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This paper develops an adaptive synchronization strategy to identify both discrete and distributed time
delays in nonlinear dynamical models. In contrast with adaptive techniques for parameter estimation in the
literature, the adaptive strategy developed here for time-delay identification invites more precise results that
have physical and dynamical importance. It is analytically and numerically found that distributed time delays
in a model with an asymptotically stable steady state can be adaptively identified, and which is different from
the case of discrete time-delays identification. Other aspects of the strategy developed here, for time-delay
identification, are illustrated by several representative dynamical models. Aside from illustrations for toy
models and their generated data, the strategy developed is used with experimental data, to identify a time delay,
called transcriptional delay, in a model describing the transcription of messenger RNAs �mRNAs� for Notch
signaling molecules.
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I. INTRODUCTION

Two research directions for nonlinear dynamical systems
or systems biology have been previously suggested �1�: one
involves data-driven research, and the other focuses on
model-driven investigations. These two directions are not
isolated, however, but are connected. For example, in inte-
grated investigations, qualitative consistency is expected be-
tween the real data and the data produced by an a priori
dynamical model with appropriate configurations �2,3�.
Among all the dynamical models, the model, with a set of
time delays, may be much closer to the real system and ca-
pable of describing richer behavior including physical,
chemical and circadian oscillations �4–6�. Given a collection
of real data and an a priori dynamical model with unknown
time delays, several questions then arise. The first question
is: “How to develop a strategy for an accurate identification
of time delays with the data produced by the a priori dy-
namical model that is supposed to be capable of capturing
the real system exactly?” The subsequent questions, once the
developed strategy is theoretically justified, naturally be-
come: “Is the specific strategy suitable also for coping with
real data?” and “Is it robust against a certain amount of per-
turbation to the systems and the parameters?” One may also
be: “Is there any intrinsic difference between parameter esti-
mation and time-delay identification when a specific strategy
is used?”

Attempts to answer the above questions have been made
at both theoretical and experimental levels, and various algo-
rithms and strategies for time-delay identification have been
developed in the literature �7–12�. On the face of it, identi-
fication of time delays could be seen as estimation of a par-
ticular kind of parameter; nevertheless, it is not easy because
�i� the models associated with identification algorithms gen-

erally consist of functional differential equations, and have
the property of being infinite dimensional �13�, and �ii� time
delays have diverse forms, such as the discrete time delays,
distributed time delays, finite or infinite length time delays,
and time-varying delays �13–15�.

As a matter of fact, the majority of existing works treats
time-delay identification as parameter estimation, and con-
sider the discrete time delays only, and rarely take into ac-
count the infinite-dimension property of the models. For in-
stance, some of the existing algorithms are suitable only for
the linear or quasilinear models with discrete time delays
�7,8�. Some of the algorithms require external perturbations
to internal state variables and then need to take account of
finite peaks that emerge in the plots of correlation functions
�9,10�. These algorithms are not appropriate for identifying
either the distributed or time-varying delays since the emerg-
ing infinite peaks, or location-varying peaks, may lead the
counting method to fail. Some of the algorithms cannot be
implemented adaptively and are, in general, computationally
expensive with a complexity O�Ld� �11�, where L stands for
the length of the observed time series and d the number of
discrete steps in the interval that contains a single unknown
time delay. Some of the algorithms still need a proper choice
of coupling gain and consider neither distributed time delays
nor some intrinsic characters and restrictions of time-delay
identification �12�.

In this paper, we identify time delays in nonlinear dy-
namical models by using an adaptive synchronization strat-
egy. This strategy, making a good use of chaos synchroniza-
tion, was initially proposed to estimate parameters in chaotic
dynamical systems �16,17�. Recently, its advantages and
limitations for parameter estimation in any nonlinear dy-
namical systems have been systematically investigated by
virtue of dynamical systems theory �18,19�. However, due to
the property of infinite dimensionality and the diverse forms
of time delays, time-delay identification, through an adaptive
strategy, is intrinsically different from parameter estimations
in systems described by ordinary differential equations or*FAX: 86-21-65646073; wlin@fudan.edu.cn
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even by functional differential equations. Indeed, investiga-
tions presented in this paper generate more significant re-
sults. These indicate several advantages over the existing
theories including: �i� identification of distributed time de-
lays, �ii� online identification of time-varying delays that
have lower fluctuating frequencies, �iii� simultaneous identi-
fication of time delays and parameters within a unified
framework, �iv� differentiation of the specific forms of the
time delays that can be identified adaptively, and �v� robust-
ness against a certain amount of perturbations in coping with
real data.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a model that is supposed to be capable
of describing a real system exactly, and then propose an
adaptive synchronization strategy to identify the time delays
in this model. Also in this section, we validate the proposed
strategy by the theory of functional differential equations.
We include in Appendices containing more technical results
and arguments on the identifiability of a given time-delayed
model. In Sec. III, we intensively test the proposed strategy
by several typical time-delay models, illustrating the theoret-
ical results established in the paper. Still, in this section, we
numerically verify the robustness of the proposed strategy
against perturbations to parameters and system. In Sec. IV,
with experimental data, we identify a time delay, called tran-
scriptional delay, in a model describing the transcription of
mRNAs for Notch signaling molecules. Finally, we end the
paper with discussions and concluding remarks.

