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We show that Fisher information I and its weighted versions effectively measure the order R of a large class
of shift-invariant physical systems. This result follows from the assumption that R decreases under small
perturbations caused by a coarse graining of the system. The form found for R is generally unitless, which
allows the order for different phenomena to be compared objectively. The monotonic contraction properties of
R and I in time imply that they are entropies, in addition to their usual status as information. This removes the
need for data, and therefore an observer, in physical derivations based upon their use. Thus, this recognizes
complementary scenarios to the participatory observer of Wheeler, where �now� physical phenomena can occur
in the absence of an observer. Simple applications of the new order measure R are discussed.
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I. MOTIVATION

The concept of disorder, as measured by the Shannon or
Boltzmann entropy H of a system, has a long and important
history. In this paper, we consider a complementary
concept—the level of order, or complexity, in the system.
What, quantitatively, is system order? Numerous authors
have considered this question to be equivalent to the state-
ment of the second law of thermodynamics, that disorder
must increase. On this basis order must decrease, where or-
der is in some sense the opposite of disorder. See, for ex-
ample �1�. Important properties of order that arise in specific
applications are often mentioned, such as its spontaneous,
coherent, or statistical natures �2�, but the term itself is never
quantified mathematically. It is, for example, inadequate to
simply define order as the “lack of disorder.” The word
“lack” has ambiguous meaning. As examples, with disorder
measured as usual by the entropy H, is the order to be de-
fined as C−H, with C some constant, C /H, exp�−CH� or a
cross-entropy? For all these ad hoc constructions a small
disorder �here H� gives a large order; or a large H gives a
small order; as required. That a multiplicity of possible ex-
pressions for order can be so easily formed suggests the need
for a quantification of the matter. This paper carries through
on the task, deriving the mathematical form for order from
first principles.

It is common to regard Fisher information I as the order
in some sense. Our particular motivation is the many recent
derivations of physical laws using the Fisher measure �3–5�.
Indeed, the famous Čencov inequality �6–9�, as taken up
below, defines a Fisher metric of order. Hence, one suspects
that, whatever the measure of order may be, it should in-
crease with Fisher I. Indeed it is found later to increase lin-
early with I.

II. DEFINING CONCEPTS

Consider a one-dimensional system of extension
�b−a� ,b�a, whose general coordinate x �a length, or en-
ergy, etc.� obeys a�x�b. The system is defined by its
known, discrete probabilities p�xi�� P�xi���xi+�x�,
where xi=a+ �i−1��x and �x= �b−a� / �N−1�, i=1, . . . ,N, N

large. Each interval �xi ,xi+�x� defines a pixel of the system.
With N large, �x is sufficiently small to be regarded as a
differential dx. It follows that the p�xi� are very small. For
the purpose of conveniently evaluating sums as integrals, we
later work with a probability density function �PDF�

��xi� � p�xi�/�x , �1�

and, in the limit, we have

�x → dx, xi → x ,

p�xi� → p�x�, ��xi� → ��x� , �2�

for a�x�b, and, for order R when it is introduced below,
�R→dR. Since the probability law p�xi� or the PDF ��xi�
define the system, we use these terms interchangeably with
the term “system.”

Both p�xi� and ��x� obey normalization,

�
i=1

N

p�xi� = 1, �
a

b

dx��x� = 1, and ��
i=1

N

p�xi� = 0 �3�

after perturbation of the p�xi�. Note: when no upper limits
are shown in sums below they are assumed to be value
i=N, that is xi=x=b, depending upon whether the discrete or
continuous case is taken.

A. Shift invariance

We assume that the system obeys shift invariance in its
probability law p�x� and PDF ��x�. Then the Fisher informa-
tion I obeys the usual shift-invariant forms �3–5�

I = �
i=1

N
1

pi
�dpi

dx
	2

= �
a

b

dx
1

��x��d��x�
dx

	2

� 0 �4�

in the discrete or continuous coordinate representations.
Equations �4� directly show that the Fisher information I in
either representation obeys positivity. For the sake of brevity
and directness, we use the term “positivity” rather than “non-
negativity” to describe a quantity whose value is greater than
or equal to zero.
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B. Use of amplitudes

We also find it convenient to work with real amplitude
values q�xi��qi, defined in terms of probability values p�xi�
as

p�xi� � q2�xi� = qi
2,

�pi = 2qi�qi,

�qi = �pi/�2
pi�, I = 4�
i=1

N �dqi

dx
	2

, �5�

the latter by use of Eq. �4�. Note that this definition allows an
ambiguity in 	 sign for qi. To remove possible ambiguity in
the resulting sequence of qi, i=1, . . . ,N we assume that one
definite sign is decided upon over all xi. For simplicity, let it
be the + sign.

