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This paper is focused on the fundamental mechanism�s� of viscoelastic turbulence that leads to polymer-
induced turbulent drag reduction phenomenon. A great challenge in this problem is the computation of vis-
coelastic turbulent flows, since the understanding of polymer physics is restricted to mechanical models. An
effective state-of-the-art numerical method to solve the governing equation for polymers modeled as nonlinear
springs, without using any artificial assumptions as usual, was implemented here on a three-dimensional
channel flow geometry. The capability of this algorithm to capture the strong polymer-turbulence dynamical
interactions is depicted on the results, which are much closer qualitatively to experimental observations. This
allowed a more detailed study of the polymer-turbulence interactions, which yields an enhanced picture on a
mechanism resulting from the polymer-turbulence energy transfers.
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I. INTRODUCTION

A few parts per million by weight polymer in a wall-
bounded turbulent flow are enough to reduce the force nec-
essary to drive the flow through a channel by a factor of up
to 70%, as was discovered by Toms �1� while performing
experiments on the degradation of polymers. Turbulence is a
multiscale phenomenon with a vast spectrum of spatial
scales and therefore a very large number of degrees of free-
dom. Due to the fact that even the maximum polymer mol-
ecule end-to-end distance Lp is much less than the Kolmog-
orov viscous scale �, one might anticipate that the small size
polymers can only affect sub-Kolmogorov scale processes
and that scales of length ��� would remain unaffected. Sur-
prisingly, the dynamics of the small polymer chains are able
to fundamentally modify the large-scale structures and statis-
tics, as observed in the drag reduction �DR� phenomenon �2�.

Polymer drag reduction in wall-bounded turbulent flows
induces higher mean velocities, implying deviations from the
classical phenomenology of hydrodynamic wall-bounded
turbulence and hence from the von Kármán law

U+ =
1

�
ln y+ + B , �1�

where “+” denotes normalization with the friction velocity u�

and the viscous length scale ���� /u� , with � being the flu-
id’s kinematic viscosity. Moreover, � in Eq. �1� is the von
Kármán coefficient �3,4�, which is usually considered to be a
constant taking the value of 0.41, and B�5.2 is the intercept
constant. The detailed experimental work by Warholic et al.
�5� distinguished between polymer-induced drag reduced
flows at low drag reduction �LDR� and high drag reduction
�HDR� regimes, based on the statistical trends of the turbu-

lent velocity field. When �DR��40% �LDR regime�, the
mean velocity profile is a logarithmic law parallel to the von
Kármán law �1� with a higher value of B, i.e., larger mean
velocity. However, for 40%	 �DR��60% �HDR regime�,
the slope of the logarithmic region increases until it reaches
the empirical maximum drag reduction �MDR� asymptote

U+ =
1

�v
ln y+ + Bv, �2�

where �v
−1�11.7 and the intercept constant Bv�17. This

universal asymptotic profile was discovered experimentally
in pipe flow by Virk et al. �6,7� and confirmed experimen-
tally in channel flow by Warholic et al. �5�. Overall, the
mean velocity profile is bounded between the von Kármán
law �1� and the MDR law �2�, with the latter being indepen-
dent of the Newtonian solvent, the polymer characteristics,
and the flow geometry.

Polymer-induced drag reduction has been known for more
than 60 years and has attracted attention from both the fun-
damental and applied perspectives. However, no generally
accepted theory has been provided to explain adequately the
phenomenon. Such a theory should provide an explanation of
the drag reduction onset, as well as the MDR law and its
universality, which plays a significant fundamental role in
understanding the phenomenon. Several theoretical concepts
have been proposed but all have been subjected to criticism.
The proposed theories fall mainly into two categories: that of
viscous �8,9� and that of elastic �10–12� effects.

Recent progress in direct numerical simulation �DNS� of
viscoelastic turbulence has begun to elucidate some of the
dynamical interactions between polymers and turbulence,
which are responsible for drag reduction. The aim of this
study is to investigate the polymer dynamics, their influence
on flow quantities, and the phenomenology of drag reduction
in the various regimes through DNS of viscoelastic turbulent
channel flow using the finite extensible nonlinear elastic
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model with the Peterlin linearization �FENE-P� �15�, the
most widely used coarse-grained model in such studies.

The paper is organized as follows. The necessary details
on the DNS of viscoelastic turbulent channel flow are pro-
vided in Sec. II. We analyze various viscoelastic turbulent
statistics in Sec. III for all the drag reduction regimes
achieved in this study with a state-of-the-art numerical ap-
proach, which we have adapted to wall-bounded flows �13�,
aimed at capturing discontinuities in the polymer field. This
approach is described in some detail in Appendix, Sec. 1.
Specifically, the effects of polymer extensibility and Rey-
nolds number are briefly considered, whereas the statistics of
mean velocity, fluctuating velocities, and vorticities are ex-
amined in depth demonstrating that our computations are
qualitatively closer to experimental observations than previ-
ous numerical studies. Section IV presents the conformation
tensor statistics and the scaling of polymer stress tensor com-
ponents at the high-Weissenberg-number limit, which con-
tributes to an asymptotic result of the shear stress balance
�see Sec. V�. Finally, the polymer-turbulence interactions are
studied in Sec. VI through the energy balance. A refined and
extended picture of a conceptual model for drag reduction
based on viscoelastic dissipation is proposed in Sec. VII be-
fore summing up our most important results �see Sec. VIII�.

II. DNS OF VISCOELASTIC TURBULENT
CHANNEL FLOW

The enormous number of degrees of freedom of each coil
means that polymers are an extraordinarily complex system,
whose dynamics depend on the conformations of the poly-
mer molecules, i.e., orientation and degree of stretching of a
coil. The study of detailed motions of this complex system
and their relations to the nonequilibrium properties would be
prohibitive. Only after elimination of the fast relaxation pro-
cesses of local motions in favor of stochastic noise it is pos-
sible to study the dynamics of longer relaxation time scales
�14�, such as the end-to-end conformation, which are respon-
sible for many physical properties of polymers in fluids, such
as viscoelastic turbulence and polymer drag reduction. Thus,
coarse-grained mechanical models, such as bead-rod-spring
models, are very crucial in DNS of viscoelastic turbulence.

The computationally demanding Navier-Stokes equations
in three dimensions makes a Lagrangian approach for the
polymer equally prohibitive and also limits polymer models
to simple representations. A successful model for DNS stud-
ies of turbulent drag reduction is the FENE-P model in the
Eulerian frame of reference, representing a conformation
field of polymer macromolecules that have been modeled as
nonlinear bead-spring dumbbells �15�. The standard ap-
proach to numerically solve the FENE-P model and its slight
variations �16,17� add an artificial diffusion term in the con-
formation field equation to avoid the loss of strict positive
definiteness �SPD� of the conformation tensor and subse-
quently numerical breakdown caused by the hyperbolic na-
ture of the FENE-P model �see Eq. �5��.

Jin and Collins �18� stressed the fact that much finer grid
resolutions are required to fully resolve the polymer field
than the velocity and pressure fields. Indeed, the hyperbolic-

ity of the FENE-P model admits near discontinuities in the
conformation and polymer stress fields �19�. Qualitatively
similar problems occur with shock waves and their full res-
olution in gas dynamic compressible flows, which is not
practical using finer grids. In this case, high-resolution nu-
merical schemes such as slope-limiter and Godunov-type
methods �20� have proved successful at capturing the shock
waves by accurately reproducing the Rankine-Hugoniot con-
ditions across the discontinuity to ensure the correct propa-
gation speed.

Motivated by these schemes, Vaithianathan et al. �21�
adapted the second-order hyperbolic solver by Kurganov and
Tadmor �22�, which guarantees that a positive scalar remains
positive over all space, to satisfy the SPD property of the
conformation tensor and therefore avoid loss of evolution.
Vaithianathan et al. �21� further demonstrated that this
scheme dissipates less elastic energy than methods based on
artificial diffusion, resulting in stronger polymer-turbulence
interactions. Moreover, according to the most recent review
on the subject �2�, there are lots of divergent and misleading
results because of this artificial term introduced in the gov-
erning equations. For these reasons a modification of this
shock-capturing scheme was developed in this present study
to comply with nonperiodic boundary conditions �see Appen-
dix, Sec. 1�.

A. Governing equations

The dimensionless incompressible Navier-Stokes equa-
tions for a viscoelastic fluid take the form

� · u = 0,

�tu + �u · ��u = − �p +



Rec
�u + � · � , �3�

where 
��s /�0 is the ratio of the solvent viscosity �s to the
total zero-shear-rate viscosity of the solution �0, and Rec

�Uc� /� is the Reynolds number based on Uc� 3
2Ub, with

Ub as the bulk velocity of the flow kept constant in time and
the channel’s half-width �. The extra force in Eq. �3� arises
due to polymers, and the polymer stress tensor for the
FENE-P dumbbells is defined by the Kramers expression

� =
1 − 


Rec Wec
�f�tr C�C − I� , �4�

where Wec��pUc /�, with as �p the polymer relaxation time
scale; f�tr C���Lp

2 −3� / �Lp
2 −tr C� is the Peterlin function

�23�; and C��QQ	 is the conformation tensor, which is de-
fined as the dyadic product of the end-to-end vector Q of a
dumbbell that specifies its configuration. The Peterlin func-
tion prevents the dumbbell to reach its maximum extensibil-
ity, i.e., tr C�Lp

2, since as tr C→Lp
2 the force required for

further extension approached infinity. Note that C and Lp
2

are made dimensionless by the equilibrium length scale

kBT /H, where kB is the Boltzmann constant, T is the solu-
tion temperature, and H is the Hookean spring constant, and
they have been normalized such that the equilibrium condi-
tion is Ceq=I. Then, the conformation tensor is governed by
the FENE-P model

DALLAS, VASSILICOS, AND HEWITT PHYSICAL REVIEW E 82, 066303 �2010�

066303-2



�tC + �u · ��C − C · �u − �u� · C = −
1

Wec
�f�tr C�C − I� ,

�5�

where the left-hand side is the material derivative for a tensor
field preserving its Galilean invariance and the right-hand
side represents deviation from the isotropic equilibrium due
to Warner’s finite extensible nonlinear elastic spring-force
law �24�.

