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The existence of periodic orbit bunches is proven for the diamagnetic Kepler problem. Members of each
bunch are reconnected differently at self-encounters in phase space but have nearly equal classical action and
stability parameters. Orbits can be grouped already on the level of the symbolic dynamics by application of
appropriate reconnection rules to the symbolic code in the ternary alphabet. The periodic orbit bunches can
significantly improve the efficiency of semiclassical quantization methods for classically chaotic systems,
which suffer from the exponential proliferation of orbits. For the diamagnetic hydrogen atom the use of one or
few representatives of a periodic orbit bunch in Gutzwiller’s trace formula allows for the computation of
semiclassical spectra with a classical data set reduced by up to a factor of 20.
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I. INTRODUCTION

Semiclassical theories provide the link between quantum
spectra and the dynamics of the underlying classical system.
For systems with chaotic classical dynamics Gutzwiller’s
trace formula �1� expresses the density of states in terms of
parameters of the isolated unstable periodic orbits. Chaotic
systems typically exhibit an exponential proliferation of the
number of periodic orbits with growing length. The periodic-
orbit sum of Gutzwiller’s trace formula usually does not con-
verge, and special techniques as, for example, the cycle ex-
pansion �2� or harmonic inversion �3–5� method must be
applied for the computation of semiclassical eigenvalues
from a finite set of trajectories. Although these techniques
can be very powerful for certain systems a remaining con-
ceptually weak point of periodic orbit quantization is still
that, due to the exponential proliferation of orbits, the
gradual improvement or extension of semiclassical spectra
usually requires an exponentially increasing set of periodic
orbit data. In this paper we propose a way to significantly
reduce the number of trajectories which is necessary for pe-
riodic orbit quantization by employing properties of the or-
bits which have recently been investigated in connection
with universal features of quantum chaos.

According to the Bohigas-Giannoni-Schmit conjecture �6�
a signature of quantum chaos is universal spectral fluctua-
tions on the scale of the mean level spacing. For example, for
systems with time reversal symmetry the spacings show a
Wigner distribution. On the way toward an understanding or
even proof of the conjecture the correlations between orbits
which play an important role in the semiclassical approxima-
tion to the spectral form factor have been studied �7–13�.
Strong correlations exist only between orbits which have
identical or near identical actions. It has been found that
periodic orbits consist of different segments �14�. In each
segment, an orbit follows closely its neighboring orbit or the
time reverse of this orbit, but the orbits differ in how these
segments are connected at self-encounters. As a consequence
long periodic orbits of hyperbolic systems do not exist as
independent individuals but rather come in closely packed
near–action-degenerate periodic-orbit bunches. Pairs of or-

bits with two differently connected loops provide the leading
off-diagonal contributions to the form factor �7,8�. The role
of self-encounters and periodic-orbit bunches for universal
level correlations in quantum chaos has been investigated in
detail in Refs. �9–13�.

Here we want to demonstrate that near–action-degenerate
periodic-orbit bunches can help to significantly improve the
efficiency of semiclassical quantization methods. The idea is
not to use all individual periodic orbits up to a given length
but only one or very few representatives of a periodic-orbit
bunch. Those representatives are appropriately weighted in
the periodic orbit sum according to the size of the bunch,
which can be determined, for systems with a known sym-
bolic code, solely on the level of the symbolic dynamics
without a numerically expensive periodic-orbit search.

Results are presented for the hydrogen atom in a magnetic
field, which has a long history as a prototype model of a real
physical system with signatures of quantum chaos �15,16�.
At sufficiently high positive energies it is an open system
with fully hyperbolic classical dynamics, and a unique sym-
bolic code for the periodic orbits does exist �17–19�. Semi-
classical resonances of the diamagnetic hydrogen atom have
already been obtained with a modified and extended cycle
expansion technique �20�.

The paper is organized as follows. In Sec. II we discuss
the classical dynamics of the diamagnetic hydrogen atom
and present an efficient multishooting algorithm for the nu-
merical periodic-orbit search. In Sec. III we reveal the exis-
tence of periodic-orbit bunches and introduce four reconnec-
tion rules which allow for the grouping of orbits on the level
of the symbolic dynamics. Semiclassical resonances are
computed in Sec. IV with the harmonic inversion method,
and it is illustrated how using periodic-orbit bunches signifi-
cantly improves the efficiency of the method. Concluding
remarks are given in Sec. V.