III. FORMAL DEFINITION OF ORDER

Let the order R in a system obey positivity as defined
above and depend upon the system amplitude law in some
unknown way

R � R�q�x1�, . . . ,q�xN�� � R�q� � 0, �6�

using vector notation. The q are assumed to be known and
fixed, defining the system.

Our aim is to find the function R�q�. Note that this prob-
lem differs fundamentally from one in which R is known to
be, for example, a specific functional of the q and their de-
rivatives dq�x� /dx �x=xi

, i=1, . . . ,N. �The latter is the case in
Lagrangian problems.� No such specific knowledge of func-
tional form is present here. Our aim is to find it. The solution
R�q� is found, at Eq. �26�, to depend in particular upon the
first differences q�xi�−q�xi−1���q�xi�→ �dq /dx�dx of the q,
after the continuous limit �Eq. �2�� is taken. In the following
two subsections we give intuitive reasons for representing
the order R as a function R�q� of all the amplitudes across it
in xi.

A. Extension aspect

Intuitively, the amount of “order” in a system is the de-
gree to which its amplitude law q�xi� contains a large amount
of high-frequency structure. The amount of this structure
can, for example, be measured by the total gradient content
��q�xi� /�x�2 over its extension �b−a�. Thus, a larger system
extension should provide more order. Intuitively, in an apart-
ment building, there is more order, in the form of structural
detail, in two stories than in one. In fact our answer �Eq.
�26�� for R gives four times the amount. Also, by the last Eq.
�5�, the Fisher information I �Eq. �4�� is a direct measure of
the gradient content so, again, R should increase with I.

B. High-frequency aspect

Also, the density of the order, i.e., the amount of order per
Nyquist sampling point for a band-limited PDF, intuitively
represents the information in the system. An example is an

optical system of large aperture used in conjunction with an
array of solid-state detectors. This gives a large amount of
high-frequency image order detail per Nyquist interval, i.e.,
high information content. Such an image contains high levels
of both information and order. We next proceed with devel-
opment of the approach.

C. Effect of perturbations

Consider the affect upon R of perturbing amplitudes q by
small amounts �q. By Eq. �6� the order must likewise gen-
erally change. Depending upon the form of the order mea-
sure R, and of the perturbations �which can be of either sign�,
R could go up or down. Using ordinary Taylor series to sec-
ond order in �q, this change is

�R � R�q + �q� − R�q� ,

=�qT�qR + 2−1�qTM�q + ¯ , �7�

where �qT�qR��i��R /�qi��qi with �qR the gradient of R,
and M the Hessian matrix of elements Mi,j ��2R /�qi�qj. As
usual T denotes the transpose. We retain terms of the series
only out to second order in the �qi since these are small. In
summary, �R is the change in order at a given hyperspace
point q due to a random displacement �q of the entire q
system.

For later use, the above Eqs. �7� for �R may be restated as

�R = �R1 + �R2,

�R1 � �qT�qR ,

�R2 � 2−1�qTM�q ,

M � �Mi,j = � �2R

�qi � qj
� . �8�

D. Hermitian and Riemannian properties

From the last Eq. �8�, since partial derivatives may be
taken in any order, matrix M is symmetric. Also, the order R
is defined as real. Therefore, M is Hermitian. and its eigen-
values are positive,


i � 0, i = 1, . . . ,N . �9�

The 
i are explicit functions of the Mi,j, so ultimately the

i=
i�R�q��=
i�q�, implicit functions of the probability am-
plitudes.

