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I. INTRODUCTION

When a fluid flows through a pipe of circular section and
radius R it experiences a pressure drop per unit length of pipe
dp /dx=−2�0 /R, where �0 is the stress at the wall. �0 has
units of energy density and is commonly parametrized as in
the Darcy-Weisbach formula

�0 �
f

8
�V2, �1�

where � is the density of the fluid and V is the mean velocity.
The coefficient f in Eq. �1� is the so-called friction factor
�1–5�.

For a given pipe, the friction factor is a function of Rey-
nolds number Re

Re =
2RV

�
, �2�

where � is the kinematic viscosity of the fluid �as distinct
from the dynamic viscosity �=���. It presents three power-
law-like regimes separated by transition regions. For laminar
flows �Re�103�, f =64 /Re; for developed turbulent flows
�103�Re�106� it obeys the Blasius law f =0.3164 /Re1/4,
and for larger values of Reynolds number it converges to an
asymptotic value determined by the pipe roughness.

Gioia and Chakraborty �6� presented a theoretical model
whereby these features of the friction are easily derived from
the Kolmogorov spectrum of homogeneous, isotropic turbu-
lence. See also �7–14�. We shall refer to this as the momen-
tum transfer model �MTM�

An immediate prediction of the MTM is that, where the
turbulent spectrum deviates from the Kolmogorov form, the
friction factor should also deviate from the Blasius law. This
prediction has been confirmed in the analysis of two dimen-
sional flows �11�. In this note, we wish to perform a similar
analysis for three dimensional pipe flow in the presence of
drag reducing polymer additives.

It is well known that adding a few parts per million of
certain polymer additives to a fluid causes a drastic reduction
in the friction factor �15–26�. Use of this effect in improving
the efficiency of oil pipelines is widespread. There are indi-
cations that the phenomenon is not confined to pipe flow but
that the presence of the additives affect turbulence even in
the homogeneous and isotropic limit �27�.

In this paper we will show that, given a turbulent spec-
trum for the pure solvent consistent with both the Blasius
law f =0.31 /Re1/4 and the Poiseuille law f =64 /Re, then
there is a deformation of this spectrum that reproduces the
phenomenology of drag reduction, both in the asymptotic
universal limits and with respect to the concentration depen-
dence.

To incorporate the polymer to our model we shall adopt
the theoretical framework provided by the so-called finitely
extensive nonlinear elastic model supplemented by the Peter-
lin approximation �FENE-P model� �28,29�. To obtain the
turbulent spectrum under homogeneous isotropic conditions,
we shall map the nonlinear equations of the FENE-P model
into an equivalent stochastic linear system, constructed to
produce the right turbulent spectrum in the zero polymer
concentration limit. By solving this linear problem, we shall
find the spectrum as modified by finite polymer concentra-
tion, and we shall show that indeed it becomes universal in
the large concentration large Reynolds number limit. More-
over, by adopting the MTM, we will derive a power-law
dependence for the friction factor f �Re−1/2, close to the ex-
perimental result �15�.

This paper is organized as follows: in the next section we
review the MTM of the friction factor in the absence of the
polymer. The original presentation of the MTM made contact
with the Blasius and Strickler �for rough pipes� asymptotic
regimes but did not discuss in any detail the transition from
the Blasius to the Poiseuille regimes �6,14�. To incorporate
the Poiseuille regime within the MTM framework, we ana-
lyze the flow into a central region, where velocity fluctua-
tions play an important role, and an outer region where fluc-
tuations are negligible. We apply the MTM prescription to
find the Reynolds stress at the boundary between these two
regions and then relate it to the stress at the wall by solving
the Navier-Stokes equation in the outer region. We show that
the resulting model gives the Poiseuille law at low Reynolds
numbers. At high Reynolds numbers the flow in the central
region may be described as a Kolmogorov cascade, and in
this case the model yields the Blasius law.