II. CLASSICAL DYNAMICS AND PERIODIC-ORBIT
SEARCH

In this section we recapitulate the basic equations for the
classical dynamics of the diamagnetic hydrogen atom and
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present a very efficient multishooting algorithm for the peri-
odic orbit search.

In atomic units the Hamiltonian of the diamagnetic hydro-
gen atom reads as

H =
1

2
p2 −

1

r
+

1

2
�Lz +

1

8
�2�x2 + y2� = E , �1�

where �=B / �2.35�105 T� with B as the magnetic field
strength. We only consider states with magnetic quantum
number m=Lz=0. The classical dynamics does not depend
separately on the energy E and the magnetic field strength �

but only on the scaled energy Ẽ=E�−2/3. Using a regulariza-
tion of the Coulomb singularity in scaled semiparabolical
coordinates �15,16�,

� = �1/3�r + z and � = �1/3�r − z , �2�

the classical equations of motion in the transformed time �,
with d�=2rdt, are derived from the scaled and regularized
Hamiltonian

h =
1

2
�p�

2 + p�
2� + V��,�� = 2, �3�

with the potential

V��,�� = − Ẽ��2 + �2� +
1

8
��4�2 + �2�4� . �4�

The numerical computation of periodic orbits is a prerequi-
site for the semiclassical quantization of chaotic systems. In
chaotic billiards with an existing symbolic dynamics such as
the three-disk scatterer or the hyperbola billiard, a periodic
orbit with given symbolic code can be computed efficiently
by moving the reflection points until the orbit length be-
comes a minimum. For systems with smooth potentials the
periodic orbit search is more difficult. Using a simple shoot-
ing algorithm trajectories with varying starting points are
integrated numerically until the initial and final point match.
When applying this method for a systematic periodic orbit
search some orbits are typically found many times while
others may be overlooked. In particular, long and very un-
stable orbits are hard to find.

For the computation of the periodic orbits of the diamag-
netic hydrogen atom we employ a multishooting algorithm
which is adapted to the symbolic dynamics of the system.
With this algorithm we can find selectively each orbit corre-
sponding to a given symbolic code even when the orbit is
very long and unstable.

If one allows the semiparabolic coordinates �� ,�� to be
positive or negative, the potential �Eq. �4�� has a C4v sym-
metry. Periodic orbits can be described by a ternary symbolic
code �17� in a similar way as for the hyperbola or four-disk

billiard with the same symmetry. At high energies Ẽ� Ẽc
=0.329 there is a one-to-one correspondence between orbits
and the symbolic code, whereas below the critical energy
orbits undergo bifurcations and the symbolic dynamics is
pruned �18,19�.

The multishooting algorithm for the periodic orbit search
basically works as follows. Each periodic orbit is split into
segments, with the number of segments equal to the string
length L of the symbolic code. The segments start on either
the � or the � axis and end on one of the axes as illustrated
in Fig. 1.

When we start all segments with initial guesses chosen in
accordance with the symbolic code the orbit is discontinuous
between the end point of one and the starting point of the
next segment. Now the initial conditions of all segments are
iteratively changed to remove the discontinuities. This prob-
lem can be formulated as a 2L-dimensional root search.
�Note that two parameters can be changed for each segment
to vary the initial conditions on one of the axes.�

Because the segments are short the multishooting algo-
rithm usually converges rapidly and uniquely to the periodic
orbit selected by the symbolic code, provided the orbit is not
pruned or very close to bifurcation. The method works very
well even for very long and unstable orbits.

An example of a periodic orbit at scaled energy Ẽ=0.5 is
presented in Fig. 2.

For the symbolic code of a periodic orbit we adopt the
ternary alphabet of Ref. �17� with a slightly modified way of
the symmetry reduction. In the full coordinate space �see Fig.
2�a�� where the semiparabolic coordinates are extended to
negative values each orbit is labeled by a sequence of num-
bers 1–4 for the reflections at the potential barrier in one of
the quadrants. The C4v symmetry of the potential allows for
symmetry reduction of the symbolic code. Symbols �, �, and
0 are used for the orbit crossing the � or � axis in a clock-
wise or anticlockwise turn, or moving to the opposite poten-
tial barrier with a crossing of both axis. At this level of
symmetry reduction orbits are located in the first quadrant
�see Fig. 2�b��. Finally, an axis symbol � or � is replaced
with a + or − sign when it follows a different or the same
axis symbol �ignoring any intermediate 0 symbols�, respec-
tively. This alphabet describes the symmetry reduced orbit in
the fundamental domain �see Fig. 2�c��. The various levels of
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ν

µ→µ

µ→ν

µ→ν

FIG. 1. �Color online� In the multishooting algorithm each orbit
is split into short segments starting and ending on one of the axes.
The concatenation of various types of segments is guided by the
symbolic code of the orbit.
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symmetry reduction are helpful to illustrate the periodic orbit
bunches and reconnection rules in Sec. III.