At this point one is tempted to use the Čencov inequality
�6–9�, which states that the only Hermitian measure of order
that monotonically decreases after a coarse graining is the
Fisher-Rao metric �cf. Eqs. �12� and �16� below�. �Note that
we use the terms “perturbation” and “coarse graining” inter-
changeably.� By this approach, the metric of the total change
in order �R, and R itself, become simply proportional to the
Fisher-Rao metric. Now, metric M is indeed Hermitian, so
that this approach would seem to suffice. However, metric
M, that of �R2, is only one part of the total metric for this
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problem. By Eqs. �8�, there is the additional contribution
from �R1. Now, one may accomplish the additional �R1 sum
by adding a term ��R /�qi��qi

−1 to the ith diagonal term of M,
i=1, . . . ,N in the third Eq. �8�. These added terms also for-
mally maintain Hermiticity for the total metric since they
only add real numbers to the diagonal elements of the Her-
mitian metric M. However, the overall scenario is one of
very small perturbations �qi→0, and in this limit the added
terms approach infinity. Hence the total metric is not gener-
ally well-defined Hermitian, voiding the approach.

IV. POSTULATE OF THE MEASURE

As in the preceding, let R�q� represent the measure of
order in a system of amplitude law q. The order is defined to
decrease under coarse graining. What order has this prop-
erty? Let the system of amplitude values q�xi� be perturbed
by a second system. The latter is an effective “observer;”
either in the familiar “data taking” sense or, more generally,
as any physical system interacting with the first. For ex-
ample, the second system might be the outside environment
of the first. We assume that all perturbations �p, �q, �R,
etc., resulting from the interactive coarse graining are small.
Since the resulting system order R is generally decreased, if
the perturbations take place over a small time interval
�t�0 then �R�0 over that interval. Or, ipso facto, the
change �R over the corresponding negative time increment
−�t is positive, �R�0. That is, looking backward in time,
the order increases. Since it is mathematically simpler to
work with such positive changes, the analysis is carried
through over this negative time increment. However, of
course all applications and interpretations of the results as-
sume the usual positive time increments. In summary we
postulate that R be a function of the q that satisfies

�R � 0 for �t � 0. �10�

Čencov’s famous inequality will be used to satisfy the re-
quirement of decrease in order including the effects of per-
turbations out to second order in the probabilities. The an-
swer for R�q� turns out to be unique, from a heuristic
viewpoint.

A. Transformation of changes

We saw in Sec. III D above that M is Hermitian. It is well
known �10� that each N-dimensional point q may be shifted
by a small vector amount �q� to a new point q� via an
orthogonal, Hermitian matrix �B� with a special property.
This is that the linearly transformed changes

�q � �B��q� give �R2 � 2−1�
i


i�qi�
2. �11�

The transformation preserves the length �R2 both before and
after its use. Then by definition �8� of �R2

�2R

�qi� � qj�
= 
i�ij,

�R

�qi�
= 
iqi� + Ci, �12�

where �ij is the Kronecker delta. The second equation fol-
lows an integration of the first. We may now re-express the

order R and its changes �R1 and �R2 in the shifted system.
We show below that, effectively, the Ci�C�xi�=0.

Thus, by Eq. �11�, for the new system of changes �qi� the
resulting second-order total change �R2 lacks cross-term
products �qi��qj�, i� j. Note that the 
i depend upon the
original cross-term coefficients �2R /�qi�qj for all i , j. In
terms of the new changes �q� using Eqs. �11� and �12� we
have

�R = �R1 + �R2,

�R1 � �q�T�qR � �
i

�qi��
iqi� + Ci� ,

�R2 = 2−1�
i


i�qi�
2. �13�

The transformation replaces the effectively two-dimensional
problem �Eq. �8�� with a much simpler one of a single di-
mension.

As mentioned at Eq. �10�, over a negative time increment
the order R is required to increase,

�R = �R1 + �R2 � 0 for �t � 0 �14�

to second order in changes �qi. It is convenient to first re-
gard pixel length �x and change �R as finite, and then take
their continuous limits �Eq. �2��. Hence, we now ask, what
order measure R obeys property �14�?

By Eq. �13�, the requirement �14� becomes

�R � �R1 + �R2,

=�
i

�
iqi� + Ci��qi� + 2−1�
i


i�qi�
2 � 0, �15�

for �t�0. As was discussed, this requirement is equivalent
to requiring a loss, or contraction, −�R of order in the usual
positive time direction �t�0.