In the following section, we introduce the polymer. We
show in the Appendix that the effect of the polymer in the
outer region is negligible. To find the flow in the central
region, we approximate the Navier-Stokes and FENE-P
equations by a linear system driven by a stochastic force.
The stochastic equation for the fluid is chosen by requiring
that, in the absence of the polymer, it reproduces the spec-
trum of fluctuations as described in refs �6,14�. We then add
the coupling to the polymer stress tensor as dictated by the
FENE-P model. The equation for the polymer deformation*calzetta@df.uba.ar
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tensor is a Hartree approximation to the original FENE-P
equation.

The model leaves several parameters undetermined, the
most important being the relaxation time of the polymer. We
determine this parameter by requiring that at high Reynolds
number the relaxation time for the polymer is proportional to
the revolving time for the eddies that dominate momentum
transfer in the MTM. These are the eddies whose size
matches the width of the outer region. At low Reynolds num-
bers, the relaxation time regresses to its equilibrium value.
Since the model is not sensitive to the details of the
relaxation-time dependence with respect to Reynolds num-
ber, we assume a simple interpolation formula that yields the
proper asymptotic values.

The result of this analysis is a friction factor—Reynolds
number dependence containing five dimensionless param-
eters. We determine these parameters matching to experi-
mental results, namely, the Poiseuille and Blasius laws with-
out the polymer, the Virk asymptote �15� at large polymer
concentrations, and finally the detailed data presented in �17�
for finite concentration. Having obtained a suitable set of
parameters, we display the results in Sec. IV.

We conclude with a few brief remarks. In the Appendix
we discuss the FENE-P model in the outer region.

II. MTM APPLIED TO THE PURE
SOLVENT FRICTION FACTOR

In the absence of the polymer, the dynamics of the solvent
is described by the Navier-Stokes equation �repeated indices
summation convention is used here and later�

� �

�t
− �b�

2�Up + �q�UpUq� + �pP = 0. �3�

We are interested in a stationary flow within a straight pipe
of circular section and radius R. Let z be the coordinate along
the pipe. The flow may be decomposed into mean flow and
fluctuations as Up=U�r�ẑp+up, where ẑp is the unit vector in
the z direction. We call V the average value of U across the
section of the pipe. We define a dimensionless radial coordi-
nate �=r /R.

We are interested in a high Reynolds number regime
where the mean flow is very flat in the central region of the
pipe, from �=0 to �=��=1−��, say, and there is an outer
layer from there up to �=1. The precise form of the velocity
profile in the central region is not a critical concern and we
shall take it as simply flat, with amplitude U�. We adopt the
convention of computing the Reynolds number as if the cen-
tral flow filled the whole pipe; this is only a matter of con-
venience. The central flow is characterized by a Reynolds
number

Re� =
2U�R

�
. �4�

In the outer layer we neglect the fluctuating velocity up.
Then the Navier-Stokes equations reduce to

d

d�

1

�

d

d�
�

dU

d�
= 0. �5�

The solution that vanishes at �=1 reads

U��� = U��a�1 − �2� + b ln���� . �6�

Asking the mean velocity profile to be continuous we get

1 = a�1 − ��2� + b ln���� . �7�

We also have the shear stress at ��, namely,

�turb �
��U�

R
	�, �8�

where

	� = −
1

U�

dU

d�
���� = 2a�� −

b

��
. �9�

We can write the constants a and b in terms of 	� as

a =
1


����
�1 + �� ln����	�� ,

b =
��


����
�2�� − �1 − ��2�	�� ,


���� = 1 − ��2 + 2��2 ln���� . �10�

Our interest is to find the average velocity, which enters in
the Reynolds number Eq. �2�

V = ��2U� + 	
��2

1

dxU�
x� = U�h���� , �11�

h���� =
�1 − ��2�2

2
���� �1 + 	����1 + �1 + ��2�
ln����

�1 − ��2��� ,

�12�

and the stress at the wall

�0 �
��U�

R
	 , �13�

where

	 = −
1

U�

dU

d�
�1� = 2a − b . �14�

If we parametrize �0 as in Eq. �1�, then the friction factor

f =
8�0

�V2 =
64

Re

	U�

4V
. �15�

If ��→0 then a→1, b→0, V→U� /2 and 	→2, so we re-
cover the Poiseuille law.