III. PERIODIC-ORBIT BUNCHES

In this section we first provide an example of a group of
near–action-degenerate orbits of the diamagnetic hydrogen
atom. We then present four reconnection rules which are
based on the symbolic dynamics of the periodic orbits and
can be used for grouping the trajectories in periodic-orbit
bunches. The properties of the periodic-orbit bunches are
discussed.

A. Example of a near–action-degenerate periodic-orbit bunch

We start our discussion of periodic-orbit bunches of the
diamagnetic hydrogen atom by way of example of a group of

16 orbits with cycle length L=10 at scaled energy Ẽ=0.5.
The orbits are presented in Fig. 3 in the fundamental domain
of the coordinate space.

In the overview the similarities between the orbits are
quite obvious. All orbits appear to run nearly parallel and

thus to be located in the same area of the phase space.
For a more detailed discussion the 16 orbits of the

periodic-orbit bunch are drawn separately in Fig. 4 in semi-
parabolic �� ,�� coordinates without symmetry reduction
along the �=� symmetry line. Each orbit is labeled by the
symbolic code using the ternary alphabet introduced in Sec.
II. To make the graphs concise only one fundamental period
is shown in Fig. 4, i.e., some orbits are periodic only in the
fully symmetry reduced fundamental domain. At first glance
the orbits in Fig. 4 do not appear to be very similar, however,
the similarities are obvious in Fig. 3 after complete symme-
try reduction in the fundamental domain of the coordinate
space. A more detailed inspection of Fig. 4 allows us to
reveal both the similarities and differences of the members of
the periodic-orbit bunch and to illustrate the reconnection
rules.

The basic mechanism for the formation of near–action-
degenerate periodic-orbit bunches is that each periodic orbit
can be split into segments where the starting and end points
of segments can be connected in various ways using simple
combinatorial rules. Two types of segments exist where the
trajectory is located either close to or far away from the �
=� symmetry line. They can be described most efficiently by
the symbolic code of the orbits. A sequence of one or more
zero symbols followed by one plus or minus symbol charac-
terizes a segment located near the �=� symmetry line, a
sequence of plus and minus symbols �without any zero� char-
acterizes a segment away from the symmetry line. All orbits
in Fig. 4 thus consist of four segments, e.g., 00− �− �0−�−+
−− in Fig. 4�a�. The orbits in Figs. 4�b�–4�p� are obtained
from the orbit in Fig. 4�a� by reconnecting the four segments
in various ways. For example, in the orbit 00− �−+−− �0−�−
in Fig. 4�h� the two segments − and −+−− are interchanged,
and in the orbit 00− �− �0−�−−+− in Fig. 4�c� the segment
−+−− is traversed backward. Furthermore, the plus or minus
symbol following a sequence of zero symbols can be inter-
changed �see orbits 00− �− �0+�−+−−, 00+ �− �0−�−+−−, and
00+ �− �0+�−+−− in Figs. 4�b�, 4�g�, and 4�j�� which is re-
lated to the mirroring of segments at the �=� symmetry line.
The remaining orbits in Fig. 4 are obtained by combined
application of several reconnection rules, e.g., in Fig. 4�k�
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FIG. 2. �Color online� Example of a periodic orbit displayed in �a� the full coordinate plane, �b� the first quadrant, and �c� the fundamental
domain.
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FIG. 3. �Color online� Example of a periodic-orbit bunch con-
sisting of 16 near–action-degenerate orbits drawn in the fundamen-

tal domain of the �� ,�� coordinate space for scaled energy Ẽ=0.5.
The similarities between orbits are obvious in the overview.
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the segments − and −+−− are interchanged and the first seg-
ment 00− is replaced with 00+.

B. Reconnection rules

We denote a sequence of one or more zero symbols fol-
lowed by one plus or minus symbol as �0� stretch and an
arbitrary sequence of plus and minus symbols without any
zero symbol as �+−� stretch. The grouping of trajectories of
the diamagnetic hydrogen atom in periodic-orbit bunches can
now be described by the following four reconnection rules.