The elastic potential energy per unit volume Ep stored by
FENE-P dumbbells can now be specified by taking the inte-
gral of Warner’s spring-force law over the end-to-end vector,
and after some algebra we obtain

Ep =
1

2

�1 − 
�
Rec Wec

�Lp
2 − 3�ln�f�tr C�� + Ep0

, �6�

where Ep0
is a constant reference energy at equilibrium. After

that, taking the time derivative of the elastic potential energy,

�tEp =
1

2

�1 − 
�
Rec Wec

�Lp
2 − 3�

1

f

� f

�Cii

�Cii

�t
=

1

2

�1 − 
�
Rec Wec

f
�Cii

�t
,

�7�

using the trace of Eq. �5�, viz.,

�Cii

�t
= 2Cik�kui −

1

Wec
�f�Ckk�Cii − �ii� , �8�

and similarly for �Ep, we can derive the following balance
equation for the elastic potential energy of FENE-P dumb-
bells:

�tEp + u · �Ep = � · �u −
1

2 Wec
f�tr C�tr � , �9�

where Ep is produced by � ·�u, dissipated by
1

2 Wec
f�tr C�tr �, and transported by u ·�Ep.

B. Numerical parameters and procedures

Incompressible viscoelastic turbulence in a channel was
simulated in a rectangular geometry by numerically solving
the nondimensional Eqs. �3�–�5� in Cartesian coordinates.
After obtaining the new update of the conformation tensor
from the FENE-P model using the method described in
Appendix, Sec. 1, Eqs. �3�–�5� are numerically integrated
with a fractional step method using a second-order Adams-
Bashworth/trapezoidal scheme �see Appendix, Sec. 2�. The
fractional step method projects the velocity field to a
divergence-free velocity field, and the Poisson pressure equa-
tion is solved in Fourier space with a staggered grid for the
pressure field �25�. The staggered grid for the pressure was
used for numerical stability purposes as well as the skew-
symmetric implementation of the nonlinear term in Eqs. �3�.
Spatial derivatives are estimated using sixth-order compact
finite-difference schemes �26�. The grid stretching technique
used in the inhomogeneous wall-normal direction maps an
equally spaced coordinate in the computational space to a
nonequally spaced coordinate in the physical space, in order
to be able to use Fourier transforms �25,27�. Further details

of our numerical method are provided in �13�. Moreover, a
validation of the algorithm just for the Navier-Stokes equa-
tions for turbulent channel flow can be found in �25�, where
this methodology was compared with spectral and second-
order finite-difference schemes showing the necessity of
spectral-like accuracy of the compact high-order schemes
against second-order finite differences in turbulence compu-
tations.

To simulate incompressible channel flow turbulence we
applied periodic boundary conditions for u��u ,v ,w� in the
x and z homogeneous directions and no-slip boundary con-
ditions u=0 at the walls. The mean flow is in the x direction,
i.e., �u	= (�u�y�	 ,0 ,0), where � 	 in this paper denotes aver-
ages in x ,z spatial directions and time. The bulk velocity Ub
in the x direction was kept constant for all computations at
all times by adjusting the mean pressure gradient −d�p	 /dx
at each time step. The choice of Ub in the computations for
the Newtonian fluid is made based on Dean’s formula Re�0
�0.119 Rec

7/8 �28,29� for a required Re�0
�u�0

� /�, where u�0
is the friction velocity for Newtonian fluid flow, i.e., 
=1
�see N cases in Table I�.

The procedure used for the computation of the viscoelas-
tic turbulent channel flows of Table I is the following. First,
DNS of the Newtonian fluid, i.e., 
=1, were performed for
the various Reynolds numbers until they reached a steady
state. Then, the initial conditions for the viscoelastic DNS
were these turbulent Newtonian velocity fields as well as the
stationary analytical solution of the FENE-P model, given a
steady unidirectional shear flow u= (U�y� ,0 ,0), for the Cij
tensor components

C11 =
1

f�Ckk�
�1 +

2 Wec
2

f2�Ckk�
�dU

dy

2� ,

C12 =
Wec

f2�Ckk�
dU

dy
,

C13 = C23 = 0,

C22 = C33 =
1

f�Ckk�
,

f�Ckk� =
2

3
cosh




3
+

1

3
, �10�

with 
=cosh−1� 27
2 �2+1�, �= �
2 Wec /Lp� d

dy U, and
d

dy U=−6�y−1�7 assuming that U�y�=0.75�1− �y−1�8� ∀y
� �0,2� is a close approximation to the averaged velocity
profile of a Newtonian fully developed turbulent channel
flow at moderate Reynolds numbers �30�. Initially, the gov-
erning equations were integrated uncoupled, i.e., 
=1, until
the conformation tensor achieved a stationary state. From
then on the fully coupled system of equations, i.e., 
�1,
was marched far in time, while u and C statistics were moni-
tored for several successive time integrals until a fully devel-
oped steady state is reached, which satisfies the total shear
stress balance across the channel, viz.,

STRONG POLYMER-TURBULENCE INTERACTIONS IN… PHYSICAL REVIEW E 82, 066303 �2010�

066303-3






Rec

d�u	
dy

− �u�v�	 + ��12	 = u�
2�1 −

y

�

 , �11�

where ��12	= 1−

RecWec

�
Lp

2−3

Lp
2−Ckk

C12	 is the mean polymer shear
stress. Finally, after reaching a statistically steady state, sta-
tistics were collected for several decades of through-flow
time scales Lx /Ub. In addition, existing turbulent velocity
and conformation tensor fields were restarted for computa-
tions where Wec or Lp was modified. In these cases, the flow
undergoes a transient time, where again sufficient statistics
were collected after reaching a stationary state.

According to Eqs. �3�–�5�, the four dimensionless groups
that can fully characterize the velocity and the conformation
tensor fields are Wec, Lp, 
, and Rec, and they are tabulated
below. The reasons behind the choice of the particular pa-
rameter values are outlined below. The rationale here follows
the thorough parametric study by Li et al. �31�.

Drag reduction effects are expected to be stronger at high
Weissenberg numbers. In fact, higher levels of percentage
drag reduction at MDR have also been measured for higher
Reynolds numbers �7�, showing the Reynolds number depen-
dence on drag reduction amplitude. Therefore, in this work,
an extensive parametric study has been carried out by mainly
varying Wec for the computationally affordable Rec=4250
to determine the impact of polymer dynamics on the extent
of drag reduction. The Reynolds numbers considered here,
Rec=2750, 4250, and 10 400, are small in comparison to
most experimental studies but fall within the range of most
DNS studies of polymer-induced turbulent drag reduction.
Nevertheless, these Reynolds numbers are sufficiently large
for the flow to be always turbulent and allow us to study the
dynamics of viscoelastic turbulence. Different maximum
dumbbell lengths were also taken into account to check their

effects for the same Wec and Rec. The chosen Lp
2 =b+3 val-

ues are representative of real polymer molecule lengths
which can be related through b�NC / ��sf

2 N�, where NC is the
number of carbon atoms in the backbone of the polymer
macromolecule, �sf is an empirical steric factor, N is the
number of monomers, and b is the finite dumbbell extensi-
bility and is a large number �14�. Note that in the limit
b→�, the Hookean spring-force law is recovered, which
governs a linear spring.

Low 
 values were used in most prior DNSs to achieve
high levels of drag reduction, in view of the attenuation of
the polymer-turbulence interactions due to the additional ar-
tificial diffusion term in the FENE-P model and their mod-
erate Reynolds numbers, usually Re��� /���395. In fact,
values as low as 
=0.4 have been applied, thus amplifying
viscoelastic effects so as to reach the HDR regime �32�.
However, such low 
 values may lead to significant shear
thinning1 �11� unlike in experiments of polymer drag reduc-
tion. The fact that the numerical scheme applied in our study
for the FENE-P model is expected to capture the strong
polymer-turbulence interactions allows the value of 
, which
is inversely proportional to the polymer concentration, to be
high, i.e., 
=0.9, representative of dilute polymer solutions
used in experiments.

The box sizes Lx�Ly �Lz, where subscripts indicate the
three Cartesian coordinates, were chosen with reference to
the systematic study by Li et al. �31� of how the domain size
influences the numerical accuracy. Specifically, they pointed
out that long boxes are required in DNS of polymer drag
reduction, particularly in the streamwise direction because of
longer streamwise correlations at higher percentage DR, as
opposed to the minimal flow unit �33� used in many earlier

1The shear stress increases slower than linear �12�S12.

TABLE I. Parameters for the DNS of viscoelastic turbulent channel flow. The friction Weissenberg number is defined by We�0
��pu�0

2 /�. LDR cases: A, B, D2, I, and J; HDR cases: C, D, D1, E, F, G, and K; MDR case: H.