In the general case, we need to relate U� and 	� to �� to
obtain the friction factor—Reynolds number dependence in
parametric form. These relations are provided by the MTM.
In the central region, each scale � is associated to a velocity
u�� ,U��. The MTM claims that �a� the width �� of the outer
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layer is also the Kolmogorov scale of the central region,
namely, the scale at which the Reynolds number is 1

R��u���,U��
�

= 1. �16�

Note that in the original presentation of the MTM only a
proportionality between �� and the Kolmogorov scale is re-
quired �6�. We have adopted the more restrictive criterion Eq.
�16� to simplify the discussion below.

Let us write

u���,U�� = U�v���� . �17�

Then Eq. �16� may be rewritten as

Re� =
2

��v����
. �18�

�b� The shear stress at the boundary of the central region
is

�turb = �U�u���,U�� . �19�

As in case �a�, we have opted for postulating an equality
where the original MTM only asks for proportionality �6�.
Therefore

	� =
1

��
�20�

and the constants read as

a =
1


�����1 +
��

��
ln����� ,

b =
− ��


����
�1 − ��� �21�

leading to

	 =
1

�����1 −
��3�1 + ���


���� � �
	0����

��
. �22�

We may now write the friction factor—Reynolds number
dependence in parametric form

Re = ����� ,

f = ����� , �23�

where

����� =
2h����
��v����

,

����� =
8	0����
h����2 v���� . �24�

In this formulas we already have explicit expressions for
h���� �cf. Eq. �12�� and 	0���� �cf. Eq. �22��, but we need a
detailed model of the velocity fluctuations in the central re-
gion to derive v����. This shall be our concern in the rest of
the paper.

We have already remarked, however, that if ��→1 then
the parametric Eq. �23� reproduce the Poiseuille law, and it
can be seen by inspection that a Kolmogorov scaling v����

��1/3 when ��→0 will produce the Blasius law, if appro-
priate values for the several constants in the theory may be
found. Therefore we may be confident that our model suc-
cessfully reproduces the limiting behaviors.

III. SOLVENT: POLYMER INTERACTION

A. FENE-P model

In this section we consider the modifications of the above
picture due to the addition of the polymer. We shall adopt the
so-called FENE-P model. The fluid velocity obeys the in-
compressibility condition �pUp=0 and a modified Navier-
Stokes equation

� �

�t
− ��2�Up + �q�Up · Uq� + �pP =

1

�
�q��pTpq� ,

�25�

where P is the pressure, � is the fluid density, �p is the
polymer density and Tpq is a polymer stress. Tpq is modeled
in terms of the polymer deformation tensor �pq as

Tpq = �free
2 h����pq, �26�

where �free is the frequency of free oscillations of the mol-
ecule, �= �1 /3�tr �pq and h is some function that is close to
one under equilibrium conditions �=�eq and diverges as �
approaches maximum elongation �=�max.

The evolution of the deformation tensor is determined by
the drag from the fluid and the polymer elasticity. Neglecting
the inertia of the molecule, we get

� �

�t
+ Ur · �r��pq = ��r · Up��rq + �pr��r · Uq�

− tS�Tpq − Teq
pq� , �27�

where tS is the time scale in which a freely moving bead
from the polymer would come to rest with respect to the
fluid.