II. ADAPTIVE SYNCHRONIZATION STRATEGY
FOR IDENTIFYING TIME DELAYS

Model and Strategy Description. To begin, consider a
general time-delayed model described by the following func-
tional differential equations:

ẋ�t� = F�xt�, t � 0, �1�

with the initial condition x���=���� in which ��C
�C��−�M ,0� ,Rn�. Here, �M �0 is a constant sufficiently
large, C��−�M ,0� ,Rn� represents the family of all continuous
Rn-valued functions on the interval �−�M ,0�, the state
vector x�t�= �x1�t� ,x2�t� , . . . ,xn�t��T�Rn, and the distributed
form of the state vector xt���=x�t+�� for �� �−�M ,0�.
Moreover, each component of the vector field F���
= �F1��� , . . . ,Fn����T is assumed to be in the following ex-
plicit form:

Fi��� = �
j=1

ki

f ij„��− �ij�… + �
j=ki+1

pi �
−�ij

0

f ij„����…d� , �2�

where ki and pi are finite natural numbers with ki� pi, �
�C, each function f ij at least satisfies the local Lipschitz
condition, and each time-delay constant �ij � �0,�M�. Fur-
thermore, to avoid the trivial case of no time delays, it is
assumed that there exists at least one pair of indexes �i0 , j0�
satisfying �i0j0

�0. Let ����=xt���. Then, each component
of the vector field becomes

Fi�xt� = �
j=1

ki

f ij„x�t − �ij�… + �
j=ki+1

pi �
t−�ij

t

f ij„x�s�…ds ,

where the first summation term corresponds to the case of
discrete time delays and the second term to the case of dis-
tributed time delays. Mathematically, the vector field �Eq.
�2�� can be rewritten in a more compact form �see Appendix
A�. Though the above settings cannot cover all time-delayed
systems, numerous well-known dynamical models with time
delays can be expressed in the form of Eq. �2�. Representa-
tive examples include the delayed Logistic model, the
Mackey-Glass model, the artificial neural network model
with discrete and distributed time delays, the predator-prey
model with distributed time delays, the gene transcription
model with discrete time delays, and so on.

Assume that the state vector x�t�=x�t ;�� represents the
data generated by a real system, and that model �1� with
unknown time delays can capture the system exactly. Now,
with the data x�t�, the objective is to design a strategy, in-
cluding a coupling model, dynamical estimators, and time-
variant control gains, for identifying those unknown time
delays automatically. It is expected that once model �1� and
the coupling model approach complete synchronization, the
estimators converge to the true values of the unknown time
delays. For this purpose, the coupling model is designed as

ẏ�t� = F̂�yt� + ��t� � �y�t� − x�t�� , �3�

where the coupling term ��t�� �y�t�−x�t��= ��1�t��y1�t�
−x1�t�� , ¯ ,�n�t��yn�t�−xn�t���T, and the vector field F̂���
= �F̂1��� , . . . , F̂n����T has the same form of F in Eq. �2� ex-
cept that all the constants �ij are replaced with the variables
�ij�t�, that is

F̂i��� = �
j=1

ki

f ij„��− �ij�… + �
j=ki+1

pi �
−�ij

0

f ij„����…d� ,

Here, the estimators of the time delays, �t= ��ijt
�, and the

control gains of the couplings, �t= ��1t
, . . . ,�nt

�T, are de-
signed to obey the following adaptive rules, respectively,

�̇ij�t� = − 	ij�yi�t� − xi�t��
�F̂i

��ij
,

�̇i�t� = − ri�yi�t� − xi�t��2,

i = 1,2, . . . ,n, j = 1,2, . . . ,pi, �4�

where the positive constants 	ij and ri are adjustable in
accordance with the need of computational accuracy. The
initial conditions for coupling model �3� with the adaptive
rules �Eq. �4�� are selected as y���=����, ����=����, and
����=����, in which � ,��C and each row of � satisfies
�i�Cpi

�C��−�M ,0� ,Rpi� for all i.
Convergence validation. In what follows, we theoretically

validate the effectiveness of the proposed strategy for all
bounded trajectories that are generated by coupled models
�1� and �3� with the adaptive rules �Eq. �4��. For a specific
bounded trajectory �xt ,yt ,�t ,�t� with �ijt

� �0,�M�, we have
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the existence of limt→
 ��t� because of the monotonicity and
boundedness of each component of the control gain variable
��t�. Thus an integration of this control gain gives

�i�0� − �i�+ 
� = ri�
0

+


�yi�s� − xi�s��2ds � + 
 ,

which implies that the square of the error e�t�=y�t�−x�t� is
integrable. Furthermore, the error satisfies

ė�t� = ẏ�t� − ẋ�t� = F̂�yt� + ��t� � �y�t� − x�t�� − F�xt� .

�5�

Hence, ė�t� is uniformly bounded due to the local Lipschitz
property of the vector field and the boundedness of the tra-
jectory. This uniform boundedness, along with the integrabil-
ity and continuity of e�t�, implies e�t�→0 as t→+
.

Moreover, since coupled models �1� and �3� with the
adaptive rules �Eq. �4�� constitute an autonomous system and
have bounded trajectories as assumed above, the �-limit set,
denoted by

� = ���̄,�̄, �̄, �̄� � C 
 C 
 C 
 Cp	�xts
�,yts

�,�ts
� ,�ts

� �

→ ��̄,�̄, �̄, �̄�, as ts → + 
 and s → 
� ,

is nonempty, invariant, and connected according to the
theory of functional differential equations �see �13� and ref-
erences therein�. Here, �xts

� ,yts
� ,�ts

� ,�ts
� � represents the point

on the orbit of the coupled model starting from the initial
value �� ,� ,� ,��, and the functions space Cp is the Cartesian
product of all Cpi

. Notice that et���
0 in the �-limit set.

Then, restricted to this limit set, the functions �̄ and �̄ be-

come constants, that is, �̄���
 �̄���, �̄���
��, and �̄���

�� for all � and some constants ��, ��. Hence, from Eq. �5�,
it follows that in the �-limit set,

F„xt���… − F̂„xt���… = 0 , �6�

where xt��� is the observable synchronized orbit contained in
the synchronization manifold for all t. In order to determine
whether or not Eq. �6� implies a successful identification of
the time delays, we import the following definition on the
identifiability of a given vector field with time delays.