Case Wec We�0
Lp 
 Rec Re� Lx�Ly �Lz Nx�Ny �Nz

DR
�%�

N1 1 2750 123.8 6.5���2��1.5�� 200�65�100 0

N2 1 4250 181 4.5���2���� 200�97�100 0

N3 1 10400 392.6 2���2��0.5�� 200�193�100 0

A 2 15.4 120 0.9 4250 167.7 4.5���2���� 200�97�100 −14.2

B 4 30.8 120 0.9 4250 147.3 4.5���2���� 200�97�100 −33.8

C 7 54 120 0.9 4250 121.8 4.5���2���� 200�97�100 −54.7

D 9 69.4 120 0.9 4250 118.3 4.5���2���� 200�97�100 −57.3

D1 9 69.4 60 0.9 4250 124.7 4.5���2���� 200�97�100 −52.5

D2 9 69.4 30 0.9 4250 150.3 4.5���2���� 200�97�100 −31

E 11 84.8 120 0.9 4250 113.3 4.5���2���� 200�97�100 −60.8

F 13 100.2 120 0.9 4250 112.4 4.5���2���� 200�97�100 −61.4

G 15 115.6 120 0.9 4250 111.4 4.5���2���� 200�97�100 −62.1

H 17 131 120 0.9 4250 107.8 8���2���� 200�97�100 −64.5

I 2 29.6 120 0.9 10400 323.3 2���2��0.5�� 200�193�100 −32.2

J 4 22.3 120 0.9 2750 106.9 6.5���2��1.5�� 200�65�100 −25.4

K 7 39 120 0.9 2750 91.1 6.5���2��1.5�� 200�65�100 −45.9
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works. Different grid resolutions Nx�Ny �Nz were tested
for convergence. In particular, the following set of resolu-
tions 128�65�64, 200�97�100, and 256�129�128
were tried for Re�0

�180, with the two latter giving identical
mean velocity profiles and not significantly different rms ve-
locity and vorticity profiles. Similarly, grid sensitivity tests
were carried out for the other Re�0

cases. Eventually, the
resolutions for each Newtonian fluid computation were vali-
dated against previously published databases for the corre-
sponding Re�0

cases �34–36�. Note that if the resolutions for
Newtonian turbulent computations are adequately resolving
the flow scales, then the same resolutions are sufficient for
viscoelastic turbulent computations, since the size of vortex
filaments in these flows increases while their number de-
creases as drag reduces �2�.

For a given resolution, viscoelastic computations require
approximately four times more memory and two times more
CPU time per time step compared to the Newtonian case.
The time step �t used in viscoelastic computations is typi-
cally a factor of 5 smaller than that used in the Newtonian
cases due to the stricter Courant-Friedrichs-Lewy �CFL� con-
dition of the present numerical method for the FENE-P
model �see Eq. �A9� in the Appendix and �26� for more de-
tails on the time step constraint using compact schemes�.
Ultimately, the viscoelastic computations require approxi-
mately ten times more CPU resources than the Newtonian
computations for a given computational time period.

III. VISCOELASTIC TURBULENCE STATISTICS

A. Polymer drag reduction

Since the computations are performed with a constant
flow rate by adjusting the pressure gradient, DR is mani-
fested via a decrease in skin friction, i.e., lower Re�=� /��

values as drag reduces. Here, we define percentage drag re-
duction as a negative quantity,

DR �
−

d�p	
dx

−��−
d�p	
dx


�
0

−�d�p	
dx

�
0

� 100% =
u�

2 − u�
2�0

u�
2�0

� 100%

= �� Re�

Re�0

2

− 1� � 100% , �12�

with u�
2=− �

�
d�p	
dx . Variables with and without subscript 0 in

Eq. �12� refer to Newtonian2 and viscoelastic fluid flows,
respectively. Note that for a direct comparison between the
various cases with different skin frictions we choose our
plots to be presented in terms of y /� instead of y /�� because
� is the same for all our computations, whereas �� increases
with drag reduction.

Figure 1 depicts the capability of the current numerical
scheme for the FENE-P model to enable stronger polymer-

turbulence interactions than artificial diffusion methods.
Higher values of percentage drag reduction as a function of
Weissenberg number are obtained comparing with earlier
DNS studies �see Fig. 1�b� in �37�� without the need for low

 values �32�. These DR values extend throughout the drag
reduction regimes. The MDR limit is approached in this case
at �DR��65% because of the moderate Rec in our computa-
tions. Even so, this amount of drag reduction falls within the
MDR regime, based on the classification of drag reduction
by Warholic et al. �5�, allowing us to study the MDR dynam-
ics of the polymer molecules and their effects on the flow in
this asymptotic state.

B. Effects of polymer extensibility and Reynolds number

The effects of maximum dumbbell extensibility is briefly
considered for three different extensibilities Lp=30, 60, and
120 but the same Wec and Rec �see D cases in Table I�.
Figure 1 shows that the extent of drag reduction is amplified
by longer polymer chains consistent with other DNS studies
�31,38�. This effect is related to the fact that the average
actual length of the dumbbells, represented by the trace of
the conformation tensor �Ckk	, increases further for larger Lp
according to Fig. 2�a�, inducing stronger influence of the
polymers on the flow. The percentage increase, however, of
the polymers extension is less for larger FENE-P dumbbells
�see Fig. 2�b��, suggesting that large polymer molecules
could be less susceptible to chain scission degradation,
which causes loss of drag reduction in experiments �2�. The
near-wall turbulence dynamics play an important role for all
three cases, as most of the stretching happens near the wall,
where the highest fluctuating strain rates are expected. Even-
tually, the largest maximum length, i.e., Lp=120, was used
for the rest of the computations considered in this work in
order to explore the polymer dynamics at effective drag re-
ductions, which are interesting not only fundamentally but
also in many real-life applications.

Based on DNS with artificial diffusion methodology,
Housiadas and Beris �39� claimed that the extent of drag
reduction is rather insensitive to Reynolds numbers in the
range 125�Re�0

�590 for LDR flows. On the other hand,
avoiding the use of artificial diffusion in our study, the Rey-

2Any departure from the Newtonian behavior, i.e., �ij �Sij, with
some constant of proportionality independent of the rate of strain,
could be called non-Newtonian.
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FIG. 1. �Color online� Variation of percentage drag reduction
with Weissenberg number.
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nolds number dependence on drag reduction for cases with
identical Wec values but different Reynolds numbers, i.e.,
Rec=2750, 4250, and 10 400, is obvious by comparing DR
of case A with case I and case B with case J �LDR regime�,
as well as case C with case K �HDR regime�, where the
percentage DR increases for higher Rec at all instances �see
Table I�. This Reynolds number dependence is further de-
picted in the polymer dynamics through the profiles of
�Ckk	 /Lp

2, which amplify closer to the wall due to more in-
tense strain rates in this region at higher Rec and collapse
toward the center of the channel �see Fig. 3�. The disparate
behavior of �Ckk	 with respect to y /� due to the Reynolds
number dependence is anticipated by the broader spectra of
flow time scales that are encountered at higher Rec by the
dumbbells with fixed relaxation time scale. The fact that the
current DNS could capture the Reynolds number dependence
on drag reduction and polymer dynamics emphasizes once
more the strong polymer-turbulence interactions that can be
captured by the present numerical approach even at low lev-
els of drag reduction.

It is essential to note at this point that the intermediate
dynamics between the von Kármán and the MDR laws, i.e.,
the LDR and HDR regimes, are nonuniversal because they
depend on polymer concentration, chemical characteristics of
polymers, Reynolds number, etc. �7,9�. Here, this is illus-
trated by the maximum dumbbell length and Reynolds num-

ber dependencies of the polymer dynamics in Figs. 2 and 3,
respectively. However, at the MDR limit, which is achieved
at Wec�1 and Rec�1, the dynamics are known to be uni-
versal �7,9�, i.e., independent of polymer and flow condi-
tions.

C. Mean and fluctuating velocity statistics

The picture of drag reduction can be analyzed in further
detail with the statistics of the turbulent velocity field intro-
duced in Figs. 4 and 5. The distinct differences in the statis-
tical trends of the turbulent velocity field between the LDR
and HDR regimes, which have been observed experimen-
tally, are clearly identified in these results. For clarity, a few
indicative cases from the data of Table I have been chosen
for plotting, representing the LDR, HDR, and MDR regimes
for different Weissenberg numbers at Rec=4250.
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According to Fig. 4 and noting that 
=0.9 for all vis-
coelastic cases, all mean velocity profiles collapse in the vis-
cous sublayer y+�10 to the linear variation U+=
−1y+,
which can be deduced for viscoelastic flows, by rewriting
Eq. �11� in viscous scales,



dU+

dy+
−

�u�v�	
u�

2 +
��12	

u�
2 = 1 −

y+

Re�

, �13�

and neglecting the normalized Reynolds and mean polymer
shear stress in the viscous sublayer y+→0 �see also Sec. V�.

Figure 4 presents the clear impact of percentage DR on the
mean flow with the skin friction decreasing and the mean
velocity increasing away from the wall in comparison to the
Newtonian case N2 as a result of higher Wec values at the
same Rec. The profile of the Newtonian case N2 is in agree-
ment with the von Kármán law �1�, which does not hold for
viscoelastic turbulent flows. Specifically, the curves of cases
A and B �LDR regime� are shifted upward with higher values
of the intercept constant B, i.e., parallel to the profile of the
Newtonian flow �see Fig. 4�, increasing DR. This picture is
consistent with the phenomenological description by Lumley
�8,40�, where the upward shift of the inertial sublayer can be
interpreted as a thickening of the buffer or elastic layer for
viscoelastic flows, which is equivalent to drag reduction.
HDR cases D and G exhibit different statistical behavior than
LDR flows, with the slope of the logarithmic region increas-
ing until the MDR asymptote is reached by case H. Overall,
the same behavior across the extent of drag reduction in vis-
coelastic turbulent flows has been seen in several experimen-
tal and numerical results �2�.