B. Flow in the central region

We shall make the approximation that the flow in the
outer region is not affected by the polymer. This issue is
further discussed in the Appendix. Under this approximation,
the analysis in the previous section remains valid, and the
only effect of the polymer is changing the functional form of
u�� ,U�� in Eqs. �16� and �19�. To find this, we only need to
consider the fluctuating part of the velocity. We shall con-
sider only the homogeneous, isotropic case, since the behav-
ior of the fluid in this case determines the friction factor in
the MTM. To take advantage of the symmetries of the prob-
lem, we shall decompose the deformation tensor into its sca-
lar and traceless parts

�pq = ��pq + �pq, �28�

�p
p=0. Moreover, we shall assume that � is both space and

time independent. The stress tensor is decomposed into a
similar way
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Tpq = T�pq + �free
2 h����pq, �29�

where

T = �free
2 h���� . �30�

Taking the trace of Eq. �27� we obtain

3tS�T − Teq� = 2�pq�puq. �31�

Subtracting the trace from Eq. �27� we get

�

�t
�pq = ���p · uq + �q · up� −

1

�
�pq + Spq, �32�

where

1

�
= �free

2 h���tS =
TtS

�
�33�

and

Spq = ��r · up��rq + �pr��r · uq� −
2

3
�rs��r · us��pq − ur · �r�

pq

�34�

whose ensemble average must be zero from the symmetries
of the problem. We shall neglect Spq in what follows.

C. Equivalent linear stochastic model

It is clear that the full Navier-Stokes is too complex for
analysis, unless numerically �29�. To make progress, we shall
substitute the Navier-Stokes equation by a linear stochastic
one, devised to give the right spectrum in the absence of the
polymer.

Let us begin by Fourier decomposing the fluid velocity

up�x,t� =	 dk

�2��3

d�

�2��
ei�k·x−�t�uk

p��� . �35�

We postulate for the Fourier components a dynamic equation

�− i� + �k�uk
p = Fk

p��� �36�

where Fk
p is a Gaussian random source with self correlation


Fk
p���Fk�

q ����� = �2��6��k + k����� + ���
k
pqNk, �37�


k
pq = �pq −

kp · kq

k2 . �38�

A representation like this may be derived from the functional
approach to turbulence, where the left-hand side of Eq. �36�
is identified as the inverse retarded propagator, and the self-
correlation Eq. �37� is given by a self-energy �21,30�. We
shall be content to propose simple expressions for �k and Nk
to reproduce the known turbulent spectrum.

In the inertial range, we expect �k and Nk to depend on
the only dimensionful parameter �, which is the energy flux
feeding the Richardson cascade. On dimensional grounds
�31�

�k = �0�k2��1/3, �39�

where �0 is a dimensionless constant to be determined pres-
ently. The turbulent spectrum E0�k� �where the 0 subscript
denotes that this is the spectrum in the absence of the poly-
mer� is defined from the mode decomposition of the turbu-
lent energy


u2�x,t�� = 2	
0

�

dkE0�k� . �40�

Explicitly

E0�k� = k2Nk

�k
, �41�

so we recover the Kolmogorov spectrum E0�k�=CK�2/3k−5/3,
where CK�1.5 is the so-called Kolmogorov constant �21�,
provided

Nk = �0CK
�

k3 . �42�

The ansatz Eq. �39� for �k is equivalent to a scale-dependent
viscosity �k=k−2�k=�0�1/3k−4/3. Under Kolmogorov scaling
the velocity associated to a scale �=k−1 is uk

=
3CK��k−1�1/3. We find the Reynolds number of the effec-
tive linear theory as Reeff=uk /k�k=
3CK /�0. Identifying this
with the physical Reynolds number of the central region we
get

�0 =

3CK

Re� . �43�

This simple picture must be modified to account for the dis-
sipative range. In the dissipative range fluctuations are
strongly suppressed

Nk =

3CK

3

Re�

�

k3e−���Rk, �44�

with ��1 /2 a dimensionless number �14�. The strong sup-
pression of fluctuations dispenses with further discussion of
�k in this range; on general grounds we expect it will ap-
proach its bare value �k2, but for simplicity we shall use the
inertial form �39� in the calculations below.