Definition. For some index i0, the component Fi0
in

the vector field F is said to be identifiable with respect to
�i0j �j=1, . . . , pi0

� in the set M, if the equation
Fi0

�xt ,�i01 , . . . ,�i0pi0
�=Fi0

�xt ,�i01 , . . . ,�i0pi0
� for all t and xt

�M implies �i0j =�i0j for all j=1, . . . , pi0
. Here, the compo-

nent is rewritten as Fi�xt�=Fi�xt ,�i1 , . . . ,�ipi
� for i=1, ¯ ,n,

and M is some subset of C. The vector field F is said to be
identifiable with respect to �ij for all i , j=1, . . . , pi in the set
M, if each component Fi is identifiable with respect to
�ij�j=1, . . . , pi� in the set M.

Now, together with the definition and the above-
performed arguments, we approach a conclusion: “Assume
that coupled models �1� and �3� with the adaptive rules �Eq.
�4�� have bounded trajectories. Also assume that the vector

field is identifiable on the synchronized manifold. Then the
estimators, �ij�t�, can converge to the real values of those
unknown time delays, �ij, respectively.”

We stress that not all vector fields are identifiable with an
adaptive strategy. This point of view has been seldom re-
ported in the literature, to the best of our knowledge. As a
matter of fact, the determination of identifiability is a topic of
theoretical and practical significance, which requires the use
of the infinite-dimension property in the �-limit set. For con-
ciseness, the detailed investigations on the identifiability of
representative vector fields are included in Appendix B.
Some of the results obtained there are summarized as fol-
lows. When a specific model with discrete time delays pos-
sesses stable steady states �also called equilibria�, its vector
field is not definitely identifiable; when this model possesses
stable periodic orbits, its vector field is identifiable in some
generalized sense. More interestingly, when a model with
distributed time delays has either stable steady states or
stable periodic orbits or even chaotic attractors, the vector
field is identifiable under some mild conditions. Specific ex-
amples in the next section further illustrate these results that
are explicitly obtained in Appendix B.

We remark that the argument performed above crucially
depends on the boundedness assumption on the trajectories
of coupled models �1� and �3� with the adaptive rules �Eq.
�4��. Although a verification of this assumption is no easy job
for models with general forms, it can be demonstrated for
some typical models either theoretically �see Appendix C� or
numerically. The examples in the following sections also jus-
tify this prior assumption numerically.

We remark also that the assumption that model �1� is ca-
pable of capturing the real system exactly is a prerequisite in
the above theoretical discussions. In practice, various forms
of perturbations are unavoidable in real systems, so that a
model with mismatched parameters or established through
noise-perturbed data sometimes cannot describe the real sys-
tem exactly. The examples in the following sections illustrate
the robustness of the adaptive strategy proposed here. That
is, under a certain amount of perturbation, the data repro-
duced by the model with the identified time delays is not
completely consistent with the real data but is qualitatively
consistent.

Furthermore, due to the online property, the proposed
adaptive strategy is applicable to identifying the time-
varying delays with lower fluctuating frequencies. This ad-
vantage is also illustrated by specific examples in the next
section.

III. ILLUSTRATIVE EXAMPLES

In this section, several representative time-delayed mod-
els are used as toy models to illustrate the feasibility of the
above-proposed adaptive synchronization strategy for time-
delays identification.

Example 1. Chaotic models with a time-invariant discrete
delay and with a time-varying delay. Consider the Mackey-
Glass model �20� in the form of

ẋ =
ax�t − ��

1 + �x�t − ���b − cx . �7�

The Mackey-Glass model was initially introduced as a model
for regeneration of blood cells and later became a prototypi-
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cal model for producing higher-dimensional chaos. Without
the time delay, this one-dimensional model can never gener-
ate chaos. With the parameters a=2, b=10, c=1, and �=3,
model �7� exhibits chaotic dynamics, as shown in Fig. 1�a�.
In the light of the proposed adaptive strategy, the correspond-
ing coupling model and adaptive rules are designed as

ẏ =
2y�t − ��

1 + �y�t − ���10 − y + ��y − x� ,

�̇ = − 	�y − x���F�y,�� ,

�̇ = − r�y − x�2, �8�

where

��F�y,�� = −
2�1 + �1 – 10��y�t − ���10�

�1 + �y�t − ���10�2 � 2y�t − 2��
1 + �y�t − 2���10

− y�t − �� + ��t − ���y�t − �� − x�t − ���� .

As shown in Fig. 1�a�, a complete synchronization between x
and y is achieved with the parameters r=1 and 	=0.5, and
the estimator ��t� converges to the exact values of �=3.

Furthermore, since time-varying delays are ubiquitous in
real systems, online identification of time delays of this kind
becomes a more challengeable problem. In order to test
whether or not the proposed adaptive strategy is suitable for
identifying the time-varying delays, we set � in model �7�
particularly as ��t�=3+sin�wt�, where w is a parameter de-
termining the fluctuating frequency of the delay. With this
setting, model �7� still produces chaotic trajectories, as nu-
merically shown in Figs. 1�b� and 1�c�. When w=10−3, that
is, ��t� fluctuates slowly, both the complete synchronization
and the identification of the time-varying delays can be
achieved, as shown in Fig. 1�b�. Nonetheless, when w=5

10−3, that is, the fluctuating frequency is much higher, nei-
ther the complete synchronization nor the identification of
time delay is achieved. As shown in Fig. 1�c�, the estimator

��t� never converges to ��t� but oscillates slightly around the
certain value �=3.