Rule R-1: the last symbol of a �0� stretch, which is a plus
or minus symbol, can be replaced with the other one.

Rule R-2: the order of symbols in a �+−� stretch can be
reversed.

Rule R-3: in a symbolic code with two or more �0�
stretches different �0� stretches can be interchanged.

Rule R-4: in a symbolic code with two or more �+−�
stretches different �+−� stretches can be interchanged.

To illustrate the reconnection rules we discuss once more
the periodic orbits shown in Fig. 4. The first orbit 00−−0−
−+−− in Fig. 4�a� can be decomposed into the �0� stretch

00−, the �+−� stretch −, the �0� stretch 0−, and the �+−�
stretch −+−−. The remaining 15 orbits in Fig. 4 can be ob-
tained from that orbit by application of one or more of the
reconnection rules. For example, the orbit in Fig. 4�b� is
obtained by applying rule R-1 to the second �0� stretch 0−,
the orbit in Fig. 4�c� is obtained by applying rule R-2 to the
�+−� stretch −+−−, and the orbit in Fig. 4�d� is obtained by
applying the rules R-2 and R-3, i.e., the �+−� stretch −+−− is
reversed and then the two �+−� stretches −−+− and − are
interchanged. Applications of the reconnection rules mean
that parts of the orbit drawn in semiparabolic �� ,�� coordi-
nates are approximately mirrored at the �=� symmetry line,
parts of the orbit are traversed backward or parts of the orbit
are visited in a different order. However, in the fundamental
domain of the �� ,�� coordinate space the global shape of
orbits belonging to the same periodic-orbit bunch is very
similar, as can be clearly seen in Fig. 3.

The reconnection rules are schematically illustrated in
Fig. 5. A periodic-orbit bunch is characterized by a set of k
�+−� stretches, which is a sequence of plus and minus sym-
bols �an empty set is allowed�, and �for k	2� the same num-
ber of �0� stretches. The �0� stretches are located in the vi-

(a) 00--0--+-- (b) 00--0+-+-- (c) 00--0---+- (d) 00---+-0--

(e) 00---+-0+- (f) 00+-0---+- (g) 00+-0--+-- (h) 00--+--0--

(i) 00+-+--0+- (j) 00+-0+-+-- (k) 00+-+--0-- (l) 00--+--0+-

(m) 00--0+--+- (n) 00+-0+--+- (o) 00+--+-0-- (p) 00+--+-0+-

FIG. 4. �Color online� Example of a near–action-degenerate periodic-orbit bunch at scaled energy Ẽ=0.5 consisting of 16 orbits with
cycle length L=10. The trajectories are drawn in semiparabolic �� ,�� coordinates and are labeled by the symbolic code. See text for
discussion.

GEHRKE, MAIN, AND WUNNER PHYSICAL REVIEW E 82, 066207 �2010�

066207-4



cinity of the �=� symmetry line and are indicated by red
solid lines in Fig. 5. The �+−� stretches are located in regions
with ��� away from the symmetry line and are indicated
by green dashed lines. Each �0� stretch is followed by a
�+−� stretch and vice versa, the connections are indicated by
the thin black lines in Fig. 5. The individual members of the
periodic-orbit bunch differ in the way how the stretches are
connected: �+−� stretches can be mirrored at the �=� sym-
metry line �rule R-1�, traversed backward �rule R-2�, and the
orders of the �0� or �+−� stretches can be interchanged �rules
R-3 and R-4�.

How many orbits belong to a certain periodic-orbit
bunch? Although we cannot give a precise answer it is easy
to estimate an upper bound of that number from the combi-
natorial reconnection rules. Let again k be the number of
�+−� and �0� stretches in a symbolic code. According to rule
R-1 the last symbol of a �0� stretch, which is + or −, can be
replaced with the other one, resulting in 2k possibilities. Ac-
cording to rule R-2 the order of symbols in a �+−� stretch can
be reversed. Each �+−� stretch which is not symmetric under
that transform provides a factor of two, resulting in at most
2k possibilities. The interchange of �0� stretches and �+−�
stretches according to rules R-3 and R-4 provide at most
�substrings may be identical� k! and �k−1�! possibilities, re-
spectively, where, in the second factorial, it has been taken
into account that a cyclic permutation of all �0� and �+−�
stretches does not change the periodic orbit. Altogether we
obtain a maximum number of orbits,

Nk
max = k!�k − 1�!22k, �5�

building one periodic-orbit bunch. The 16 orbits shown in
Fig. 4 have k=2 �0� stretches. The number of orbits is less

than the maximum N2
max=32 because the �+−� stretch con-

sisting of a single minus symbol coincides with its reverse.
The maximum number Nk

max increases very rapidly with k,
e.g., for k=4 bunches with up to N4

max=36864 orbits exist.
However, for such a huge bunch the four �0� stretches must
have different lengths and the four �+−� stretches including
their time reversals must be different, which is found to be
possible only for very long orbits with code lengths L	26.

