄. The value of the pressure is given by
Eq. �19�, thus the mean-field pressure is p�= �v��−1/3, where
�, �, �, and � are undetermined coefficients. In the equations
for v̇ we use the mean volume to determine the distance to
the nearest large drops, as a result the function f will be
independent of the network. Using the conservation of vol-
ume in large drops n=�0

�v�dv we find the relation �=2�.
From Eq. �26� we find the value of � and an ordinary differ-
ential equation for the function f

df

dz̃
=

2z̃4/3 − 1

− z̃7/3 + 4z̃4/3 − 3z̃
f , �31�

where z̃�z /zmax. The undetermined coefficients � and zmax
are found by setting the denominator of Eq. �31� and its
derivative to zero, see �11,24,25� for details. The value of �
can be found from its definition. The values zmax

1/3 =4 /3 and
�=�0

1fdz̃ / �zmax�0
1z̃ fdz̃�
0.8509 were found. We integrate

Eq. �31� numerically and compare this to the distributions of
large drops for various networks from simulations of Eq. �4�
in Fig. 11.

The probability distributions for the smaller dimensional
networks are shifted to higher probabilities of larger volume
drops, according to Fig. 11. The complete network most ac-
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FIG. 10. �Color online� Coarsening of fractal network �various
df�. Simulations for n=128, v0=5, and r0=0.1. Simulations are av-
eraged over 100 random initial conditions. Predictions according to
Eq. �25�.
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curately matches the predicted probability distribution. Frac-
tal networks of df �1 do not reach a self-similar volume
distribution. These low-dimensional systems have very
prominent stepping behavior, as seen in Fig. 10, and there-
fore the exact time at which the probability distribution is
evaluated �on the flat or on the steep part of the step� can
yield very different results. It was observed that, when the
numerical simulations are given initial conditions that match
the self-similar large volume distribution, they follow the
heuristic coarsening laws even at early times. The self-
similar distributions are apparently stable distributions.

The coarsening law can be found from Eq. �27� for regu-
lar networks where a→0 and fractal networks, using the
values of � and � found previously. The results are shown in
Table I. The coarsening exponents and the dependence on the
total number of drops and initial volumes compare favorably
to those found by heuristics. For d=2 and a�0, the coars-
ening law is a transcendental function of t and therefore can-
not be expected from a similarity solution of the form Eq.
�30�. The LSW model also predicts a pre-exponential factor
to be compared to a fit value of the heuristics. The probabil-
ity distribution of large drops predicted by the LSW model is
independent of network topology; therefore, the pre-
exponential factor predicted is also independent of network
topology. The LSW model predicts �=33 /44
0.105, which
is most accurate for low-dimensional systems.

V. DISCUSSION AND SUMMARY

Simulations of coarsening behavior of a system of
spherical-cap drops obtained by solving the “exact” equa-
tions are reported. Drops are connected by conduits laid out
in orthogonal and fractal networks with network size n, ini-
tial conditions, and system dimensions �d and df� varied in
the simulations. Scaling-law predictions are derived by pre-
suming dominant balances �heuristics� for coarsening growth
and by assuming the LSW model for size-distribution dy-
namics. Table I summarizes the predictions. Figures 7–10
compare simulation of coarsening rates against prediction.
Figure 11 compares simulation of distribution of size against
prediction of the LSW model.

For coarsening rates, the prediction captures the depen-
dence on initial total volume, initial drop size distribution,
and network size with a single fitting parameter for each
network type �Table I�. The initial volume dependence is

accounted for by the time scale, and enters only through the
perturbation size of the initial condition. The initial drop dis-
tribution is “washed away” as the large drop distribution
converges to the self-similar distribution shown in Fig. 11.
The network size enters the coarsening rate only as a ratio
through the volume balance v�
n /n�. Coarsening depends
most strongly on the dimension of the network. The coars-
ening exponent increases from 3/7 to 3/4 going from d=1
�linear ON� to d=2 �square ON, a→0� dimensions, as an-
ticipated �21�. For d�2 the exponent remains at 3/4 while
coarsening continues to increase but in a linear fashion, as
reflected in the time-constant dependence on d �Table II�.
The complete ON are optimally connected and show a maxi-
mum coarsening rate for any chosen n, among all the ON
networks. Effects of the cutoff distance a at which the pres-
sure of the drop is applied play the strongest role in planar
networks d=2 where logarithmic corrections to the power
law growth must be included to capture the simulations �Fig.
9�.

The fractal network is distinguished by drops with exactly
one nearest neighbor �a pairwise competition occurs between
drops at each stage� but a resistance from stage to stage that
changes in a self-similar fashion. Putting df =1 corresponds
to resistances that increase in a geometric fashion and yields
a coarsening rate that is identical to the linear ON. Increasing
to df =�, the FN coarsens with the same power law as the
complete ON but with a different constant in the time scale.
For all other df, the FN coarsens slower than the ON because
the resistance of many conduits in series is greater than that
for conduits in parallel.