These numerical results can be explained as follows. The
dynamics of the coupled models with the adaptive rules,
though being convergent, have different convergence rate for
different set of parameters and initial values. When the fluc-
tuating frequency of ��t� is below the convergence rate of the
whole dynamics, there is an adequate duration for the esti-
mator to trace the time-varying delay, analogous to the case
of the time-invariant delay. Inversely, a much higher fluctu-
ating frequency of ��t� shortens the tracing duration, which
results into the failure of both the complete synchronization
and the identification. Therefore, the proposed adaptive rule
can be used to identify the time-varying delays with a rela-
tively lower fluctuating frequency. In addition, although
those time-varying delays with very fast frequencies cannot
be identified exactly through the proposed adaptive strategy,
tuning those parameters such as r and m in Eq. �8� can some-
what accelerate the convergence rate of the whole dynamics
and thus increase the tolerance value of the fluctuating fre-
quency for convergence. We have a conjecture that the tol-
erance value for convergence is sensitively connected to the
configuration of a time-delayed dynamical model, which de-
serves a further investigation.

Example 2. A time-delayed model with periodic dynamics.
To illustrate the technical definition, “identifiability,” pro-
posed in Sec. II and explicitly discussed in Appendix B,
consider a single neuron model with a discrete time delay
�21�, which is described by

ẋ = − x + h�ax − bx�t − �� + P� . �9�

Here, the neuron activation function h�u� is settled as

h�u� =
1

1 + e−u . �10�

When the parameters are chosen as a=4, b=4.8, P=−0.8,
and �=3, model �9� produces periodic dynamics with an ap-
proximate period T
9.46, as shown in Fig. 2�a�. Analo-
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FIG. 1. Numerical results for Example 1 with the parameters chosen as r=1, 	=0.5, and the initial values settled as x���=0.1, y���
=2, ����=0, for all �� �−7,0�. �a� The chaotic dynamics of model �7�, the complete synchronization between signal x�t� and y�t�, and the
convergence of ��t� showing an accurate identification of �=3. �b� A successful identification of the time-varying delay when the fluctuating
frequency w of the time delay ��t� is lower. �c� The estimator ��t� oscillates around the true value of the time delay ��t�, showing an
unsuccessful identification when the fluctuating frequency w is higher.
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gously, the coupling model with the adaptive rules is de-
signed as

ẏ = − y + h�ay − by�t − �� + P� + ��y − x� ,

�̇ = − 	�y − x���F�y,�� ,

�̇ = − r�y − x�2, �11�

where

��F�y,�� =
be−ay+by�t−��−P

�1 + e−ay+by�t−��−P�2 �− y�t − �� + h�ay�t − ��

− by�t − 2�� + P� + ��t − ���y�t − �� − x�t − ���� .

As interestingly shown in Fig. 2�b�, with randomly selected
initial values, the estimator ��t� always converges to a value
equal to the true value of the time delay ��=3� plus some
number that is nonnegative integer multiple of the period T.
Clearly, this numerical result is consistent completely with
one of the situations discussed in Appendix B. As indicated
in Appendix B, when the observable synchronized manifold
consists of periodic orbits, the vector field of the model
sometimes is not exactly identifiable along the synchronized
manifold. An accurate identification of the time delays in
such systems cannot be always achieved unless the selected
initial value for the estimator is relatively closed to the real
value of the time delay. However, identification of this kind
can be seen as a successful realization in the generalized
sense, that is, the estimator ��t� converges to �+n0T for some
nonnegative integer n0.

Example 3. A two-dimensional time-delayed model with
multiple time delays and parameters. In real application, in-
stead of estimating either the time delay or the parameter
individually, one often needs to identify them simulta-
neously. In particular, with the increase of the number of the
unknown time delays and parameters in a model, an accurate
identification of them becomes more difficult and time-
consuming. However, the above-proposed strategy allows us

to identify them simultaneously and swiftly. To illustrate this,
we consider the following neural network model with mul-
tiple time delays and parameters �22�:

ẋ1�t� = − x1 + �
i=1

2

a1ih�xi�t�� + �
i=1

2

b1ih�xi�t − �1i�� + I1,

ẋ2�t� = − x2 + �
i=1

2

a2ih�xi�t�� + �
i=1

2

b2ih�xi�t − �2i�� + I2,

�12�

where the neuron activation function h�u� is the same as the
function in Eq. �10�, and the connection weight matrices are
given as

A = �aij�2
2 = �1 2

1 2
�, B = �bij�2
2 = �− 5 − 4

− 3 − 6
� .

In addition, the external current input I= �I1 , I2�T is selected
as a constant vector �2,3�T, and the signal transmission time
delay matrix is set as

� = ��ij�2
2 = �15 2

12 5
� .

With these settings, two-dimensional model �12� generates a
chaotic attractor as numerically displayed in Fig. 3�a�.

Let aij and �ij�i , j=1,2� be the parameters and time delays
pending for identification, respectively, and then design the
coupling model with the adaptive rules as follows:

ẏ1�t� = − y1 + �
i=1

2

c1ih�yi�t�� + �
i=1

2

b1ih�yi�t − �1i��

+ I1 + �1�y1 − x1� ,

ẏ2�t� = − y2 + �
i=1

2

c2ih�yi�t�� + �
i=1

2

b2ih�yi�t − �2i��

+ I2 + �2�y2 − x2� ,

ċij�t� = − �ij�yi − xi�h�yj�t�� ,

�̇ij�t� = − 	ij�yi − xi� � F��yi,�ij� ,

�̇i�t� = − ri�yi − xi�2, �13�

where i , j=1,2, and

�F��yi,�ij� =
bije

−yi�t−�ij�

�1 + e−yi�t−�ij��2 ẏi�t − �ij� . �14�

Thus, Fig. 3�b� shows that the state variables x= �x1 ,x2�T and
y= �y1 ,y2�T approach a complete synchronization. Figures
3�c� and 3�d� show that all the estimators �ij�t� and cij�t�
converge to the corresponding elements of � and A exactly
and swiftly. Therefore, by the proposed strategy, the simul-
taneous identification of totally eight time delays and param-
eters in model �12� is achieved.