Different statistical trends between low and high drag re-
ductions have also been observed experimentally �5,41� for
the rms streamwise velocity fluctuations normalized with u�.
Figure 5�a� illustrates the growth of the peak in the profile of
u+� for LDR cases A and B at low Wec and a notable decrease
for the rest of the cases at HDR and MDR with high Wec
values. The peaks move monotonically away from the wall
throughout the drag reduction regimes indicating the thick-
ening of the elastic layer, which is compatible with the be-
havior of the mean velocity profile.

Note that our DNS can only attain so distinctly this be-
havior. This is attributed to the accurate shock-capturing nu-
merical scheme we applied for the FENE-P model in this
study. It has to be mentioned however that there have been
three earlier studies �32,37,42�, which use the artificial diffu-
sion algorithms for FENE-P and showed similar but not as
clear trends for u+� in a DNS of viscoelastic turbulent channel
flow. In fact, Min et al. �37� reached the HDR-MDR regime
at roughly �DR��40%, clearly very low to afford the correct
dynamics, and Ptasinski et al. �32� had to use 
=0.4 to ap-
proach HDR-MDR, encountering considerable shear-
thinning effects. It is interesting to mention that other recent
studies �31,43�, using the artificial diffusion methodology,
with more extensive Weissenberg number data and high 

values, have not been able to obtain this transition effect on
the statistics of u+� between the drag reduction regimes.

Finally, the wall-normal, v+�, and spanwise, w+�, rms veloc-
ity fluctuations in Figs. 5�b� and 5�c�, respectively, are con-
tinuously attenuated while DR is enhanced by increasing the
polymer relaxation time scale. Again, the monotonic dis-
placement of their peaks toward the center of the channel as
drag reduction amplifies is consistent with that of the mean
velocity profile and with experimental and other numerical
studies �2�.

D. Fluctuating vorticity statistics

The rms statistics of the fluctuating vorticity field normal-
ized by viscous scales, i.e., �+������ /u�, are presented in
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FIG. 5. �Color online� Rms velocity components for the LDR,
HDR, and MDR regimes. �a� Streamwise u+�, �b� wall-normal
v+�, and �c� spanwise w+� profiles versus y /�. Note: case N2
�DR=0%�; case A �DR=−14.2%�; case B �DR=−33.8%�; case D
�DR=−57.3%�; case G �DR=−62.1%�; case H �DR=−64.5%�.
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Fig. 6 for representative cases from Table I at various levels
of drag reduction. The streamwise vorticity fluctuations �x+

�
demonstrate a persistent attenuation along the normalized
distance y /� as drag reduction enhances due to the increase
in Wec �see Fig. 6�a��. In the near-wall region y /�	0.2 of
Fig. 6�a� there are characteristic local minimum and maxi-
mum that could be interpreted as corresponding to the aver-
age edge and center of the streamwise vortices, respectively
�31,44�. Then, the average size of these large streamwise
vortices is roughly equal to the distance between these two

peaks. The fact that these peaks are displaced away from
each other and at the same time away from the wall, as DR
builds up, implies an increase in the average size of the
streamwise vortices and a thickening of the buffer layer, re-
spectively, in agreement with earlier works �2,31,45,46�. The
attenuation in the intensity of �x+

� provides evidence for a
drag reduction mechanism based on the suppression of the
near-wall counter-rotating steamwise vortices �46,47�, which
underpin considerable amount of the turbulence production
�48�.

The wall-normal rms vorticity is zero at the wall due to
the no-slip boundary condition and reaches its peak within
the buffer layer �see Fig. 6�b��. The intensity of �y+

� is re-
duced for all levels of drag reduction according to Fig. 6�b�,
with the position of the near-wall peaks moving toward the
center of the channel as Wec becomes larger, representing
once more the thickening of the elastic layer in a consistent
way. Most of the inhibition of �y+

� happens near the wall and
slightly toward the center of the channel only for the HDR-
MDR cases G and H, i.e., for �DR��60%.

Figure 6�c� shows a more interesting behavior for �z+
� ,

where the spanwise vorticity fluctuations decrease in the
near-wall region y /��0.2 and increase further away while
drag reduces. This effect may be related to the transitional
behavior of u+� between the LDR and HDR-MDR regimes
�see Fig. 5�a�� plus the continuous drop of v+� �see Fig. 5�b��
in viscoelastic drag reduced flows. As a final note, �z+

�
��x+

� ��y+
� in the viscous sublayer, i.e., y /�	0.05 for all

cases and �z+
� ��x+

� ��y+
� in the inertial and outer layer for

the Newtonian case N2. However, �z+
� ��y+

� ��x+
� away

from the wall when drag reduces for viscoelastic flows,
which manifests the dominance of small-scale anisotropy in
the inertial and outer layer at HDR and MDR.

IV. CONFORMATION AND POLYMER STRESS TENSOR

Before looking at the mean momentum and energy bal-
ance, the study of the conformation tensor field is essential to
get an understanding of the polymer dynamics in support of
the results provided by this numerical method for the
FENE-P model in turbulent channel flow. The symmetries in
the flow geometry determine properties of tensor compo-
nents in the average sense �49�. In the current DNS of tur-
bulent channel flow, statistics are independent of the z direc-
tion, and the flow is also statistically invariant under
reflections of the z coordinate axis. Therefore, for the prob-
ability density function f�Q ;x , t� of a vector Q, these
two conditions imply �f /�z=0 and f�Q1 ,Q2 ,Q3 ;x ,y ,z , t�
= f�Q1 ,Q2 ,−Q3 ;x ,y ,−z , t�. Then, at z=0 reflectional symme-
try suggests that �Q3	=−�Q3	⇒ �Q3	=0 and similarly for
�Q1Q3	= �Q2Q3	=0. So, in this case the mean conformation
tensor reduces to

�Cij	 = ��C11	 �C12	 0

�C12	 �C22	 0

0 0 �C33	
� , �14�

where the nonzero components scaled with Lp are presented
in Figs. 7 and 8 with respect to y /� for cases at various drag
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FIG. 6. �Color online� Rms vorticity profiles for the LDR, HDR,
and MDR regimes. �a� Streamwise wx+

� , �b� wall-normal wy+
� , and �c�

spanwise wz+
� profiles versus y /�. Note: case N2 �DR=0%�; case A

�DR=−14.2%�; case B �DR=−33.8%�; case D �DR=−57.3%�; case
G �DR=−62.1%�; case H �DR=−64.5%�.
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reduction regimes �see Table I�. The zero components in our
study have been found to be zero within the precision accu-
racy. Turbulent channel flow is also statistically symmetric
about the plane y=�. Therefore, this reflectional symmetry
imposes f�Q1 ,Q2 ,Q3 ;x ,y ,z , t�= f�Q1 ,−Q2 ,Q3 ;x ,−y ,z , t�,
which implies that the normal components of �Cij	 are even
functions and �C12	 is an odd function comparable to the
Reynolds stress tensor components.

The normalized trace of the mean conformation tensor
�Ckk	 /Lp

2 is plotted in Fig. 7�a� together with �C11	 /Lp
2. No-

tice that the dominant contribution in the trace comes from
�C11	, i.e., �Ckk	��C11	 at all Weissenberg numbers, reflect-
ing on average a strong preferential orientation of the
stretched dumbbells along the streamwise direction. The fact
that �C11	� �C12	��C33	� �C22	 denotes the strong aniso-
tropic behavior of the mean conformation tensor caused by
the mean shear in turbulent channel flow. This anisotropy
influences the statistics of the fluctuating velocity field par-
ticularly at small scales, as was mentioned in Sec. III D. The
curves of �C11	 /Lp

2 and consequently of �Ckk	 /Lp
2 constantly

rise with most of the stretching happening close to the wall
and growing toward the center of the channel, since higher
values of polymer time scale are influenced from a wider
spectrum of flow time scales. A local minimum and a maxi-
mum emerge in the near-wall region y /�	0.2, induced by
the streamwise vortices �42,50�. These peaks move apart

from each other and away from the wall for higher Wec
values. Figure 7�a� also shows that the amplitudes of these
peaks seem inversely proportional to the peak amplitudes of
�x+

� as drag reduces �see also Fig. 6�a��.
Moreover, as Wec increases the profiles of �C12	 /Lp

2 and
�C33	 /Lp

2 amplify, reaching their peaks at not much different
y /� for each Wec case �see Figs. 7�b� and 8�b��. In particular,
the values of �C12	 /Lp

2 at the wall are dependent on the poly-
mer relaxation time scale unlike for �C33	 /Lp

2. On the other
hand, the values of �C33	 /Lp

2 depend on Weissenberg number
at y=� in contrast to �C12	 /Lp

2, which is zero for all cases
because of the symmetry mentioned earlier. The behavior of
�C22	 /Lp

2 in Fig. 8�a� is more peculiar with respect to Wec,
with the profiles increasing within the LDR regime and at-
tenuating for HDR and MDR cases, in a similar manner to u+�
�see Fig. 5�a��. Its peak values are achieved closer to the core
of the channel in comparison to the rest of the conformation
tensor components. This points out the different flow time
scales that are important for �C22	, exemplifying the complex
dynamics of the polymers, even in this simple mechanical
model.