At very long wavelengths the spectrum must turn over
and approach the von Karman spectrum E�k�
k4 �32�. To
obtain this we add one further factor, turning the noise cor-
relation into

Nk =

3CK

3

Re�

�R17/3k8/3

�� + �Rk�2�17/6e−���Rk. �45�

This yields the same spectrum as assumed in Ref. �6�.

D. Solving the effective linear model

Adopting the linear effective model as a suitable descrip-
tion of the eddy dynamics and for a constant polymer density
�p=c�, we get, instead of Eqs. �25� and �27�, the linear sys-
tem
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�− i� + �k�uk
p −

ic

�tS
kq�k

pq = Fk
p��� , �46�

�− i� +
1

�
��k

pq = i��kpuk
q + kquk

p� . �47�

Eliminating �k
pq we obtain a second order equation for uk

p

�we also use the incompressibility constraint kpuk
p =0�

P���uk
p = − �− i� +

1

�
�Fk

p��� , �48�

P��� = �2 + i���k +
1

�
� −

1

�
��k +

c

tS
�k2�

= �� − s+��� − s−� , �49�

where s� are the free frequencies of the system and are given
by

s� =
1

2
�− i��k +

1

�
� �
4c�k2

�tS
− ��k −

1

�
�2� . �50�

We see that there are two different flow regimes. When the
discriminant in Eq. �50� is negative, both eigenfrequencies
are pure imaginary. The imaginary part of both is always
negative, so the flow is always stable. We shall call this the
overdamped regime. This regime prevails in the energy range
�where k→0, and therefore also �k� and in the dissipative
range, where �k is very large.

On the other hand, precisely because �k goes from 0 at
k=0 to a very large value in the dissipative range, there must
be some interval where �k�1 /� and the discriminant is posi-
tive. In this regime the free frequencies have nonzero real
parts, although they still describe damped oscillations. We
shall call this the underdamped regime. As the concentration
c grows, the underdamped range expands and essentially be-
comes identical with the inertial range.

From the solution to Eq. �48� and the noise self-
correlation Eq. �37�, we identify the spectrum in the presence
of the polymer as

E�k� = k2Nk� 1

�2J�k� + J2�k�� , �51�

where

J�k� =	 d�

�

1

P���P�− ��
�52�

and

J2�k� =	 d�

�

�2

P���P�− ��
. �53�

Actually these integrals are related

J2�k� = ��k +
c�k2

tS
� J�k�

�
. �54�

Evaluating the integral

J�k� =
i

s+s−�s+ + s−�
=

�2

�k

1

�1 + �k���1 +
c�k2

tS�k
� �55�

and so the spectrum is

E�k� =
k2Nk

�k

�1 + �k� +
c��k2

tS
�

�1 + �k���1 +
c�k2

tS�k
� . �56�

E. Identifying the free parameters

To give meaning to Eq. �56� we must know the way pa-
rameters such as �, �, and � depend on ��. The determination
of these parameters is the subject of this section.

Let us begin with the expression of u��� ,U�� in terms of
the spectrum �cf. Eq. �40��

u���,U��2 = 2	
�R���−1

�

dkE�k� , �57�

writing x=��Rk this becomes

u���,U��2 = 2CK��2/3�R��2/3	
1

�

dx

�
x4e−x/2

����2 + x2�17/6

�1 + �k� +
c��k2

tS
�

�1 + �k���1 +
c�k2

tS�k
� .

�58�

To obtain �, we observe that energy is fed into the Richard-
son cascade at a scale R��. Therefore we expect

� = � �


3CK
�3U�3

��R
, �59�

with � as a dimensionless parameter to be determined. This
leads to

�k =
�

2

�

R2

x2/3

��2/3��1/3 . �60�

To find �, we expect that at large Reynolds numbers � will be
proportional to the revolving time for eddies of size ��,
namely,

� =
��R��

u���,U��
�

��R2��2

�
, �61�

where �� is a new free parameter. For lower Reynolds num-
bers, we expect � will regress to its equilibrium value
1 /�free