But Eq. �15�, like its antecedent �8�, is but a power series
expansion for �R. The difference is that, whereas �8� was a
power series in the original changes �qi, which contained all
second-derivative cross terms, the transformation �11� to new
changes �qi� has eliminated all cross terms.

B. Čencov’s inequality

Now we note that, because the eigenvalues 
i obey posi-
tivity �9� the second-order change �R2 will be positive. That
is, no matter the cause of the perturbations �qi, change �R2
always contributes toward the required positivity of Eq. �15�.
However, it is the sum �R1+�R2��R that is to be positive,
so that the effect of the chosen 
i upon �R1 must also be
considered. For some choices this might be negative, for
example, opposing the required positivity of the sum.

Is there a set of 
i that, in any scenario of coarse graining,
gives �R1+�R2�0? Čencov’s inequality states that for a
Hermitian metric, such as M, the required eigenvalues are


i = 1,i = 1, . . . ,N . �16�

However, M is the metric for �R2 and, as discussed below
Eq. �9�, the overall sum �R1+�R2 does not have a well-

QUANTIFYING SYSTEM ORDER FOR FULL AND PARTIAL… PHYSICAL REVIEW E 82, 066117 �2010�

066117-3



defined Hermitian metric. Hence, we simply evaluate the
sum under condition �16�, so as to test whether it does indeed
obey the required positivity.

C. Order increase due to coarse graining

By Eq. �16�, requirement �15� becomes

�R = �
i

�qi� + Ci��qi� + 2−1�
i

�qi
2 � 0, �17�

after noting that by transformation �11�, �qT�q
� ��B��q��T��B��q�� = �q��B�T�B��q� = �q��B�−1�B�
��q�=�q�T�q�. The second equality is a matrix identity,
and the third equality is a property of the orthogonal matrix
�B�. Then by Eqs. �3�–�5�, Eq. �17� becomes

�R = �x�
i

Ci

�qi�

�x
+ 2−1�x2�

i
��qi

�x
	2

,

→� dxC�x�
dqi�

dx
+ 8−1�x2� dx

1

�
�d�

dx
	2

,

=� dx�C�x��
dqi�

dx�
+ 8−1�x2I → dR�x� . �18�

We also used Eq. �1� and the continuous limit �2�. Note that,
the new dummy integration variable x� replaces x, so as to
clarify that �R depends upon x �only� through the second-
order small quantity �x2 in Eq. �18�.

V. R AS FUNCTION OF x

Since the system is fixed, information I in Eq. �18� is a
fixed constant, i.e., not a function of x. Then Eq. �18� is
effectively an expansion out to second order in changes dx of
the function dR�x�. Then likewise R=R�x�. This is not sur-
prising since defining Eq. �6� expresses R as a function of the
amplitudes q�xi� over the entire range of x.

The order function R�x� measures the local order point-
wise at coordinate x. Let R�x� be analytic. Then we may
expand R�x� in power series about the point x=a. Keeping
only terms out to second order,

R�x� = R�a� + �x − a��dR

dx
�

x=a
+ 2−1�x − a�2�d2R

dx2 �
x=a

.

�19�

This assumes that x−a��x→dx is small. Then from Eq.
�19�

�R�x� � R�x� − R�a� = �x�dR

dx
�

x=a
+ 2−1�x2�d2R

dx2 �
x=a

,

�20�

or

�R = �x�dR

dx
�

x=a
+ 2−1�x2�d2R

dx2 �
x=a

. �21�

Then this must equal the final Eq. �18�. We note that the term
�dx�C�x��dq��x�� /dx� has implicitly a multiplier ��x�0=1,

i.e., is a constant in x �as distinguished from the renamed
variable x� in the integral�. By comparison, Eq. �21� has no
constant term ��x�0. Also, Eq. �18� has no term in ��x�1

=�x. Then matching corresponding coefficients of powers of
�x in Eqs. �18� and �21� gives

� dx�C�x��
dq��x��

dx�
� 0,

�dR

dx
�

x=a
= 0,

2−1�d2R

dx2 �
x=a

= 8−1I . �22�

The first relation follows, for example, if the arbitrary inte-
gration constants Ci are chosen to be zero.