C. Properties of periodic-orbit bunches

The most important feature of the periodic-orbit bunches
is that the individual trajectories have similar shape in coor-
dinate space �see Fig. 3�, and thus all orbits have nearly the
same action and stability properties. For the 16 orbits shown
in Figs. 3 and 4 the near degeneracy of the actions is illus-
trated in Fig. 6.

In low resolution the distribution of the actions exhibits a
single peak at s /2
�11.1. Only in high resolution �see the
inset in Fig. 6� the distribution of the actions in a small but
nonzero range �s can be observed.

For a given periodic-orbit bunch the action range �s ba-
sically depends on the number of zero symbols in the short-
est �0� stretch. We illustrate this for the orbit pairs

0000
n

− − − − − − −
L−n−1

and 0000
n

+ − − − − − −
L−n−1

,

which consist of a �0� stretch with n zero symbols followed
by a plus or minus symbol and a �+−� stretch with L−n−1
minus symbols. The total length of the symbolic code is L.
For fixed L and n the two orbits belong to the same periodic-
orbit bunch �see rule R-1�. The action difference �s between
the two orbits for various values of L and n is shown in Fig.
7. Evidently, �s decreases exponentially with the number n
of consecutive zero symbols but only weakly depends on the
total code length L. This result does not depend on the spe-
cial choice of the �+−� stretch as a sequence of minus sym-
bols, i.e., similar results have been obtained for other types
of �+−� stretches. A more detailed investigation shows that
the similarities of orbits in a periodic-orbit bunch become

FIG. 5. �Color online� Sketch of the four reconnection rules. In
the �� ,�� coordinate space �0� stretches indicated by red solid lines
are located in the vicinity of the �=� symmetry line, and �+−�
stretches indicated by green dashed lines are located in regions with
��� away from the symmetry line. The connections between �0�
and �+−� stretches are drawn with thin black lines. �+−� stretches
can be mirrored at the �=� symmetry line �rule R-1�, traversed
backward �rule R-2�, and the orders of the �0� or
�+−� stretches can be interchanged �rules R-3 and R-4�.
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FIG. 6. �Color online� Distribution histogram of the classical
actions for the 16 trajectories of the near–action-degenerate
periodic-orbit bunch shown in Figs. 3 and 4. The small differences
between the actions of individual orbits are only visible in the en-
larged inset.
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more and more pronounced with increasing length of the
shortest �0� stretch. The reason is the decrease in the angle or
distance of the orbit at self-encounters with increasing length
of the �0� stretches �21�.

IV. SEMICLASSICAL QUANTIZATION WITH PERIODIC-
ORBIT BUNCHES

As already mentioned in Sec. I self-encounters and
periodic-orbit bunches play an important role for the under-
standing of the level statistics of quantum systems with an
underlying chaotic classical dynamics. We will now demon-
strate the relevance of periodic-orbit bunches for the semi-
classical quantization of the diamagnetic hydrogen atom.

The energy eigenvalues of integrable classical systems
can be obtained by semiclassical torus quantization. In cha-
otic systems torus structures in phase space are absent. It has
been shown by Gutzwiller �1� that the unstable periodic or-
bits are the skeleton for the semiclassical quantization of
chaotic systems. However, the problems with Gutzwiller’s
trace formula are twofold: first, the periodic orbit sum is not
absolutely convergent and special techniques such as cycle
expansion �2� or harmonic inversion �3–5� methods are nec-
essary to obtain converged results. Second, in chaotic sys-
tems the number of periodic orbits grows exponentially with
the orbital lengths. It is very unsatisfactory that an exponen-
tially increasing set of classical data information is necessary
to resolve a few more semiclassical eigenvalues. However,
as already mentioned, the required classical data can be sig-
nificantly reduced when using the periodic-orbit bunches in-
stead of the individual periodic orbits for the semiclassical
quantization.