It is clear that the state variables are all utilized to design
coupling model �13� in the above simulation. However, it is
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FIG. 2. �Color online� Numerical results for Example 2 in which
the parameters are chosen as r=5, 	=5, and the initial values are set
as x���
1, y���
2, and ����
0 for all �� �−40,0�. �a� A periodic
trajectory of model �9� with an approximate period T
9.46. �b�
Dynamics of the estimator ��t� starting from different initial values,
����
�0

q��� �−40,0� ,q=1, . . . ,8�. Here, �0
q are randomly chosen

as 0, 7, 10, 16, 20, 24, 30, and 35, respectively. The convergence
values of ��t� correspondingly are 3, 3, 12.46, 12.46, 21.93, 21.93,
31.93, and 31.39, which all satisfy the form �+n0T for some non-
negative integer n0.
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neither necessary nor realistic that all state variables are
taken into account in practice. As a matter of fact, in many
physical, chemical and biological models, only part of the
state variables can be detected. Thus, it is of practical sig-
nificance to develop some feasible identification strategy
only requiring the partial information from the state vari-
ables. To show that the proposed strategy is a strategy of this
kind, rewrite the state variables vector x as x= �x1 ,x2�T, and
denote by xout=G�x2� the observed output signal of the
model. Here, G is assumed as an observable function of vari-
able x2, and the remainder x1 is supposed to be some internal
signal that is not available or not of real interest. The prob-
lem becomes how to only use the output signal xout for real-
izing identification. For this specific example, we simply let
x2 in model �12� be the output signal, and let x1 be the inter-
nal signal. Assume that �11 and �12 with all the parameters
are known a prior, and that �21 and �22 are the unknown time
delays pending for identification. Then the partially coupling
model with the adaptive rules is designed as follows:

ẏ1�t� = − y1 + �
i=1

2

a1ih�yi�t�� + �
i=1

2

b1ih�yi�t − �1i�� + I1,

ẏ2�t� = − y2 + �
i=1

2

a2ih�yi�t�� + �
i=1

2

b2ih�yi�t − �2i��

+ I2 + ��y2 − x2� ,

�̇21�t� = − 	1�y2 − x2� � F��y2,�21� ,

�̇22�t� = − 	2�y2 − x2� � F��y2,�22� ,

�̇�t� = − r�y2 − x2�2, �15�

where �F� is the same function as defined in Eq. �14�. Con-
sequently, successful identification of both �21 and �22, as
well as a complete synchronization between coupled models
�12� and �15�, is realized numerically �see Fig. 4�. It is worth-
while to mention that, only with partial information, an ac-
curate identification of all time delays and parameters in the
above model cannot be surely achieved by the proposed
strategy. Further investigation is expected on what and how
factors affect the time-delays identification with partial ob-
servables.
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FIG. 3. �Color online� Numerical results for
Example 3. �a� A chaotic attractor generated by
model �12�. �b� The error dynamics versus the
time evolution with the parameters chosen as rij

=�ij =	ij =1, and with the initial values settled as
x1���=2, x2���=1.2, y1���=−5, y2���=−5, �1���
=0, and �2���=0 ��� �−15,0��. ��c�, �d�� The
convergent dynamics of �ij�t� and cij�t��i , j
=1,2� imply a successful identification of totally
eight time delays and parameters, where the ini-
tial values for these estimators are randomly
chosen.
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FIG. 4. A complete synchronization between coupled models
�12� and �13�, and a successful identification of time delays �21

and �22 only with a partial coupling configuration. Here, the pa-
rameters are chosen as r=1 and 	=1. All the initial values are
selected as x1���=2, x2���=1.2, y1���=y2���=−5, and ����=0 for
all �� �−15,0�.
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Example 4. A time-delayed model with a distributed time
delay. Here, we first validate the proposed strategy for iden-
tifying the distributed time delays in nonlinear models with
stable dynamics. Let us consider a one-dimensional time-
delayed system, which is described by

ẋ = − x3 + ��
−�

0

x�t + ��d� . �16�

With �=5 and �=13, it is easy to obtain that xt
����
�65 is

an equilibrium of model �16�. In particular, numerical simu-
lation in Fig. 5�a� manifests that this equilibrium is asymp-
totically stable.

According to the proposed strategy, the coupling model
with the adaptive rules is constructed through

ẏ = − y3 + �̃�
−�

0

y�t + ��d� + ��y − x� ,

�̇ = − 	�y − x��̃y�t − �� ,

�̇ = − r�y − x�2, �17�

where �̃ is set to be 5. As depicted in Fig. 5�b�, the distrib-
uted time delay can be successfully identified in spite of the
existence of the asymptotically stable equilibrium xt

����. In-
terestingly, this numerical result is in agreement with the
theoretical results concluded in Appendix B. It is further
noted that, though the time delay in model �16� appears sim-
ply in a linear form, it is still impractical to implement the
methods proposed in �9,10� for the time-delay identification.
The reason is that the infinite and location-varying peaks,
which are emergent in the plots of the correlationlike func-
tion, most likely lead the counting method to a failure, when
the distributed time delays instead of the discrete time delays
are taken into account.

Finally, we test the robustness of the proposed strategy for
identifying the distributed time delay in several cases. Con-
sider a case of parameter mismatch, that is, �̃ in Eq. �17� is
set to be 5+�, where � is regarded as a mismatch level. As
shown in Fig. 5�b�, the accuracy of the identified time delay
depends on the mismatch level. The smaller the level, the
more accurate the identified time delay. Additionally, con-

sider two types of noise perturbations in model �16�: one is

the additive noise, that is, the term �Ẇ is added directly to
the left-hand side of Eq. �16�; the other is the multiplicative

noise, that is, � in Eq. �16� is set as 5+�Ẇ. Here, W is a

one-dimensional Brownian motion, Ẇ is a white noise ac-
cordingly, and � is a noise strength. Hence, the data produced
by model �16� with noise perturbations are imported into
coupling model �17� for time-delays identification. As clearly
shown in the insets of Figs. 5�c� and 5�d�, the inputs of the
two types of noise perturbations induce the fluctuations of
the estimator �; however, the fluctuations eventually evolve
in the vicinity of the true value �=13, when the noise
strengths are not very strong. Further numerical simulations,
which are not included here for conciseness, manifest that
the data reproduced by the model with the identified time
delays in the above cases can qualitatively reflect the dynam-
ics of the data that are imported into the coupling model.