2 tS. To interpolate between these regimes, we assume

1

�
= �free

2 tS�1 +
�0

2

��2� , �62�

where
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�0
2 =

�

��R2�free
2 tS

. �63�

� is related to � through Eq. �33�. If we neglect the ratio
�eq /�max and parametrize

h��� �
1

1 −
�

�max

, �64�

then

� =
�max

1 +
��2

�0
2

. �65�

This leads to

�k� = �
��4/3

��1/3
�0

2

�0
2 + ��2x2/3, �66�

c��k2

tS
=

c

c0

�0
4

��0
2 + ��2�2x2, �67�

c�k2

tS�k
=

1

�

c

c0

��1/3

��4/3
�0

2

��0
2 + ��2�

x4/3, �68�

where

� =
���

2
, �69�

c0 =
�tS

��max
. �70�

From Eqs. �58� and �17� we get

v���� = �
��1/3

��1/3� 2

3
	

1

�

dx
x4e−x/2

����2 + x2�17/6

�1 +
��4/3

��1/3
��0

2

�0
2 + ��2x2/3 +

c

c0

�0
4

��0
2 + ��2�2x2�

�1 +
��4/3

��1/3
��0

2

�0
2 + ��2x2/3��1 +

1

�

c

c0

��1/3

��4/3
�0

2

��0
2 + ��2�

x4/3��
1/2

. �71�

We see that the solution depends on the parameters �, �, �,
c0, and �0. In principle, each of these could be a function of
Reynolds number or other dimensionless combinations, This
would turn the parametric relations �Eq. �23�� into implicit
equations. For simplicity, we shall model them as constants.

Let us check that our model yields the appropriate limit-
ing behavior. To begin with, to obtain Re→0 when ��→1
we need that v���� should diverge in this limit, which indeed
it is a result of Eq. �71�. This does not contradict the fact that
U� remains finite because in this limit the scale R�� is larger
than the scale R�� at which energy is injected into the fluc-
tuations. In this limit, of course, the fluctuations themselves
cannot be regarded as turbulent in any conventional sense,
and our model should be regarded as an extrapolation which
“saves the appearances.”

If c=0 and ��→0 then Eq. �71� predicts v����
��1/3 and
leads to the Blasius law. We see that ��0 is necessary to
obtain the “hump” feature in the friction factor plot �6,14�.

If ��→0 but c is large, then Eq. �71� predicts v����
��

and then the parametric relations become f 
Re−1/2, in rea-
sonable agreement with Virk’s asymptote �15,33–36�. We see
however that even for large concentrations drag reduction
will be very small as long as ����0

IV. RESULTS

In this section, we shall use the previous analysis to ob-
tain concrete estimates of the friction factor. We adopt the

following values for the free parameters: �=0.02, �=40,
�=0.05, 1 /�0

2=5000 ��0=0.014�, and c0=43.6 /0.00035
=124600 weight parts per million �wwpm�.

In Fig. 1 we show the concentration-dependent spectra for
Re=105 and c /c0=0, 0.01, and 1.

We now discuss the solution to the parametric Eq. �23�. In
Fig. 2 we show the friction factor for the pure fluid. The
transition from the Blasius to the Poiseuille regimes is
clearly seen. To obtain a more accurate fit to experimental
data would require the introduction of a more complex spec-
trum and is not relevant to the discussion of drag reduction.

1 Γ 25 ∆��1 Rk

10�6

1

E�k�

FIG. 1. �Color online� The concentration-dependent spectra for
Re=105. The full lines, from the top down, correspond to c /c0=0,
0.01, and 1; the concentration scale c0=124 600 wppm is defined
in the text. The dashed line represents the Kolmogorov spectrum.
We also show the beginning and the end of the inertial range in the
pure fluid limit
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In Fig. 3 we add, to the c /c0=0 line in Fig. 2, the friction
factor dependence for c /c0=0.01 and 1. We also add the Virk
asymptote for comparison.