A. Harmonic inversion method

We employ the harmonic inversion method for periodic
orbit quantization �3–5,22�, and for the convenience of the
reader, here briefly recapitulate its basic ingredients. Accord-
ing to �1� the semiclassical response function of chaotic sys-
tems is given by

gsc�E� = gsc
0 �E� + �

po
Apo�E�eiSpo�E�, �6�

where gsc
0 is a smooth function of the energy, Spo is the clas-

sical action of a periodic orbit, and Apo is the amplitude of
that orbit including phase information. The semiclassical en-
ergies or resonances are the poles of the response function
gsc�E� in Eq. �6�.

The hydrogen atom in a magnetic field possesses a scaling
property, as already introduced in Sec. II, i.e., the classical
dynamics does not depend separately on the energy E and
the magnetic field strength � but only on the scaled energy

Ẽ=E�−2/3. Keeping the scaled energy constant the response
function can be written as a function of w=�−1/3, viz.,

gsc�w� = gsc
0 �w� + �

po
Apoe

iwspo, �7�

where spo=�1/3Spo is the scaled action of a periodic orbit and
the amplitude,

Apo =
sppo

��2 − �ppo
r − �ppo

−r �
e−ir�ppo
/2, �8�

depends on the scaled action sppo of the primitive periodic
orbit �ppo� where the orbit is traversed only once, the repeti-
tion number r of that orbit, the leading eigenvalue �ppo of the
monodromy matrix, and the Maslov index �ppo. The Fourier
transform of the scaled response function in Eq. �7� yields
the semiclassical signal

Csc�s� =
1

2

	

−



gsc�w�e−iswdw = �
po

Apo��s − spo� , �9�

which possesses � peaks with weight factors Apo at the ac-
tions s=spo of the classical periodic orbits.

The periodic orbit quantization is achieved by adjusting
the semiclassical signal �Eq. �9�� to its quantum analog. The
quantum resonances are the eigenvalues w=�−1/3 of the
scaled Schrödinger equation at constant scaled energy


− 2Ẽ��2 + �2� +
1

4
��4�2 + �2�4� − 4��

= w−2��� + ���� with �� =
1

�

�

��
��

�

��
 . �10�

The Fourier transform of the quantum-mechanical Green’s
function,

gqm�w� = �
k

dk

w − wk
, �11�

with resonances in the lower complex half plane, i.e.,
Im wk�0 and residuals dk=1 for nondegenerate states yields
the quantum signal

Cqm�s� =
1

2

	

−



gqm�w�e−iswdw = − i�
k

dke
−iwks. �12�

The semiclassical signal �Eq. �9�� obtained from the classical
periodic orbit data is now adapted to the quantum signal �Eq.
�12��, with the dk and wk being free adjustable complex pa-
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FIG. 7. �Color online� Action difference �s between two orbits
consisting of a �0� stretch with n zero symbols and a �+−� stretch
with L−n−1 minus symbols. Evidently, �s decreases exponentially
with the length of the �0� stretch.
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rameters by means of nonlinear signal processing methods.
Technical details can be found in Refs. �22,23�.

The periodic orbit signal Csc�s� must be known in the
interval 0�s�smax. The required signal length smax is pro-
portional to the density of eigenstates wk, which usually in-
creases for higher excitations, i.e., an increasing signal
length is required to resolve the denser parts of the quantum
spectrum.

B. Reduced data set

Since in classically chaotic systems the number of peri-
odic orbits grows exponentially with the orbital period or
action, a linear increase in the length smax of the periodic
orbit signal �Eq. �9�� requires an exponential increase in the
classical input data and the numerical effort for the periodic-
orbit search. For the hydrogen atom in a magnetic field at

scaled energy Ẽ=0.5 the exponential increase in the number
of trajectories with growing action is illustrated by the
dashed green line in Fig. 8.

For the construction of the periodic-orbit signal �Eq. �9��
with signal length smax /2
=17 more than 106 periodic orbits
must be computed.