IV. TIME-DELAY IDENTIFICATION IN A GENE
TRANSCRIPTION MODEL

The objective of this section is to utilize the above-
developed adaptive synchronization strategy with biological
data to identify the time delay in a gene transcription model
and then to reproduce the dynamics that are qualitatively
consistent with the experimental data.

Nowadays, it has been generally accepted that time delays
resulting from transcription, transcript splicing and process-
ing, and protein synthesis are omnipresent in the duration of
mRNA and protein expression, and that, aside from addi-
tional components in feedback loop, time delay can result in
various oscillations related to the circadian clocks of gene
expression level �23–26�. Here, we consider a dynamical
model, established in �25,26�, describing the two-hour oscil-
lation of mRNAs for Notch signaling molecules that are im-
portant for coordinated somite segmentation. The experimen-
tally recorded time series on the oscillation of hes1 mRNA in
cultured cells, depicted in Fig. 6�a�, are first reported in �25�.
The corresponding dynamical model, based on the elemen-
tary knowledge of gene expression level, is given by

Ṁ = �mG�P�t − ��� − �mM ,
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FIG. 5. �Color online� Successful complete
synchronization between models �16� and �17�
shown in �a�. Accurate time-delay identification
shown in �b� as the noise strength is zero. Here,
the model’s equilibrium is asymptotically stable
and the time delay is in a distributed form. The
dynamics of the estimator � shown in �b�, �c�, and
�d�, respectively, for the parameter mismatch in
model �17�, for the additive noise in model �16�,
and for the multiplicative noise in model �16�.
All the cases illustrate the robustness of the pro-
posed adaptive strategy against a certain amount
of perturbations. Here, the parameters are taken
as r=1 and 	=0.1. All the initial values are se-
lected as x���=0.1, y���=10, and ����=0 for all
�� �−15,0�.
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Ṗ = �PM − �PP , �18�

where M and P denote, respectively, the concentrations at
time t of hes1 mRNA and Hes1 protein, � represents the sum
of the transcriptional and translational time delays, and G is
a monotonic decreasing function, representing the delayed
repression of hes1 mRNA production by Hes1 protein and
taking the form

G�P�t − ��� =
1

1 + �P�t − ��/P0�n .

Here, P0 is the repression threshold and n is the Hill coeffi-
cient. In addition, �m, �P, �m, and �P are the rate constants
of biological relevance. Now, with a set of new variables,

m = M/�m, p = P/�m�P, p0 = P0/��m�P� ,

rescaling model �18� yields

ṁ = g�p�t − ��� − �mm ,

ṗ = m − �Pp , �19�

where g�p�t−���= 1
1+�p�t−��/p0�n . As illustrated in �26�, this res-

caled model brings much convenience in the analysis of the
model dynamics with the parameters and time delay. Analo-
gous to �26�, the parameters are, a prior, settled as �m=�P
=0.03 /min, p0=100, and n=5, and the time delay � around
15–20 min is left for identification.

We use the adaptive strategy to identify the time delay in
model �19�. To this end, the partially coupling model with
the adaptive rules is designed as follows:

ẏ1 = g�y2�t − ��� − �my1 + ��y1 − m� ,

ẏ2 = y1 − �Py2,

�̇ = − 	�y1 − m�M�t� ,

�̇ = − r�y1 − m�2, �20�

where

M�t� =
�y2�t − ��/100�4�y1�t − �� − �Py2�t − ���

20�1 + �y2�t − ��/100�5�2 ,

and the driving signal m�t� represents the time series ob-
tained in the experiments. However, as shown in Fig. 6�a�,
the sampling frequency of the experimental time series is too
low to directly adopt the adaptive strategy. For this reason,
we first generate a spline curve passing through all the points
of the experimental time series, and then use the points from
t=0 to 720 min on this curve to construct a completed time
series that is presumably generated by m�t� �see Fig. 6�b��.
Also to make a good use of this completed time series, we
recursively adopt the adaptive strategy in Eq. �20� such that
the end value of the estimator � in each recursive iteration is
set as the initial value for the next iteration. Here, the dura-
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FIG. 6. �Color online� �a� The experimental data on the oscillating concentrations of hes1 mRNA for Notch signaling molecules with
almost two-hour cycles �25�. �b� Using the spline fit with the experimental data in �a� yields a completed time series which is presumably
generated by m�t�. �c� Convergent dynamics of the end of the estimator � in each recursive iteration, where �end converges gradually to
18.95. Inset: the estimator � oscillates stably and slightly around 18.95 in the last two iterations, where the duration of each iteration is 720
min. ��d�, �e�� Model �19�, with the estimated time delay �=18.95, generates oscillations of hes1 mRNA and Hes1 protein, which coincide
qualitatively with the experimental results reported in �25,26�.
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tion of each iteration is 720 min. As shown in Fig. 6�c�, the
end value of the estimator � approaches a constant 18.95
after 500 iterations. It is noted that the estimator � still fluc-
tuates during each iteration. Nevertheless, with the increase
of the iteration times, the estimator � shows a stable oscilla-
tion. In particular, as shown in the inset of Fig. 6�c�, the
oscillation of the estimator �, in the last two iteration times,
fluctuates in the vicinity of 18.95, which is approximately
equal to the average number of � in these iteration times.
Now, with 18.95 which is regarded as an approximate esti-
mation of the time delay �, we depict the dynamics of both
hes1 mRNA and Hes1 protein in Figs. 6�d� and 6�e�. The
dynamics produced coincide qualitatively with the experi-
mental data in �25�. However, no oscillation is in agreement
with the experimental data when the time delay is either
excluded or far from the identified value, as indicated in
�26�. Consequently, appropriate use of the adaptive synchro-
nization strategy with the truly experimental data allows us
to not only identify the time delay approximately but also
capture the dynamics of real systems qualitatively.