It is interesting to mention that the components of �Cij	
have different asymptotic rates of convergence toward the
limit Wec→�. It is known that for Wec�1 the upper bound
for the trace is �Ckk	�Lp

2 and subsequently in our case
�C11	�Lp

2 �see Fig. 7�a��, where this upper bound is far from
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FIG. 7. �Color online� Profiles of �a� �Ckk	 /Lp
2 �line symbols�
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FIG. 8. �Color online� Profiles of �a� �C22	 /Lp
2 and �b� �C33	 /Lp

2

as functions of y /� for the LDR, HDR, and MDR regimes.
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being achieved in our computations. This result demonstrates
that highly stretched polymers are not required for the mani-
festation of drag reduction or even of the MDR asymptote, as
de Gennes �51� claimed against Lumley’s �8� assumption of
a coil-stretch transition, i.e., highly stretched polymer mol-
ecules, for the enhancement of intrinsic viscosity. The com-
ponents �C12	 /Lp

2 and �C33	 /Lp
2 seem to have almost reached

their asymptotic limit with the MDR case H according to
Figs. 7�b� and 8�b�, respectively. Finally, �C22	 /Lp

2 has not
yet converged to its limit, decreasing with a slow rate toward
very small values for high Wec. In fact, it has been argued
theoretically that �C22	→0 in the limit of infinite Weissen-
berg number �9,52�.

Polymer stresses are nonlinear with respect to the confor-
mation tensor and their asymptotic scaling with Weissenberg
number is a key element for the understanding of the poly-
mer dynamics at MDR. Hence, following Benzi et al. �53�
consider the FENE-P model integrated over the x ,z spatial
directions and time, assuming statistical stationarity and ho-
mogeneity in x and z,

�u2�x2
Cij	 = �Cik�xk

uj	 + �Cjk�xk
ui	 −

1

Wec
�f�Ckk�Cij − �ij	 .

�15�

Then, taking the Reynolds decomposition of the velocity
field ui= �ui	+ui�, one obtains

1

Wec
�f�Ckk�Cij − �ij	 = �Cik	�xk

�uj	 + �Cjk	�xk
�ui	 + Qij ,

�16�

where Qij = �Cik�xk
uj�	+ �Cjk�xk

ui�	− �u2��x2
Cij	. Therefore, the

average polymer stress tensor defined by Eq. �4� takes the
form

��ij	 =
1 − 


Rec �2�C12	
��u1	
�x2

+ Q11 �C22	
��u1	
�x2

+ Q12 Q13

�C22	
��u1	
�x2

+ Q12 Q22 Q23

Q13 Q23 Q33

� .

�17�

Now, the important assumption at the limit of a local Weis-
senberg number WeS��p

d
dy �u	→� is that Q11 and Q12 can

be neglected, considering the polymers to be stiff, i.e., Cij
→ �Cij	, mostly in the main stretching directions and the cor-
relations between fluctuating conformation tensor and veloc-
ity fields in the other Cartesian directions to remain minimal
at this limit. In this case, as a result

��11	 = A1
1 − 


Rec
2�C12	�x2

�u1	 , �18�

��12	 = A2
1 − 


Rec
�C22	�x2

�u1	 , �19�

where A1 and A2 are expected to be independent of y
and equal to 1 at some intermediate region in the flow as

WeS�1. This hypothesis is checked in Fig. 9 against various
viscoelastic DNSs from Table I.

Figure 9�a� shows clearly that A1 tends to a constant and
reaches 1 in the region 0�y /��0.8 for high WeS values,
justifying that Q11 can be neglected for HDR and MDR
cases. Note that A1 deviates from 1 toward the center of the
channel because WeS becomes small in this region. A2 is
approximately independent of y in some intermediate region
for almost all cases and appears to tend toward 1 as WeS
increases �see Fig. 9�b��. However, the polymer relaxation
time scales used in this study are not sufficiently high for
A2→1. So, for our DNS results the polymer shear stress can
be considered to be ��12	� ��1−
� /Rec��C22	�x2

�u1	 in a
range 0.2�y /��0.7. It is appealing to see that �C22	 is the
component involved in the MDR dynamics, bearing in mind
that �C11	� �C12	��C33	� �C22	. In the end, both Figs. 7�b�
and 9�a� confirm the claims that �C12	 has reached its
asymptotic limit within the Weissenberg numbers considered
at this particular Reynolds number in this study, unlike �C22	
�see Figs. 8�a� and 9�b��.

V. SHEAR STRESS BALANCE

The balance of total shear stress �11� is considered in this
section. The total shear stress in viscoelastic turbulent chan-

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

y/δ

A
1

≡
<f

C
11

−1
>

/(
W

e c
2<

C
12

>
d

<u
>/

d
y)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y/δ

A
2

≡
<f

C
12

>
/(

W
e c<C

22
>d

<u
>/

d
y)

Case A
Case B
Case D
Case G
Case H

(b)

FIG. 9. �Color online� Scalings of the compensated polymer
stress components �a� A1���11	 / � 1−


Rec
2�C12	 d�u	

dy � and �b� A2

���12	 / � 1−

Rec

�C22	 d�u	
dy � with respect to y /�. Note: case A

�DR=−14.2%�; case B �DR=−33.8%�; case D �DR=−57.3%�; case
G �DR=−62.1%�; case H �DR=−64.5%�.
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nel flow contains the shear stress 
�
d

dy �u	 coming from the
mean flow, the Reynolds stress −�u�v�	 rising from turbu-
lence, and the mean polymer shear stress ��12	 due to poly-
mers in the flow, which is also referred to as the Reynolds
stress deficit since �

d
dy �u	− �u�v�	�u�

2�1−y /��. In addition,
the gradient of the Reynolds shear stress rises due to the
nonlinear term in the Navier-Stokes equations, and it is re-
lated to the lift force �Magnus effect� experienced by a vor-
tex line exposed to a velocity u �54�. The Reynolds shear
stress and the rotational form u�� of the nonlinear term in
Eqs. �3� are related through the following equation:
�
�y �u�v�	= �v��z�	− �w��y�	. It is true that tangles of very in-
tense and slender vortex filaments can exist down to very
fine scales creating an energy drain on the mean flow. These
tangles can be seen as one form of intermittency in turbulent
flows �55�. However, it is unclear how the intermittency of
the vorticity field � affects the averages �v��z�	 and �w��y�	
and thereby Reynolds shear stress via the relation �

�y �u�v�	
= �v��z�	− �w��y�	. The viscous stress of the solvent, the Rey-
nolds shear stress, and the mean polymer shear stress nor-
malized with viscous scales are presented in Fig. 10 at dif-
ferent levels of percentage DR for cases with the same Rec
from Table I.

At the wall, the no-slip boundary condition enforces
−�u�v�	 �y=0=0. The wall shear stress is governed by 90%
viscous as well as 10% polymer contribution for all vis-
coelastic cases as opposed to the Newtonian case N2. Vis-
cosity is the dominant parameter in the near-wall region but
becomes more influential in the outer regions as drag reduc-
tion enhances. This is clear from Fig. 10�a� where 
 d

dy+
U+

increases monotonically toward the center of the channel as
Wec increases. Viscoelastic effects become also more signifi-
cant toward the center of the channel for higher Wec cases.
Reynolds shear stress, on the other hand, is constantly deco-
rrelated at higher percentage DR with its peak shifting away
from the wall. It is interesting to see that for the HDR case D
−�u�v�	 and ��12	 are comparable, and as MDR is ap-
proached the polymer shear stress plays an increasingly fun-
damental role in sustaining turbulence due to the vast attenu-
ation of the Reynolds shear stress at these finite-Reynolds-
number computations. This becomes apparent in the next
section by analyzing the turbulent kinetic-energy budget.

Notice that Reynolds shear stress remains finite at MDR
confirming the experimental measurements by Ptasinski et
al. �41� against the complete depletion of −�u�v�	 reported
by Warholic et al. �5� and their subsequent claim that turbu-
lence is sustained entirely by polymer stresses. What can be
said theoretically on this controversy is the following. Con-
sider first the limit of WeS→�, where A2→1 for Eq. �19�
even at finite Reynolds numbers, as Fig. 9�b� suggested.
Then, the total shear stress balance equation �11� can be re-
written using Eq. �19� as

��
 + �1 − 
��C22	�
d�u	
dy

− �u�v�	 � u�
2�1 −

y

�

 , �20�

where �ef f�y����
+ �1−
��C22	� is an effective viscosity
similar to the one encountered in Lumley’s phenomenology
�9,40�. Now, when WeS�1 assume that �C22	 becomes mini-

mal based on theoretical claims by �9,52� and observational
indications in this study. Then, for high enough Reynolds
number along the universal MDR asymptotic line, i.e., taking
first the infinite-Weissenberg-number limit and then the
infinite-Reynolds-number limit, one might expect an inter-
mediate region ���y�� of approximately constant Rey-
nolds shear stress, i.e., −�u�v�	 /u�

2→1, implied by Eq. �20�
when taking the limits of y /�→0 and y /��→� with the
reasonable assumption that �
 d

dy �u	→0 as y���. This state-
ment suggests that the classical way of turbulence production
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FIG. 10. �Color online� Profiles of �a� viscous shear stress,
�b� Reynolds shear stress, and �c� mean polymer shear stress versus
y /� for the LDR, HDR, and MDR regimes. Note: case N2
�DR=0%�; case A �DR=−14.2%�; case B �DR=−33.8%�; case D
�DR=−57.3%�; case G �DR=−62.1%�; case H �DR=−64.5%�.
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does not vanish in the infinite-Weissenberg- and infinite-
Reynolds-number limits.