Then by Eqs. �20� and �22�, Eqs. �18� and �19� become,
respectively,

�R�x� = 8−1��x�2I, �t � 0, and

R�x� = R�a� + 8−1�x − a�2I . �23�

Since I�0, the former shows that, as required by Eq. �17�,
�R�x��0 is now achieved. The latter shows that, to qua-
dratic changes in x, the local order R�x� must increase. Thus,
R�x� measures the order out to extension x of the system.
This is over the system interval �a ,x�. These imply that finite
“order” is only associated with finite system extension, so
that the amount of order within interval �a ,a� is zero,

R�a� � 0. �24�

By the same token, the total amount of order R in the system
must be the amount included over its entire extension �a ,b�,

R � R�b� . �25�

Then from the preceding three equations

R � R�b� = 8−1�b − a�2I . �26�

This is the answer for total �as distinguished from local�
system order that we sought.

Taking a first change of Eq. �26� gives
�R=8−1�b−a�2�I. Then requirement �10� shows that not
only does the order R decrease after a coarse graining but so,
likewise, does the information I,

�I � 0 for �t � 0,

or, conversely

�I � 0 for �t � 0, �27�

i.e., looking backward in time.

Is the measure unique?

We next show that, at least on heuristic grounds, this ex-
pression for R�q�, is unique �a formal proof is outside the
scope of this paper�. In the Taylor-series expansion �8� for
�R, contribution �R1 is first order in the small changes �q
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while �R2 is second order. Therefore, if �R1 is nonzero, it
will dominate the total �R. Next, consider any set of coeffi-
cients �qR and changes �q that satisfy the positivity require-
ment �10�. The requirement is to hold for any �q and a
general set of amplitudes q. Then it should hold if the �q
are replaced by their negatives. �We note that normalization
requirement �3� will still be obeyed since, by �pi=2qi�qi,
the resulting �p simply change sign, so that their sum re-
mains zero.� But since �R1 is linear in the �q it must now be
negative, making �R negative and, hence, violating require-
ment �10�. The only way this result can be avoided is if all
components of the gradient �qR are zero, for a general set of
amplitudes q. By Eq. �8� this requires �R1=0. Now, this
does hold in the special case where amplitudes q are those
defining an equilibrium point, where R is extremized. How-
ever, this possibility is ruled out by our requirement that the
amplitudes be general, i.e., not limited to being at an equi-
librium point. An alternative route to positivity must be
sought.

The alternative we found is to instead rotate all changes
�q by a small amount, in Eqs. �11�–�15�, use the Čencov
choice of eigenvalues �Eq. �16��—which are unique accord-
ing to Čencov’s theorem since M is Hermitian—and then
proceed on to Eq. �18�. This satisfies the requirement �R
�0 since we later show, at Eqs. �22�, that the integral includ-
ing function C�x��=0 effectively. On this basis our final ex-
pression �26� for R is unique.

VI. DISCUSSION AND SUMMARY

Coarse graining is often used for describing the transition
from a quantum variable to its observed value or, more
grandly, from a quantum universe to a classical one �11–13�.
Another example is that of Voronoi tesselation �14�, whereby
mesoscopic particle-based fluid models are assumed to be
coarse-grained representations of underlying microscopic
fluids �15�.

By postulating at Eq. �10� that order should decrease un-
der coarse graining, we have quantified the notion of the total
order R �Eq. �26�� in a system. This basically traces to the
Hermitian nature of the second-derivative matrix M defined
in Eq. �8�. This property guarantees positive eigenvalues 
i
�9� in a transformed system �11� of changes �q� in ampli-
tude. The Čencov choice �Eq. �16�� of unit eigenvalues and
the use of Eqs. �11�–�17� gives an intermediary result �18�.
Here �R is the sum of an integral of an unknown function
C�x�� and a term linear in Fisher information I. Then in Eqs.
�19�–�22� the term in C�x�� is found to be effectively zero, so
that �18� gives a simple proportionality �R� I. Finally, the
Taylor expansion �19� used in conjunction with results �22�
gives the order �26� as R=8−1�b−a�2I.