We note that the estimator does not converge perfectly
during the last two iterations, and the reproduced data for
hes1 mRNA protein are not exactly consistent with the ex-
perimental data, as shown in the inset of Figs. 6�c� and 6�d�,
respectively. These imperfections in estimators convergence
and data reproduction are unavoidable, since various types of
noise perturbations intrinsically exist in the gene transcrip-
tion and experimental observations. However, the qualitative
consistency shown above results from the adaptive strategy
developed, when used with data from real systems, is robust
against a certain amount of perturbation.

V. CONCLUDING REMARKS

This paper proposes an adaptive synchronization strategy
for identifying various types of time delays in nonlinear dy-
namical models. The effectiveness of this adaptive strategy is
theoretically validated by the theory of functional differential
equations. More significantly, the problem of the identifiabil-
ity of a given vector field is introduced and then extensively
investigated for diverse forms of time delays. Several time-
delayed models, as well as the gene transcription model with
real data, are used to illustrate the practical usefulness and
the restrictions of the proposed strategy. It is clear that the
computational complexity is only O�L� if the time delays can
be adaptively identified. We therefore expect that the pro-
posed strategy for time delays identification as well as the
existing techniques for parameters estimation could be
widely used in practice. Moreover, it is stressed here that our
proposed strategy relies on the specific forms of the models,
where the parameters and time delays are allowed are totally
unknown. Modification methods need further development
for the models that, with identified parameters and time de-
lays, comes into conflict with the experimental evidence
qualitatively.

The results in the paper also suggest the following direc-
tions for future research. From a theoretical direction, a thor-
ough investigation on the proposed strategy for a more gen-
eral class of time-delayed dynamical models would be

useful. Analytical criteria need to be further established for
time-delay identification in models with either multiple dis-
crete time delays �say pi�2, as mentioned in Appendix B� or
with more general forms of distributed time delays. From
experimental and numerical directions, time-delay identifica-
tion and parameter estimation should jointly work with the
noise perturbed and high throughput data that are available in
physical, chemical, and biological studies. Also, tune-up
methods of the parameters in the proposed strategy, such as
	ij and ri, need developing for a practical identification.
Lastly, identification of the models whose forms are com-
pletely unknown is of great importance, and deserves future
investigation.
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APPENDIX A: A COMPACT FORM
OF THE VECTOR FIELD

Mathematically, the vector field in Eq. �2� can be rewrit-
ten in the following uniform and compact form:

Fi��� = �
j=1

pi �
−�M

0

�ij���f ij„����…d� , �A1�

where each pi is a finite natural number, �
�C��−�M ,0� ,Rn�, and each �ij��� belongs to the function
family F��−�M ,0� ,R+�=D��−�M ,0� ,R+�	X��−�M ,0� ,R+�.
Here, D��−�M ,0� ,R+� consists of all the Dirac delta func-
tions with a point-set support in the interval �−�M ,0�, and
X��−�M ,0� ,R+� consists of all the eigenfunctions satisfy-
ing �ij���=1 when � belongs to the interval �−�ij ,0�
�0��ij ��M� and �ij���=0 when � belongs to �−�M ,−�ij�.
Specifically, when �ij��� is selected as the Dirac delta func-
tion with a point-set support �−�ij�, in which �ij � �0,�M�,
model �1� has multiple discrete time delays, that is,
�−�M

0 �ij���f ij(����)d�= f ij(��−�ij�). If all �ij =0, it becomes a
trivial case that model �1� has no time delays. In addition,

when �î ĵ��� belongs to X��−�M ,0� ,R+� for some indexes î

and ĵ, model �1� has at least one time delay in the distributed
form, namely, �−�M

0 �î ĵ���f î ĵ(����)d�=�−�î ĵ

0 f î ĵ(����)d�.

APPENDIX B: IDENTIFIABILITY OF THE VECTOR FIELD

The identifiability of a given vector field relies crucially
on the specific form of its components Fi�i=1, . . . ,n� as well
as on the structure of the observable synchronized manifold.
However, several feasible criteria of physical significance
can still be established.
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For simplicity but without loss of generality, let pi=2 and
�i1�D��−�M ,0� ,R+� with a support �0� in Eq. �A1�. Then,
we have

Fi�xt� = f i1„x�t�… + �
−�M

0

�i���f i2�xt�d� ,

where the first term on the right hand side contains no time
delay. On the one hand, for �i2�D��−�M ,0� ,R+�, we have
coupled models with discrete time delays. If each function f i2
is globally invertible, then Eq. �6� in Sec. II implies

x�t − �i2
� � = x�t − �i2� , �B1�

for all t and all xt��� on the observable synchronized mani-
fold of model �1�. Notice that the signals of interest on the
observable synchronized manifold are bounded in general.
Hence, the following three cases for time-delay’s identifica-
tion are taken into account:

�1� If the observable synchronized manifold only contains
the equilibrium of model �1�, i.e., xt���
x�, then �i2

� is equal
to any number including the value of �i2. This means that the
vector field is not identifiable, and that time-delay’s identifi-
cation becomes failed almost surely for this case.