Ultimately, the conjecture here is that ��12	 becomes neg-
ligible in the stress balance equation �11� when carefully
taking the double Weissenberg and Reynolds number limit in
the right order, so that we are on the universal MDR
asymptotic line. This, however, does not indicate that drag
reduction is depleted; it rather suggests that the MDR asymp-
tote could be entirely determined by the energetics in these
infinite limits. Nevertheless, polymers play a crucial role in
the dynamics at MDR, and this will be explored further in
the next section.

VI. POLYMER-TURBULENCE DYNAMICAL
INTERACTIONS

The balance equation for the turbulent kinetic energy of a
viscoelastic fluid provides further insight into the dynamical
interactions between polymers and turbulence. Assuming sta-
tistical stationarity and homogeneity in x and z directions for
the mean turbulent kinetic-energy balance and integrating
over the y direction, we obtain

� Pdy =� �Ndy +� �Pdy , �21�

with no contribution from the transport terms due to the no-
slip boundary condition, using the divergence theorem. The
turbulence production by Reynolds shear stress is denoted
here by P�−�u�v�	 d

dy �u	, the viscous dissipation rate is �N
�2�
�sijsij	, and the viscoelastic dissipation rate is �P
���ij��xj

ui�	, which arises due to fluctuating polymer stresses.
Note that �P has a dual nature, i.e., it can serve as either
dissipation or production depending on the signs of the poly-
mer stress fluctuations and that of the fluctuating velocity
gradients.

Figure 11 presents each term of Eq. �21� normalized by
�� /u�

3 with respect to We�0
for all cases from Table I at

Rec=4250. An asymptotic behavior to a marginal flow state
can be observed by increasing the polymer relaxation time
scale with a vast attenuation occurring in the total production
and viscous dissipation, while viscoelastic dissipation grows

mildly in the LDR regime and constantly decays within HDR
and MDR. Overall, ��Pdy becomes pivotal in the dynamics
of the flow relative to �Pdy and ��Ndy for HDR and MDR
flows. Most importantly ��Pdy	0 for high We�0

values ac-
cording to Fig. 11, in agreement with experimental measure-
ments �41�, implying that polymers somehow can sustain
turbulence by producing turbulent kinetic energy. Notice that
in this plot both dissipations are presented as positive quan-
tities, and this was done on purpose to emphasize the inter-
play between production and viscous dissipation from LDR
to HDR. It is noteworthy that �Pdy���Ndy for LDR cases
A and B but �Pdy	��Ndy for HDR cases and gets even
smaller as drag reduction approaches its maximum limit.
This observation hints that polymer dynamics get somehow
involved in the production of turbulent kinetic energy, so that
turbulence does not die out at HDR and MDR.

Let us now look in more detail at the profiles of P, �N,
and �P scaled by �� /u�

3 with respect to normalized distance
from the wall y /� for representative cases at various levels of
drag reduction from Table I �see Fig. 12�. Dissipation repre-
sents drain of energy; hence, �N and �P have been plotted
here as negative quantities.

The production of turbulent energy by Reynolds stresses,
which is continuously reduced over the extent of drag reduc-
tion as a function of Wec, serves to exchange kinetic energy
between the mean flow and the turbulence. The local peak of
P is reached within the buffer layer, and in fact for Newton-
ian flows we can easily show that the maximum production
occurs where −�u�v�	=�

d
dy �u	 and Pmax�� /u�

3	
1
4 �49�. The

peak turbulence production within the LDR regime also oc-
curs at the intersection point of viscous and Reynolds shear
stress �compare Figs. 10�a� and 10�b� with Fig. 12�a��, which
shifts away from the wall as Wec increases, indicating the
thickening of the elastic layer. However, for HDR and MDR
cases Pmax�� /u�

3 is within 0.1	y /��0.3, where the maxi-
mum Reynolds stress roughly appears, without following the
−�u�v�	=
�

d
dy �u	 intersection point, which does not even ex-

ist for cases G and H �see Figs. 10�a� and 10�b��.
Viscous dissipation exhibits monotonic attenuation as

drag reduces for higher values of Wec with the maximum
dissipation arising at the wall for the Newtonian case N2 and
the LDR cases A and B �see Fig. 12�b��. Although the kinetic
energy is zero at the wall since u� �y=0=0 imposed by the
no-slip boundary conditions, the fluctuating strain rate and
consequently �N is nonzero. At high percentage DR, we sur-
prisingly observe that the highest fluctuating strain rates are
encountered away from the wall providing a completely dif-
ferent picture of the near-wall dissipation dynamics. The lo-
cal kink in the buffer or elastic layer, which arises due to
intense activity in this region, exists at corresponding y /�
with Pmax�� /u�

3 for all cases considered in Fig. 12�b� and
becomes a global minimum for the HDR and MDR cases,
dominating the profiles of viscous dissipation.

The profiles of viscoelastic dissipation obey a character-
istic transitional trend similar to what has been already ob-
served for u+� �see Fig. 5�a�� and �C22	 �see Fig. 8�a�� from
LDR to HDR regime, as Wec increases. In detail, the curves
of LDR cases A and B shift downward increasing viscoelas-
tic dissipation, but those of the HDR-MDR cases move up-
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ward enhancing the positive nature of −�P�� /u�
3. The dual

nature of �P is clearly depicted in Fig. 12�c� with polymers
dissipating and producing turbulent kinetic energy in differ-
ent regions, which depend on the polymer relaxation time
scale at a given Reynolds number. A Reynolds number de-
pendence of these regions is expected owing to the effect of
different flow time scales on dumbbells with a particular re-
laxation time scale. Figure 13 compares cases of identical
Weissenberg numbers and different Reynolds numbers �see
Table I�, illustrating a weaker Rec dependence on viscoelas-
tic dissipation in comparison to the stronger Wec dependence

in Fig. 12�c�, particularly at HDR and MDR. The part of the
total dissipation that occurs in the three regions defined by
the profile of viscoelastic dissipation in Fig. 12�c� can be
estimated based on the profiles in Figs. 12�b� and 12�c�. Ap-
proximately 15–25 % of the total dissipation takes place in
the first region, 25–60 % in the second region, and 20–70 %
in the third region. In other words, the majority of the total
dissipation occurs away from the wall.

Now, considering each component of the correlation ma-
trix �P���ij��xj

ui�	, where summation applies over the indi-
ces i and j, we can observe that components with i=2,3 can
be ignored, with most of the contribution ascribed to i=1
components according to Fig. 14, which is very similar to
Fig. 12�c�. The qualitative features of �P are clearly captured
by ��1j� �xj

u1�	, simplifying the underpining dynamics of vis-
coelastic dissipation. However, to be precise, �P is neither
exactly approximate nor proportional to ��1j� �xj

u1�	. Note that
the positive nature of �P is caused by the correlations
−��11� �x1

u1�	 and −��13� �x3
u1�	 �see Figs. 15�a� and 15�c��. The
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rest of the components are negative for all cases considered
here and decrease monotonically as Wec increases like
−��12� �x2

u1�	 in Fig. 15�b�. The only exception though is
−��32� �x2

u3�	, which also exhibits a dual trend, negligible
however in comparison to the components presented in Fig.
15. Finally, the correlations in Figs. 15�a� and 15�c� are also
responsible for the transitional behavior of viscoelastic dis-
sipation profiles from LDR to HDR discussed earlier.

The current picture of the dual nature of �P was first pre-
dicted by Min et al. �56� at low Weissenberg numbers, add-
ing an artificial diffusion term to numerically solve the
FENE-P model. However, our DNSs capture so clearly these

regions throughout the drag reduction regimes, predicting the
appropriate dynamics at corresponding Wec values. Once
more, this is attributed to our numerical approach applied
here for the FENE-P model that is able to capture stronger
polymer-turbulence interactions than algorithms based on ar-
tificial diffusion. There are even results using the artificial
diffusion methodologies that erroneously predict polymers
never feeding energy back to the flow �9,32�. Hence, in view
of the current distinctly transparent observations a concep-
tual model for the mechanism of drag reduction is deduced
in the next section.

VII. DRAG REDUCTION MECHANISM

The recent review on polymer drag reduction by White
and Mungal �2� reports that the numerical evidence is some-
what conflicting regarding the flow regions where polymers
extend and contract. In this study, these regions can be iden-
tified by applying the Reynolds decompositions ui= �ui	+ui�
and �ij = ��ij	+�ij� to Eq. �9�, following the spirit of �32,56�.
Then, we can notice that ��ij��xj

ui�	 appears as a production
term due to turbulence for the mean polymer elastic energy.
Now, from the definition of polymer elastic energy �6�, it is
evident that �Ep	� ln�f�Ckk�	. So, the FENE-P dumbbells are
stretched when −�P�� /u�

3	0 in Fig. 12�c� and then elastic
energy is stored on polymers, absorbing turbulent kinetic en-
ergy from the flow. Hence, a mechanism of drag reduction
can be proposed based on the polymers stretching or in other
words the behavior of viscoelastic dissipation as a function
of the distance y from the wall.