Dividing Eq. �18� by Eqs. �26�, and again using Eqs. �22�
gives the relative change in order due to coarse graining, as
�R�x� /R=−��x / �b−a��2, a loss in the forward-time direc-
tion. The coarser the subdivision �x is the larger is the rela-
tive loss in order.

A. Partial graining

In the Appendix, we show that partial coarse graining
results in a smaller loss of order than does full coarse grain-

ing. The partial nature of the graining is enforced by impos-
ing K linear constraints upon the amplitudes q��x�. The con-
straints are described in Eq. �A1� by linear weight kernels
Fk�x�, k=1, . . . ,K. As is well known �and used� in statistics,
the existence of constraints tends to control the wildest per-
turbations in the amplitudes, in effect regularizing them to
the coarse graining process. For example, if there are M
linear constraint relations among its contributing variables, a
�2�x� variable with N total contributions has a reduced order
N−M, rather than N. Also, the lower the order is the less
spread out, or random, are the fluctuations x �16�. The result-
ing change in partial order is given in Eq. �A11�. It shows
that the order change �R is negative, as required, but not so
negative as in the absence of constraints. This satisfies intu-
ition, as discussed. Also, comparing the result �A12� for the
partial order R with result �26� for the full R �in the absence
of constraints� shows that the partial order value is the un-
constrained value reduced by a sum of weighted Fisher in-
formation I�Fk�. Thus, the constraints reduce the absolute
level of the order. This follows because Eqs. �A1� constrain
the fluctuations in the system amplitudes q��x�. Fluctuations
define structure, and structure defines order, so that the total
amount of order is reduced in this way. See also the ex-
amples below.

B. Unitless nature

Since from Eq. �4� the information I has units of x−2, the
result �26� shows that the order R is unitless. This allows for
great flexibility in comparing levels of order change. These
can be for different systems �say, a bacterium vs a water
molecule� and, even, for different parameters �say, time vs
position in a given system or in different systems�. Of course
the other well-known measure of disorder, the entropy, is
unitless. As with thermodynamic entropy, the measure also
has the benefit of consisting entirely of macroscopic param-
eters.

C. Fractal property

Equation �26� is the principle result of the paper. It gives
the total order measure as proportional to the shift-invariant
Fisher information and to the square of the system extension.
The distinction between order R and information I is conve-
niently seen when the system is degraded by coarse graining
defined by a simple linear magnification y=mx of the coor-
dinate x. By Jacobian transformation, the information I�y� in
the magnified system is I�x� /m2. Thus, for a stretch m�1 the
information goes down. By comparison, the order
is R�x�= �b−a�2I�x� in the original system, and the
stretched system has an order R�y�= �m�b−a��2I�y�
= �m�b−a��2I�x�m−2=R�x� once again. A simple magnifica-
tion does not affect the order. For the order to increase after
magnification, the amount of detailed structure in the system
has to increase as well. This becomes evident from the fol-
lowing examples.

D. Examples

The contrasting properties of order R and information I
are shown by the following examples. Suppose that the prob-
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ability density �PDF� curve ��x�= �2 /b�sin2�n�x /b�, over ex-
tension 0�x�b. This represents a raised sinusoid with n
ripples or lobes, with n=1 or 2 or, . . .. Using the second
Eq. �4� gives a Fisher I� I�n�= �2n� /b�2. The information
increases as the square of the number of ripples per unit
length of the system. Thus, the information measures the
concentration or density of detail. How does this compare
with the level of order? The use of Eq. �26� gives the order as
R�R�n�=b2I�n�= �2n��2 This is unitless, as proven gener-
ally above. It is also independent of the absolute extension b
of the system. Thus the order only depends upon the total
number n of ripples across it. Examples are shown in Figs. 1
and 2.