�2� If the observable synchronized manifold consists of
periodic orbit with period T, i.e., x�t�=x�t+T� for all t, then
Eq. �B1� implies �i2

� � ��i2+nT� �0,�M� 	n�N	 �0��. Notice
that ��i2+nT� �0,�M� 	n�N	 �0�� is a discrete point set,
and that �-limit set is connected. Hence, each estimator
�i2�t� can only converge to �i2+n0T for some nonnegative
integer n0, where the value of n0 depends on the choice of all
the initial values for the dynamical model. This can be re-
garded as a situation where the generalized identification of
the time delay is realized, so that the vector field is identifi-
able in the generalized sense.

�3� If the observable synchronized manifold is chaotic,
then Eq. �B1� implies �i2

� =�i. This manifests that the vector
field is identifiable, and that the time-delay’s identification
can be surely achieved for this case.

If the function f i2 is not globally invertible, the above
argument can still be used in the local neighborhood of the
existence of its inverse.

On the other hand, for �i2�X��−�M ,0� ,R+�, we have
coupled models with distributed time delays. Equation �6�
implies

C�t� � �
−�i2

−�i2
�

f i2„xt���…d� = �
t−�i2

t−�i2
�

f i2„x�s�…ds = 0, �B2�

for all t and all xt��� on the observable synchronized mani-
fold. Then, two situations are considered as follows.

�1� If this manifold only contains an equilibrium x� and
each f i2 is nonzero at this equilibrium, we have �i2

� =�i2 for all
i, so that the vector field is identifiable. Interestingly, this is
different from the above case that discrete time-delayed
models only with stable equilibria are not identifiable.

�2� If the manifold contains either periodic or chaotic at-
tractors and f i2 is globally invertible, then the problem on the
identifiability for the distributed time-delayed models can be
transformed to the problem for discrete time-delayed models.
To show this, we compute the derivative of C�t� in Eq. �B2�,

which yields x�t−�i2
� �−x�t−�i2�
0. Clearly, the obtained

equation is the same as Eq. �B1�. Thus, for the periodic syn-
chronized manifold, and with the condition �0

Tf i2(x�s�)ds=0
for periodic orbit x�t�, the vector field is identifiable in the
generalized sense as mentioned before; however, the vector
field is identifiable if the integral condition is not valid. In
addition, for the chaotic synchronized manifold, the vector
field is identifiable.

We can further investigate the case of pi�2 with more
time delays, which however requires more intricate discus-
sions, in that some additional assumptions, analogous to the
linear independence condition proposed in �18�, need import-
ing. Numerical examples in Sec. III show successful identi-
fications for such a case.

APPENDIX C: BOUNDEDNESS OF THE TRAJECTORY

Here, we are to investigate the boundedness of the trajec-
tory generated by a particular kind of coupled models �1� and
�3�. For simplicity, take �i�D��−�M ,0� ,R+�. Then, we ob-
tain coupled models with discrete time delays �ij. Consider
the following function:

V�t� = �
i

1

2
�yi�t� − xi�t��2 + �

i,j

1

2
�

t−�ij

t

�f ij„y�s�…

− f ij„x�s�…�2ds + �
i

1

2ri
��i�t� + L�2 + �

i,j

1

2	ij
��ij�t�

− �ij�2,

for any t� �−�M , t0� and some t0�+
. Here, L is a positive
constant pending for determination. Then, the derivative of
V�t� with respect to t along with the coupled models �1� and
�3� yields

V̇�t� = �
i

�yi�t� − xi�t����
j

�f ij„y�t − �ij�… − f ij„x�t − �ij�…�

+ �i�t��yi�t� − xi�t��� + �
i,j

1

2
��f ij„y�t�… − f ij„x�t�…�2

− �f ij„y�t − �ij�… − f ij„x�t − �ij�…�2� − �
i

��i�t� + L��yi�t�

− xi�t��2 − �
i,j

��ij�t� − �ij��yi�t� − xi�t��
� f ij„y�t − vij�…

�vij

= �
i,j

�yi�t� − xi�t���f ij„y�t − �ij�… − f ij„y�t − �ij�…�

+ �
i,j

�yi�t� − xi�t���f ij„y�t − �ij�… − f ij„x�t − �ij�…�

+ �
i,j

1

2
��f ij„y�t�… − f ij„x�t�…�2 − �f ij„y�t − �ij�… − f ij„x�t

− �ij�…�2� − �
i

L�yi�t� − xi�t��2 − �
i,j

��ij�t� − �ij��yi�t�

− xi�t��
� f ij„y�t − �ij�…

��ij
.
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Now applying the elementary inequality ab�
1
2 �a2+b2� to

the second term after the above second equality gives

V̇�t� � �
i
� pi

2
− L��yi�t� − xi�t��2 + �

i,j

1

2
�f ij„y�t�…

− f ij„x�t�…�2 + �
i,j

�yi�t� − xi�t���f ij„y�t − �ij�… − f ij„y�t

− �ij�…� − �
i,j

��ij�t� − �ij��yi�t� − xi�t��
� f ij„y�t − �ij�…

��ij
.

Assume that the functions f ij are globally Lipschitz with Lip-
schitz constants lij �0, and that

f ij„y�t − �ij�… − f ij„y�t − �ij�… =
� f ij„y�t − �ij�…

��ij
��ij − �ij�

+ O���ij − �ij�2� ,

where O� · � is a bounded quantity in the interval �−�M , t0�.
With these assumptions, V̇�t� can be further estimated as fol-
lows:

V̇�t� � �
i
�− L +

pi

2
+ �

j

lij��yi�t� − xi�t��2 − �
i,j

O���ij

− �ij�2��yi�t� − xi�t�� .

Thus, V̇�t��0 is valid provided that L is sufficiently large
and that the initial values of the coupled models satisfies
V�t��� for t� �−�M ,0�, where � is sufficiently small. Math-
ematically, we have the boundedness of the trajectory gener-
ated by the coupled models �1� and �3�.
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