According to Figs. 12�c� and 13 there are three main re-
gions in the profiles of viscoelastic dissipation:

− �P��/u�
3�	0, 0 � y/� 	 �1�Wec,Rec�

�0, �1�Wec,Rec� � y/� � �2�Wec,Rec�
	0, �2�Wec,Rec� 	 y/� � 1.

�
�22�

The first region is at the proximity of the wall, where poly-
mers unravel because of the high mean shear, consistent with
other studies �42,56–58�, storing elastic potential energy. The
range of this region has a weak dependence on Weissenberg
and Reynolds numbers, with its upper bound being within
the viscous sublayer �1�Wec ,Rec��0.05 for all Wec and Rec
cases considered.

The second region is the most interesting since polymers
release energy back to the flow, contracting toward their
equilibrium length, as they are convected away from the wall
by the near-wall vortical motions. The manifestation of tur-
bulence production by polymers can be interpreted in terms
of the correlation of the polymers with the local fluctuating
strain rates and their persistence in this region. In particular,
−��ij��xj

ui�	 reveals that −��11� �xu�	 as well as −��13� �zu�	 are
responsible for the contraction of the dumbbells and conse-
quently for the release of the stored elastic energy, since they
are positively correlated in this region away from the wall
�see Figs. 15�a� and 15�c��. This region exists in an interme-
diate y /� range, whose upper bound �2�Wec ,Rec� is strongly
dependent on Wec and less on Rec values. As drag reduction
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FIG. 15. �Color online� Profiles of viscoelastic dissipation com-
ponents for the LDR, HDR, and MDR regimes. �a�
−��11� �xu�	�� /u�
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amplifies for larger polymer relaxation time scales this posi-
tive region expands to a wider y /� range, which dominates
the nature of −�P�� /u�

3 at MDR �see Fig. 12�c��.
Finally, polymers transported away from the wall get also

negatively correlated with the persistent fluctuating strain
rates �see Fig. 15�b�� and are extended in the region
�2�Wec ,Rec�	y /��1, which is a sink for turbulent kinetic
energy, prevailing the LDR flows. However, this region is
diminished for HDR and MDR flows �see Fig. 12�c�� due to
the interplay between the productive and dissipative inherent
features of �P, which mainly depend on the polymer relax-
ation time scale and the existence of intense velocity fluctua-
tions that are able to stretch the polymer molecules.

The phenomenology of the proposed mechanism shares
many similarities with various conceptual models of earlier
works �2�. In this study, the basic idea is that the transport of
the elastic potential energy, stored by polymers near the wall,
is mainly associated with the polymer relaxation time scale.
The latter determines the distribution of energy away from
the wall, and as a consequence the near-wall turbulence dy-
namics weaken. Up to this point, the mechanism agrees with
the interpretation of Min et al. �56�, which is essentially
confirmed by the present illustrative computations. However,
here, this mechanism is valid for higher Wec values and lev-
els of percentage DR in contrast to Min et al. �37�, who
claimed that it is not valid for HDR and MDR flows basing
their arguments on their debatable numerical results �see also
Sec. III C�.

In addition, the refinement of the proposed conceptual
mechanism resides on the reduction of �P to ��1j� �xj

u1�	 and
even more on the correlations ��11� �xu�	 and ��13� �zu�	, which
are responsible for the turbulence production by polymer
coils. The existence of a third dissipative region away from
the wall is also emphasized in this mechanism, where poly-
mers, after their contraction, are now stretched by the intense
fluctuating velocity field. This outer region dominates the
viscoelastic dissipative dynamics of the LDR regime and di-
minishes asymptotically as Wec increases, but it never disap-
pears. Ultimately, this picture along with the anisotropy in-
troduced into the components of turbulent kinetic energy,
i.e., E= 1

2 �u�2+v�2+w�2�, comprises the drag reduction
mechanism deduced in this study.

VIII. CONCLUSION

This paper is devoted to the polymer dynamics in vis-
coelastic turbulent channel flow and their effects on the flow,
reproducing turbulent drag reduction by DNS using a state-
of-the-art numerical scheme in wall-bounded flows to solve
the FENE-P model. The potential of this methodology to
capture the strong polymer- turbulence dynamical interac-
tions allowed 
 values to remain high, more representative
of dilute polymer solutions used in experiments. Even then,
higher percentage DR values are obtained for a given Wec
than previous numerical studies.

The effects of Lp and Rec on the results support the claims
for nonuniversality of the dynamics for intermediate levels
of DR between the von Kármán and the MDR laws. The
universal MDR asymptote, on the other hand, is reached in

this study under the combination of high polymer extensibil-
ity Lp with high enough elasticity given by large values of
Wec at a given moderate Rec.

The experimentally observed distinct differences in the
statistical trends of the turbulent velocity field, particularly
for u+� �see Fig. 5�a��, are clearly identified with the current
numerical approach in comparison with other simulations,
most of which do not even approach such a characteristic
trend. Overall, the peaks of the statistical profiles of velocity
and vorticity fluctuations shift away from the wall as DR
increases, in agreement with other experimental and numeri-
cal studies, indicating the thickening of the buffer layer. At
the same time, �
 d

dy �u	 increases toward the center of the
channel for higher Wec, denoting the importance of viscosity
away from the wall at these moderate-Reynolds-number
DNSs.

Lumley’s phenomenology �8� on the manifestation of
drag reduction is based on the conjecture of coil-stretch tran-
sition, i.e., exponential full uncoiling of polymer molecules,
for the buildup of intrinsic viscosity. However, our numerical
results illustrate that the onset of drag reduction and even the
MDR asymptotic state can be reached while �Ckk	�Lp

2 with
Lp large enough, in agreement with the initial claim by Tabor
and de Gennes �10� that even high space-time strain rate
fluctuations near the wall can only partially stretch polymer
coils. We also showed that the percentage polymer extension
is less, but the actual extension is more for larger Lp, ampli-
fying DR. Thus, large polymer coils that do not reach their
critical full extensibility should be of interest to experimental
investigations on scission degradation of polymer chains and
drag reduction effectiveness. Such macromolecules would be
less vulnerable to rupture, avoiding the loss of the drag re-
duction effect. Besides, they should be able to stretch sub-
stantially to make a stronger impact on turbulent activity and
consequently enhance percentage drag reduction.

The analysis of the conformation tensor field provides
great insight into the polymer dynamics and their influence
on the flow. The dominant anisotropic behavior of the mean
conformation tensor, i.e., �C11	� �C12	��C33	� �C22	, due
to the mean shear in viscoelastic turbulent channel flow, in-
fluences the anisotropy of the fluctuating flow field. The an-
isotropy in the HDR and MDR regimes is depicted at the
small scales of our DNS outside the buffer layer and toward
the center of the channel by �z+

� ��y+
� ��x+

� .
Different asymptotic rates of convergence are observed

for the conformation tensor components toward the limit of
infinite Weissenberg number, demonstrating the complex
polymer dynamics even in this simplified dumbbell model.
In the limit WeS→� polymers are considered stiff, i.e., Cij
→ �Cij	, mostly in the main directions of elongation, and the
correlations of the fluctuating conformation tensor and veloc-
ity fields in the other directions are assumed to remain mini-
mal at this limit. Therefore, ��11	=A1

1−

Rec

2�C12	
d

dy �u	 and
��12	=A2

1−

Rec

�C22	
d

dy �u	, with A1→1 and A2→1 in a region
somewhere between the wall and the center of the channel in
that limit. Our numerical results show that A1→1 in such a
region but not A2. A2 on the other hand is about constant in
the range 0.2�y /��0.7 and shows a tendency toward 1 as
WeS increases.
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The following theoretical view was stated in this paper
with regard to the controversy over the existence or not of
Reynolds shear stress at the MDR limit, which is of funda-
mental importance to the dynamics of turbulence production
at this limit. It is conjectured that at the MDR limit ��12	 is
negligible. This was based on the idea mentioned above
about the stiffness of polymers at WeS→� plus the assump-
tion that �C22	 becomes negligible at the same limit. Then, it
is supposed that this behavior is also valid under both the
infinite-Weissenberg- and infinite-Reynolds-number limits
by taking carefully these limits, so that we go along the
universal MDR asymptotic line. Hence, one might expect an
intermediate region ���y�� of approximately constant
Reynolds shear stress, i.e., −�u�v�	 /u�

2→1, implied by the
balance of shear stresses when taking the limits of y /�→0
and y /��→� with the reasonable assumption that �
 d

dy �u	
→0 for y���. In summary, the classical turbulence genera-
tion by −�u�v�	 seems to survive at the MDR limit, based on
the above assumptions.

Polymer-turbulence dynamical interactions were ex-
pressed through viscoelastic dissipation �P���ij��xj

ui�	,
which can either dissipate or produce turbulent kinetic en-
ergy. For HDR and MDR flows, ��Pdy becomes vital in the
flow dynamics in proportion to �Pdy and ��Ndy due to the
vast inhibition of Reynolds shear stress and fluctuating strain
rates, respectively. In particular, a different view of the near-
wall dissipation dynamics is shown for HDR-MDR flows,
with the maximum dissipation arising away from the wall. It
is intriguing to note that �P follows a transitional pattern
from LDR to HDR regime �see Fig. 12�c�� similar to u+� �see
Fig. 5�a�� and �C22	 �see Fig. 8�a��. This characteristic behav-
ior is also reproduced on average in ��Pdy, where its dissi-
pative feature enhances in the LDR regime but attenuates for
HDR-MDR flows, with the productive nature dominating for
high percentage drag reduction. Thus, polymers get some-
how involved in the production dynamics of turbulent kinetic
energy.