To reduce the required amount of periodic-orbit data we
take advantage of properties of the periodic-orbit bunches.
Since all orbits of a bunch are near action-degenerate �cf.
Fig. 6� and also have very similar stability properties and
identical Maslov indices the parameters Apo and spo in Eq.
�9� are approximately the same for all members of a
periodic-orbit bunch. �Additional weight factors which arise
from symmetry decomposition will be discussed in Sec.
IV C.� The idea now is not to compute all members but only
one representative �or very few representatives� of a
periodic-orbit bunch and to use the actions and appropriately
weighted amplitudes of the representatives for the construc-

tion of the periodic-orbit signal. The Maslov index which
determines the complex phase of the amplitudes in Eq. �8�
can be obtained directly and without any numerical periodic
orbit search from the symbolic dynamics of orbits and reads
�po=3L−N+−N−, where L is the code length and N� are the
numbers of plus and minus symbols in the code. Note that
the Maslov index does not change by application of any of
the four reconnection rules.

The construction of the reduced data set is achieved as
follows. We need the symbolic dynamics of all orbits and the
periodic-orbit parameters of representatives up to a certain
action smax. In our computations we use smax /2
=20. In a
first step we calculate the symbolic sequences of orbits. As
some orbits with very long symbolic dynamics can contrib-
ute to the periodic-orbit signal the computing time is reduced
by optimizing the order of generating the symbolic codes in
a way that orbits with short action are preferably obtained
earlier than orbits with long action. The length limit of every
symbolic sequence describing one periodic orbit is achieved
if the approximate estimate of the action based upon the
symbolic sequence of every orbit exceeds the action limit
smax. From the symbolic code of a periodic orbit its action
can roughly be estimated by weighting the actions of the
fundamental orbits 0, +, and − with the corresponding num-
ber of symbols in the code. We can calculate efficiently up to
a maximum code length L=16, i.e., the orbit data set is com-
plete up to this length. Longer symbolic sequences are gen-
erated by adding minus symbols to shorter symbolic se-
quences. This does not change the shape of the orbits or the
size of the groups in the most cases but adds only new loop
parts in outward direction to the periodic orbits. In order to
decrease computing time the same method is used to calcu-
late all periodic orbits.

We use the reconnection rules to group the periodic orbits.
Arranging the orbits is a much faster procedure than the cal-
culation of the actions because it is based only on integer
arithmetic, which is very fast to handle on the computer. As
the parameters of the periodic orbits in one group are very
similar, we can choose one orbit as representative of the
group and calculate all parameters of this trajectory. The re-
sults with appropriate weighting are then used for the con-
struction of the periodic-orbit signal.

The number of periodic-orbit bunches with action spo�s
is shown as the dotted blue line in Fig. 8. Similar to the total
number of orbits the number of the bunches also grows ex-
ponentially with the action, but with a significantly lower
rate. For example at s /2
=17 there are only about 80 000
bunches, compared to more than 106 individual periodic or-
bits.

C. Symmetry decomposition

The diamagnetic hydrogen atom possesses a discrete sym-
metry, viz. the reflection at the z=0 plane, and thus the quan-
tum system has resonances wk

� in the decomposed subspaces
with even and odd z parity. In periodic-orbit theory the sym-
metry decomposition is achieved by multiplying the ampli-
tudes Apo in Eq. �8� with weight factors �po, which depend
on the chosen subspace and symmetry properties of the pe-
riodic orbits �24�. The weight factors are
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FIG. 8. �Color online� Number of periodic orbits with classical
action spo�s for all individual orbits �dashed green line�, only one
representative of a periodic-orbit bunch �dotted blue line�, and one
representative of a periodic-orbit bunch weighted with the size of
the bunch �solid red line, nearly indistinguishable from the dashed
green line�. All curves show an exponential increase, however, the
number of periodic-orbit bunches grows with a significantly lower
rate than the number of all orbits.
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�po = �1 for even parity

�− 1�N+ for odd parity,
� �13�

with N+ as the number of plus symbols in the symbolic code.
In spectra with even parity all members of a periodic-orbit
bunch have identical weight factors �po=1 and contribute
with approximately the same amplitudes Apo to the semiclas-
sical signal in Eq. �9�, i.e., all orbits of a periodic-orbit bunch
interfere constructively and the total weight of the bunch
amplitude is approximately the amplitude of a representative
multiplied with the number of orbits in the bunch. In odd
parity spectra the weight factors �po of two orbits which are
related by a single application of the reconnection rule R-1
have different sign and thus the contributions of the two
orbits to the semiclassical signal in Eq. �9� approximately
cancel. The total weight of the bunch is the nontrivial sum of
the �po of all individual orbits of the bunch, however, that
weight can be obtained solely from the symbolic dynamics
of orbits.