In Fig. 1, the solid curve is for n=1, the dotted for n=2.
They are defined over the same support interval �0,1�. The
order values are R�1�=4�2 and R�2�=16�2 units, depending
quadratically upon the number n of ripples. In Fig. 2, the two
PDF curves have an equal number n=2 of ripples but differ-
ent support intervals, as indicated. Although they look quite
different, on the basis of order R�2�= �2·2��2=16�2 units
for each. That R�n� does not depend upon b also verifies the
preceding subsection, by which order is independent of any
linear stretch of the system. To change the level of order
requires, by the result R�n�= �2n��2, changing the number n
of local “details” �here, number of ripples� in the system.
This is evident in Fig. 1, where it quadruples when n

doubles. Evidently, order is sensitive to the number of details
across the support interval, rather than to the magnitudes of
their local slopes. Conversely, for fixed support intervals, or-
der is as sensitive to local slope values as is information I.

E. Order and Fisher information as entropies

The general results �Eqs. �26� and �27�� indicate that
Fisher I and order R both show monotonic loss with �for-
ward� time. Quantities that show such monotonic behavior
are typically regarded as entropies. Thus, R and I are entro-
pies. This is compared with the usual interpretation �16� of I
as solely a level of information in data. It replaces this with
a property of the system that produces the data, namely, its
level of order.

Physically, Eqs. �26� and �27� thereby free all past �e.g.,
�3,4�� and future applications of Fisher I to physics from the
requirement that I represent solely the level of information in
data. It is only when we attempt to observe phenomena that
data are taken. In fact there is no mention of data in the
foregoing analysis. Rather, it focuses attention on system
function, through its PDF ��x�. In this way a requirement on
system data—its output—is replaced by one on system
function—its time-dependent order R. This obeys the mono-
tonic time evolution �10�, which defines decreasing order
with time.

F. Nonparticipatory phenomena

With data now no longer required as the basis for the
above applications, there is no longer a need for an observer.
This is most important, since of course most phenomena oc-
cur unobserved. For example, while a quantum system is not
being observed the temporal evolution of its wave function
follows the Schrödinger wave equation. The results of this
paper therefore now allow this to be derived, using the same
mathematics �3–5� as before, but without requiring observing
the effect �specifically, the four-position of a particle�.

Unobserved variables likewise occur as the intrinsic vari-
ables of a thermodynamic system, where extrinsic variables
such as temperature and pressure are instead used. In fact, by
expressing Fisher information I in terms of these extrinsic
variables one recovers the familiar laws of thermodynamics
including its Legendre transformation and concavity proper-
ties �17,18�.

Of course there are also physical effects that do depend in
large part upon the presence, and nature, of an observer. A
well-known example is the “quantum Zeno effect” �19�.
These effects are observer dependent in the sense of Wheel-
er’s �20� “participatory phenomena.” In these cases the
Fisher I is interpreted as in the past, i.e., as a property of
data.

In summary, past derivations of physical laws through
variation of Fisher I by use of the principle of Extreme
Physical Information �3,4� need no longer be regarded as
requiring an observer. Rather, one needs only a second sys-
tem that effectively coarse grains the first �see text above
�10��, perturbing the first’s variables xi through interaction
with them. An example is interaction via two-particle inter-
action potentials in the Hartree approximation. The result is
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FIG. 1. Plots of system PDFs ��x�= �2 /b�sin2�n�x /b� for
n=1,2.
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FIG. 2. Plots of system PDFs for n=2 ripples over two support
intervals.
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perturbation of the Fisher entropy, in accordance with Eqs.
�27�. A recent example �21� of such Fisher-based derivations
is of what is usually considered the basis for quantum theory,
i.e., the de Broglie quantum wave “hypothesis.” This deriva-
tion then predicts quantum effects, even before their obser-
vation. That is, the hypothesis is proven independent of any
measurement of waves, and from purely classical consider-
ations of physics and information.
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APPENDIX: PARTIAL OR CONSTRAINED COARSE
GRAINING

The preceding derivation was for the presence of full
blown coarse graining. On the other hand, if the coarse grain-
ing is constrained the fluctuations �q will be likewise con-
strained, and therefore of smaller amplitude. This describes a
scenario of partial coarse graining. Interesting discussions of
partial coarse graining may be found in �22,23�. There are
also notable examples of such graining in �i� analyzing bio-
logical whole-genome gene expression, and �ii� mesoscopic
nonequilibrium thermodynamics �MNET�: an extension of
the equilibrium thermodynamics of small systems.