In view of the current viscoelastic DNS the following
conceptual picture of drag reduction is deduced, which is an
extension to and refinement of the mechanism proposed by
Min et al. �56�. Polymers in the near-wall region extract
energy from the flow due to the uncoiling caused by the
mean shear and release some portion of this stored elastic
energy back to the flow by contracting as they move away
from the wall. This transport of energy depends on Weissen-
berg number which determines the distribution of energy
away from the wall. Ultimately, this process undermines the
dynamics of near-wall turbulence. Note that polymers also
unravel due to velocity fluctuations, as they move toward the
core region of the flow, extracting again energy from the
flow. This mechanism appears to be valid for all drag reduc-
tion regimes with the dissipative and productive elements of
viscoelastic dissipation competing in different parts of the
flow for different levels of DR. We also observe that corre-
lation ��1j� �xj

u1�	 is able to resemble the dynamics of �P and
specifically that ��11� �xu�	 and ��13� �zu�	 are the correlations
responsible for the production of turbulent kinetic energy by
polymers.

So far, in the limited context of the FENE-P model and at
moderate-Reynolds-number DNS, the proposed phenom-

enology agrees with the majority of experimental and nu-
merical data, where dampening of near-wall turbulence has
long been speculated with various analyses and interpreta-
tions. Here, however, the transfer of energy from the flow to
the polymers, its redistribution by the latter in the flow field,
and the prevalence of anisotropy over the components of E
� 1

2 ��u��2	 in the three Cartesian directions are suggested as
possible causes of drag reduction.
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APPENDIX: COMPUTATIONAL METHOD

1. Numerical method for the FENE-P model

The numerical scheme adapted here for nonperiodic
boundary conditions was initially developed by
Vaithianathan et al. �21� for periodic domains. The main idea
behind the high-resolution central schemes employed here is
the use of higher-order reconstructions, which enable the de-
crease in numerical dissipation so as to achieve higher reso-
lution of shocks. In essence, they employ more precise infor-
mation of the local propagation speeds. A key advantage of
central schemes is that one avoids the intricate and time-
consuming characteristic decompositions based on approxi-
mate Riemann solvers �20�. This is because these particular
schemes realize the approximate solution in terms of its cell
averages integrated over the Riemann fan �see Fig. 16�.

Considering the discretization of the convection term of
the FENE-P model only in the x direction, using the recon-
struction illustrated in Fig. 16, the following second-order
discretization is obtained:

�Ci,j,k
n

�x
=

1

�x
�Hi+1/2,j,k

n − Hi−1/2,j,k
n � , �A1�

where

i+1/2,j,kC
+
i+1/2,j,kC

H i+1/2,j,k

−

FIG. 16. Central differencing approach—staggered integration
over a local Riemann fan denoted by the dashed-double dotted
lines.
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Hi+1/2,j,k
n = 1

2ui+1/2,j,k�Ci+1/2,j,k
+ + Ci+1/2,j,k

− �

− 1
2 �ui+1/2,j,k��Ci+1/2,j,k

+ − Ci+1/2,j,k
− � , �A2�

with

Ci+1/2,j,k
� = Ci+1/2�1/2,j,k

n �
�x

2
� �C

�x
�

i+1/2�1/2,j,k

n

, �A3�

� �C

�x
�

i,j,k

n

=�
1

�x
�Ci+1,j,k

n − Ci,j,k
n �

1

�x
�Ci,j,k

n − Ci−1,j,k
n �

1

2�x
�Ci+1,j,k

n − Ci−1,j,k
n � .

� �A4�

Similarly, Eqs. �A2�–�A4� can be rewritten for Hi−1/2,j,k
n . The

appropriate choice of the derivative discretization in Eq.
�A4� limits the slope, so that the SPD property for C is sat-
isfied. The SPD criterion for this choice is that all the eigen-
values of the conformation tensor should be positive, viz.,
�i�0, and subsequently all its invariants should be positive
for at least one of the discretizations. Note that just det�C�
�0 is not sufficient to guarantee the SPD property for the
tensor �59�. In case none of the options in Eq. �A4� satisfy
the criterion, then the derivative is set to zero reducing the
scheme to first order locally in space. The proof for C being
SPD using this numerical scheme can be found in �21�. The
eigenvalues of the conformation tensor in this implementa-
tion are computed using Cardano’s analytical solution �60�
for the cubic characteristic polynomial avoiding any compli-
cated and time- consuming linear algebra matrix decomposi-
tions and inversions for just a 3�3 matrix. Ultimately, the
advantage of this slope-limiter-based method is that it adjusts
in the vicinity of discontinuities, so that the bounds on the
eigenvalues cannot be violated, eliminating the instabilities
that can arise in these types of calculations, without introduc-
ing a global stress diffusivity.

The complicated nature of the slope-limiting procedure
raises difficulties in the case of wall boundaries for a channel
flow computation, leading to loss of symmetry in the results.
This had not been encountered by Vaithianathan et al. �61�
since they only considered periodic boundary conditions. So,
the implementation of the numerical method near the walls
of the channel was modified for this study considering ghost
nodes beyond the wall boundaries to keep the original for-
mulation unaltered, preserving in that way the second-order
accuracy at the boundaries. The values at the ghost nodes
were linearly extrapolated from the interior solution �20�,
i.e.,

Ci,j+1,k
n = Ci,j,k

n + �Ci,j,k
n − Ci,j−1,k

n � = 2Ci,j,k
n − Ci,j−1,k

n .

�A5�

The time advancement is done simply using the forward
Euler update, treating implicitly the third and the fourth
terms on the left-hand side and the right-hand side of Eq. �5�
due to the potential finite extensibility of the polymer. Hence,
the fully discretized form of the FENE-P model is

Ci,j,k
n+1 = Ci,j,k

n −
�t

�x
�Hi+1/2,j,k

n − Hi−1/2,j,k
n �

−
�t

�yj
�Hi,j+1/2,k

n − Hi,j−1/2,k
n � −

�t

�z
�Hi,j,k+1/2

n − Hi,j,k−1/2
n �

+ �t�Ci,j,k
n+1 � ui,j,k

n + �ui,j,k
n�

Ci,j,k
n+1�

− �t� 1

Wec
f�Ci,j,k

n+1�Ci,j,k
n+1 − I
 , �A6�

with

Ci,j,k
n = 1

6 �Ci+1/2,j,k
− + Ci−1/2,j,k

+ + Ci,j+1/2,k
−

+ Ci,j−1/2,k
+ + Ci,j,k+1/2

− + Ci,j,k−1/2
+ � , �A7�

so that the convection term and the explicit term coming
from the time derivative can be assembled in a convex sum,

C� = Ci,j,k
n +

�Ci,j,k
n

�x
= �

l=1

N

slCl, �A8�

where all coefficients sl�0 satisfy �l=1
N sl=1, with C� being

SPD if the matrices Cl are SPD, ensuring the finite extensi-
bility of the dumbbell, i.e., the trace of the conformation
tensor is bounded tr C=�1+�2+�3�LP

2 �21�. The following
CFL condition needs to be satisfied for the coefficients sl to
be non-negative:

CFL = max� �u�
�x

,
�v�

�ymin
,
�w�
�z
��t 	

1

6
, �A9�

and it also determines the time step �t. Note that this CFL
condition is stricter than the one for compact finite differ-
ences �26� used for Newtonian turbulence computations.

The numerical solution of Eq. �A6� is carried out by first
rewriting it in a Sylvester-Lyapunov form �62�, separating
the implicit and explicit terms, i.e.,

A�X + XA = B ⇒ �I � A� + A�
� I�x = b , �A10�

where A� 1
2 �1+ f�Ci,j,k

n+1���t /Wec��I−�t�ui,j,k
n , X�Ci,j,k

n+1 and
B�C�+ ��t /Wec�I are 3�3 matrices, �I � A�+A� � I� is a
9�9 matrix, and x�vec�X� and b�vec�B� are 9�1 vec-
tors. The formula on the right-hand side of Eq. �A10� can
be reduced from 9�9 to a 6�6 system of equations consid-
ering the symmetry of the conformation tensor. Note that Eq.
�A10� is nonlinear and can now be solved using conventional
methods. In this study, the Newton-Raphson method for non-
linear systems was applied using the lower-upper �LU� trian-
gular decomposition for the inversion of the Jacobian
�60,63�.

2. Time advancement

After obtaining the new update of the conformation tensor
Ci,j,k

n+1, the two-step, i.e., three-time level, second-order
Adams-Bashworth/trapezoidal scheme is used for the time
integration of Eqs. �3� through the following projection
method �64�:

u� − un

�t
=

1

2
�3Fn − Fn−1� +

1

2
�Pn+1

� + Pn� , �A11�
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un+1 − u�

�t
= − �p̃n+1, �A12�

where

F = −
1

2
���u � u� + �u · ��u� +

1

Rec
�u , �A13�

P =
1 − 


Rec Wec
� · � Lp

2 − 3

Lp
2 − tr C

C − I
 , �A14�

with

p̃n+1 =
1

�t
�

tn

tn+1

pdt . �A15�

The incompressibility condition � ·un+1=0 is verified by
solving the Poisson equation

� · �p̃n+1 =
� · u�

�t
, �A16�

which is done in Fourier space �25�. It is well known that
these multistep methods are not self-starting and require a
single-step method to provide the first time level �64,65�. In
this study, explicit Euler was chosen for just the first iteration
of these computations, viz., un=un−1+�tFn−1.
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