D. Results and discussion

For the hydrogen atom in a magnetic field exact quantum
and semiclassical resonances have already been compared by
Tanner et al. �20�. The quantum resonances were obtained by
numerical diagonalization of the generalized eigenvalue
problem �Eq. �10�� using a complex rotated complete basis
set. The semiclassical resonances were computed with a
modified and extended cycle expansion technique. As al-

ready mentioned at sufficiently high energies Ẽ� Ẽc=0.329
the symbolic dynamics is complete without any pruning of
orbits, however, trajectories going far away from the nucleus
in the direction of the magnetic field axis were found to be
marginally stable. Furthermore, resonances accumulate at the
thresholds of the Landau channels. For these reasons the pe-
riodic orbit quantization of the diamagnetic hydrogen atom is
a very nontrivial and challenging task.

Here we apply the harmonic inversion method introduced
in Sec. IV A for period-orbit quantization. With a finite
length signal this method can resolve sufficiently isolated
resonances in the spectra but not the accumulation of reso-
nances at the Landau thresholds. However, we do not focus
on the comparison of the quantum and semiclassical reso-
nances but on the results of the two semiclassical quantiza-
tions obtained with either the complete periodic-orbit set or
with the reduced data set of the periodic-orbit bunches intro-
duced in Sec. IV B.

Resonances with even and odd parity of the diamagnetic

hydrogen atom at scaled energy Ẽ=0.5 are presented in Fig.
9. The semiclassical resonances have been obtained by har-
monic inversion of the periodic-orbit signal Csc�s� with
smax /2
=20 using either the complete periodic-orbit set
�blue squares in Fig. 9� or the reduced data set �red crosses�.
In the reduced data set we have used the two representatives
with maximum or minimum action of each periodic-orbit
bunch, which can be identified by their symbolic codes. The
numerically exact quantum resonances are shown by black
dots in Fig. 9.

As mentioned above the harmonic inversion of a finite
length signal cannot reproduce resonances close to the accu-
mulation points at, e.g., w=1 and w=3. For most of the
semiclassical resonances with even parity in Fig. 9�a� the
agreement is excellent for both the real and imaginary parts
of the resonances. For the resonances with odd parity in Fig.
9�b� the agreement of the imaginary parts is less perfect,
however, the real parts still agree very well. The reason for
the larger deviations in spectra with odd parity might be that
the possible cancellation of periodic orbit contributions in
this subspace is more critical for the accuracy of the
periodic-orbit signal than the solely constructive superposi-
tion of the contributions in the subspace with even parity.
The results clearly demonstrate that the use of near–action-
degenerate periodic-orbit bunches allows for the reduction in
the classical data set by more than an order of magnitude and
thus significantly increases the efficiency of periodic-orbit
quantization methods.

V. CONCLUSION

The existence of periodic-orbit bunches in the classically
chaotic diamagnetic hydrogen atom has been revealed. The
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FIG. 9. �Color online� Resonances with �a� even and �b� odd

z parity of the diamagnetic hydrogen atom at scaled energy Ẽ
=0.5. In most cases especially the real parts of the semiclassical
resonances obtained with the reduced data set �red crosses� agree
very well with the semiclassical resonances obtained with the com-
plete periodic-orbit set �blue squares�. For completeness and com-
parison the numerically exact quantum resonances are shown as
black dots.

GEHRKE, MAIN, AND WUNNER PHYSICAL REVIEW E 82, 066207 �2010�

066207-8



orbits of a bunch have a similar shape in the fundamental
domain of the coordinate space and only differ in the behav-
ior at self-encounters. We have introduced four reconnection
rules which allow for the grouping of orbits already on the
level of the symbolic dynamics in terms of a ternary alpha-
bet.

The exponential proliferation of periodic orbits of a clas-
sically chaotic system implies that semiclassical methods
based on Gutzwiller’s trace formula typically require an ex-
ponentially growing classical data set to resolve more eigen-
states. We have shown that the use of one or few represen-

tatives of the near–action-degenerate orbits can help to
significantly improve the efficiency of semiclassical quanti-
zation methods.

A peculiarity of the diamagnetic hydrogen atom is that
periodic orbits at positive energies are marginally stable. It
will thus be very interesting to investigate the existence of
near–action-degenerate periodic orbits for other chaotic sys-
tems such as N-disk or N-sphere scatterer and to study the
improvement of semiclassical quantization methods by using
the periodic-orbit bunches.
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