Drops coupled by a two-dimensional porous medium
coarsen with the same exponential behavior as those coupled

TABLE I. Comparison of heuristic and LSW coarsening rates as well as � values used to fit the data for orthogonal networks, porous
media, and fractal networks. LSW predicts a pre-exponential factor of �=33 /44
0.105 for all networks.

Network Dimension Heuristics Simulation � LSW

Linear ON d=1 � n
n�

�7/3−1= 7
3�t 0.15 � n

n�
�7/3= 7

3
33

44 t

Square ON d=2 �� n
n�

�4/3−1�� 3
4 +2 ln�2a��− � n

n�
�4/3ln� n

n�
�= 4 ln�a�

3 t 0.20 NA

ON a→0 d�2 � n
n�

�4/3−1= 2
3�t NA � n

n�
�4/3= 2

3
33

44 t

Complete ON d=n−1 � n
n�

�4/3−1= 2
3�t 0.25 � n

n�
�4/3= 2

3
33

44 t

Porous media Same as above

Fractal 0�df �� � n
n�

�4/3+1/df −1= � 4
3 + 1

df
��t 0.25 � n

n�
�4/3+1/df = � 4

3 + 1
df

� 33

44 t

TABLE II. Time scales for orthogonal networks, porous media,
and fractal networks.

Connectivity Time scale �T� Constant �c�

ON c	LV0
4/3 /�R4 61/3 / �d�4/3�

PM d�2 c	LV0
4/3 /B2
� 31/3�1−a2−d�

25/3�4/3�2−d���r=1�ds

PM d=2 c	LV0
4/3 /B2
� −31/3 ln�a�

25/3�4/3��r=1�ds

FN c	L1V0
4/3 /�R4 2�61/3 /�4/3
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by complete networks, cf. Table I. Hence, a measured expo-
nent alone cannot distinguish if the flow is through the res-
ervoir, frit, or a defect region; that is, cannot distinguish be-
tween cases �i� and �ii� above. For linear arrays of drops the
coarsening exponent changes significantly from linear to
complete coupling. In two-dimensional arrays different flow
types might be distinguishable by the coarsening time, pro-
vided the time scales differ significantly.

In some instances the practitioner may find it convenient
to know the actual times the system might take to reach
certain milestones, such as half-coarsening �nL=n /2� or full-
coarsening �nL=1�. Expressions for these times can be
readily derived from Tables I and II. Due to the appearance
of d in the time scale for orthogonal networks, changing the
number of drops will change the time scale for the complete
network �d=n−1�, but not for other networks. That is, with
R, V0, L, and fluid properties held constant, the time for
half-coarsening is independent of n for square networks;
however, it scales as 1 /n for complete networks. The time
for full-coarsening scales as n4/3 for square networks, and
n1/3 for complete networks. In practice, these times can be
highly dependent on the initial distribution of imperfections,
perhaps making the coarsening exponent a more reliable
metric.

For drop size predictions by the LSW model, the pre-
exponential factor is found to be independent of the network
connectivity. In contrast, the simulations show that the lower
dimensional networks have distributions shifted to larger
volumes and smaller pre-exponential factors. The differences
in large volume distributions cannot be attributed to different
initial conditions �cf. �27��, as all initial conditions are picked
from the same distribution. The reason the predicted distri-
butions are insensitive to network type is because the mean
volume is used to determine the distance to nearest large
drops �w�. The results suggest that the LSW model could be
improved by incorporating the effects of network connectiv-
ity through the use of a better estimate of the large drop
separation.
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APPENDIX: FLOW TYPES IN ADHESION DEVICE

In the low-resistance reservoir limit �i�, the resistance
through the reservoir is much less than the resistance to flow
vertically through the frit 4	W / �HR

3��2	HF / �B
� which is
much less than resistance to flow horizontally through the frit
2	HF / �B
��	W / �HF
�. The liquid travels from a drop
vertically through the frit to the reservoir and then through
the frit again to another drop. In this case the resistance
between drops is dominated by flow vertically through the
frit. The resistance is independent of the distance between
drops, therefore this type of flow is modeled as a complete
network.

The flow travels only through the frit �ii� when the resis-
tance to flow horizontally through the frit is much less than
the resistance through the reservoir 	W / �HF
�
�4	W / �HR

3� or much less than the resistance vertically
through the frit 	W / �HF
��2	HF / �B
�. Here, the resis-
tance between drops depends on the distance between drops.
Koplik �22� has shown that creeping flow through networks
of conduits connecting cavities behaves effectively as flow
through a porous medium on the large scale, and this is also
true for our system �Sec. III B�. For this reason, simulations
of this type of flow will be modeled with a linear or square
network of conduits.

The experiments can be more complicated than these lim-
iting cases. With a thick frit, flow horizontally through the
frit dominates at early times when the large drop distance is
less than the thickness of the frit. Thereafter, the flow is
dominated by the resistance perpendicular to the frit. A dif-
ficulty in fabricating these small-scale devices is ensuring
that there are no gaps between frit and top plate. Flow within
this gap region could be modeled as two-dimensional flow
through porous medium, as case �ii�; however, the size and
permeability of the gap are unknown.
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