It is convenient to introduce the Prandtl–von Karman
variables X=ln�Re
f� and Y =1 /
f . In these coordinates the
Poiseuille law becomes Y =eX /64. In the turbulent regime, Y
is described by the Prandtl law Y =0.81X−0.8. While the
Prandtl and Blasius laws, which reads as Y = �0.31�4/7eX/7,
have very different mathematical expression, they give
equivalent results in the range of Reynolds numbers we are
considering.

In Fig. 4 we reproduce Fig. 3 in Prandtl–von Karman
coordinates. We have also added the Virk asymptote Y
=4.12X−19.06 �15,33,34�.

In Fig. 5 we compare the result from our model to the
experimental data presented in Ref. �17�.

A comment is in order about the value of c0 used to draw
these plots. It is clear that the value of c0 we are using cor-
responds to a very high concentration, probably higher than
any used in actual experiments �19�. However, our c0 does
not represent the onset concentration. As shown in Fig. 5 and
will be seen again in the following figures, substantial drag
reduction is seen at a concentration of 10−3c0, and so a high
value for c0 is to be expected. This said, it is clear that the
multiplicity of parameters and the lack of independent deri-
vation and/or determination of at least some of them is a
weakness of our model and an area for further work.

To analyze the dependence of the friction factor on con-
centration, it is convenient to introduce the fractional drag
reduction RF,

RF = 1 −
f

f0
. �72�

RF→0 as c→0 by definition. When c→�, on the other
hand, it reaches a finite asymptotic value RF,max.

We also introduce the intrinsic drag reduction RI,

RI =
RF

c
. �73�

RI goes to zero when c→�, but when c→0 it reaches a
finite value RI,0. Following Virk �15�, we define G
=RI,0c /RF,max and D=RI /RI,0. Then the following empirical
relation holds

D =
1

1 + G
. �74�

103 104 Re
0.01

0.1

f

FIG. 2. �Color online� The friction factor in the absence of the
polymer �full line�. The straight dashed lines represent the Blasius
�short dashes� and Poiseuille laws �long dashes�.

103 104 Re
0.01

0.1

f

FIG. 3. �Color online� The friction factor for nonzero concen-
tration. The full lines, from the top down, correspond to c /c0=0,
0.01, and 1. The dashed lines, from the top down, correspond to the
Blasius, Virk, and Poiseuille laws.

100 1000
X0

10

Y

FIG. 4. �Color online� The friction factor from figure Eq. �3� in
Prandtl–von Karman coordinates. The dashed lines are, from the
bottom up, the Prandtl, Virk, and Poiseuille laws.

1000 10000
X

5

10

Y

FIG. 5. �Color online� The friction factor for small polymer
concentration. The symbols represent the data presented in Fig. 2a
of Ref. �17�. They correspond to measurements of the friction factor
in solutions of a single polymer �N750� in five different concentra-
tions: pure solvent �full circles� and 43.6 �triangles�, 98.6 �squares�,
296 �circles�, and 939 �diamonds� wppm. For the theoretical lines
we have used the parameters �=0.02, �=40, �=0.05, 1 /�0

2=5000
��0=0.014�, and c0=43.6 /0.000 35=124 600 wppm. Therefore the
lines in the plot correspond to c /c0=0.000 35, 0.000 79, 0.0023,
and 0.0075.
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We plot these quantities in Figs. 6–8. The agreement of
this last figure to Eq. �74� is remarkable. This shows that our
model not only predicts there will be a maximum drag as-
ymptote but also reproduces the full concentration depen-
dence.

V. FINAL REMARKS

In this paper we have shown that, given a suitable expres-
sion for the turbulent spectrum in the absence of the polymer,
there is a deformation of it that reproduces both the maxi-
mum drag reduction asymptote and the concentration depen-
dence of the intrinsic drag reduction.

Our treatment is admittedly not a self-contained deriva-
tion of the friction factor; for once, the model allows for a
large number of parameters which are not determined inde-
pendently but simply chosen to fit experimental data regard-
ing the friction factor itself. Granted this, we believe each
step in our argument is well motivated. The discussion of the
polymer, for example, is based in what essentially is a Har-
tree approximation to the FENE-P model, and as such stands
on a well trodden �theoretical� path.

One of the most remarkable features of the drag reduction
phenomenon is the universality of the maximum drag reduc-
tion asymptote. In our model, universality obtains from the
fact that we assume that, when Reynolds numbers are high,
the polymer relaxation � is determined by the eddy revolving
time alone, independently of polymer characteristics �which
do play a role at lower Reynolds number�. This assumption
is inspired in Lumley’s “time” criterion �16�. However the
Lumley criterion refers to the characteristic time �� /�0, and
also the way the polymer characteristic time is defined is
different from ours.

The quantitative fit to the Virk asymptote depends on the
other hand on the assumption that the lifetime of a velocity
fluctuation grows with Reynolds number as in Eq. �39�, with
the dimensionless factor Eq. �43�. This condition follows
from the requirement that both the physical and the equiva-
lent �linear� flows share the same Reynolds number at large
scales. Once it is accepted, it follows that the random driving
must also weaken with Reynolds number, as could be ex-
pected from fluctuation-dissipation considerations �37�.

Overall, we believe the results of this paper are a success
for the MTM, complementing earlier studies of the friction
factor in two-dimensional turbulence �11�. We offer them as
a simple theoretical template for more fundamental ap-
proaches.
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APPENDIX: THE FENE-P MODEL
IN THE OUTER REGION

In this appendix we shall discuss the arguments behind
the contention that the polymer does not affect the flow in
the outer region. We thus neglect the fluctuating velocity and
assume Up=U�r�ẑp, P=−p0z, and �pq=�pq�r�. The left-hand
side of Eq. �27� vanishes and we get six algebraic equations

tS�Tzz − Teq
zz � = 2U��zr, �A1�

where U�=dU /dr,

tSTrz = U��rr, �A2�

tST�z = U���r, �A3�

Trr − Teq
rr = T�� − Teq

�� = T�r = 0. �A4�

Therefore

��r = ��z = 0, �A5�

writing

Teq
pq = �free

2 �eqg
pq, �A6�

where gpq=diag�1,1 ,1 /r2�, we get

10�3 1

c
c0

1

105

c0RI,0

c0RI

FIG. 7. �Color online� The intrinsic drag reduction �multiplied
by c0� for Re=105.

10�3 1 103 G

10�6

1
D

FIG. 8. �Color online� D vs G for Re=105. The full curve is
derived from our model, the dashed curve is the empirical relation-
ship Eq. �74�.

10�3 1

c
c0

10�6

10�3

RF,max

RF

FIG. 6. �Color online� The fractional drag reduction for Re
=105.
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�rr =
�eq

h���
, �A7�

��� =
�eq

r2h���
, �A8�

�rz =
U��eq

tS�free
2 h���2 , �A9�

�zz =
�eq

h���
+

2U�2�eq

tS
2�free

4 h���3 . �A10�

Plus the consistency condition

h���
�

�eq
− 1 =

2U�2

3tS
2�free

4 h���2 . �A11�

In the limit when ���max��eq Eq. �A11� reduces to

h���3 =
2U�2�eq

3tS
2�free

4 �max

. �A12�

Given this form of the deformation tensor, the only nontrivial
Navier-Stokes equations is the z equation, which yields

d

d�

1

�

d

d�
�

dŨ

d�
= 0, �A13�

where

dŨ

d�
=

dU

d�
+

cR

�
Tzr. �A14�

We see that this is the same equation as without the polymer,
only the fluid velocity gradient is “corrected” by a term

cR�free
2 h���
�

�zr =
c

�

�eq

tSh���
dU

d�
=

c

�c0

�eq

�maxh���
dU

d�
.

�A15�

Even if 1 /�=20, in the relevant regime all c /c0, �eq /�max
and 1 /h are very small. So the correction to dU /d� may be
disregarded for all practical purposes.
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