Intuitively, the presence of such constraints represents
positive information. Thus it should act to preserve order
during the coarse graining. Then, although the order R
should still decrease in the positive time direction, it should
do so by a smaller magnitude than in their absence. The
previous, unconstrained answer �Eq. �26�� should be replaced
by one that reflects this effect. This is verified as follows.

Suppose the coarse graining is subject to K weighted con-
straints �Fk� ,k=1, . . . ,K

�
i=1

N

Fk�xi�p��xi� = �
i=1

N

Fk�xi�q�2�xi� = �Fk� ,

with �
k=1

K

Fk�xi� � Si � 1, �A1�

where i=1, . . . ,N and all weights Fk�xi��0. These con-
straints supplement mere normalization �Eqs. �3��. Notice
that, for any initial set of weights Fk�xi� at a fixed xi, the last
inequality Si�1 can always be made to hold by dividing
through the weights, and the original constraint values �Fk�,
by a suitable constant. To be definite, let this be the smallest
number that satisfies the requirement.

As with normalization, the �Fk� are assumed to be main-
tained after the coarse graining, so that

��Fk� = 0, k = 1, . . . ,K . �A2�

Possible examples are Fk�xi�= �xi−a�k�b−a�−k, for an arbi-
trary K. �Notice that these Fk are unitless.� Here Si in Eq.

�A1� is the sum Si=b�1−b�−1�1−bK� of a geometric series,
with b��i−1� / �N−1�. Then b�1, so that all Si�1 as re-
quired. This is without the need for any division by a con-
stant defined below �A1�.

Taking a differential of Eq. �A1� gives

��
i

Fk�xi�p��xi� = ��Fk� � 0 = 2�
i

Fkiqi��qi� �A3�

in briefer notation. The zero results since the constraints are
maintained during the perturbation process. We now replace
the Čencov choice �Eq. �16�� by a new choice


i � 1 − �
k

Fki � 0,i = 1, . . . ,N . �A4�

The inequality is enforced by the last Eq. �A1�.
The new choice �Eq. �A4�� again zeros �R1, as shown

next. �In this way the total �R1+�R2 obeys the required
positivity, as before.�

1. Quantity �R1

Equation �12� now becomes

�2R

�qi�
2 = 
i = 1 − �

k

Fki,

so that
�R

�qi�
= qi��1 − �

k

Fki	 + Ci, �A5�

with �2R /�qi��qj�=0 for i� j as before.
Substitution of �R /�qi� from �A5� into definition �8� of

�R1 gives

�R1 = �
i

qi��qi��1 − �
k

Fki	 + �
i

Ci�qi�. �A6�

Next, using constraint Eqs. �3�, �5�, and �A3� gives

�R1 = �
i

Ci�qi�. �A7�

2. Change �R2

Using choice �A4� in the last Eq. �11� gives

�R2 � 2−1�x2�
i

�qi�
2�1 − �

k

Fki	 � 0, �A8�

since of course �qi�
2���qi��

2�0, and since the last Eq. �A1�
required �kFki�1.

3. Transition to weighted information

Then since �R=�R1+�R2 the last two equations give

�R = �
i

Ci�qi� + 2−1�x2�
i

�qi�
2�1 − �

k

Fki	 ,

→� dx�C�x���dq�/dx�� + 8−1�x2�I − �
k

I�Fk�	 ,

�A9�

using the last Eq. �5�, and where �t�0 as usual. The I�Fk�
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are the weighted Fisher information �24�

I�Fk� � �
i

Fki�qi
2 →� dxFk�x�

1

�
�d�

dx
	2

�A10�

in the continuous limit �2�. In data processing �24�, each
information I�Fk� allows optimal parameter estimation in the
sense of minimizing the Fk

−1-weighted mean-squared error of
estimation.

4. Final expression for partial order

Use of the analysis �Eqs. �19�–�22�� again gives
�dx�C�x���dq� /dx��=0, so that Eq. �A9� becomes

�R�x� = 8−1�x2�I − �
k

I�Fk�� � 0, for �t � 0.

�A11�

Then steps analogous to Eqs. �23�–�26� give for the con-
strained order

R = 8−1�b − a�2�I − �
k

I�Fk�� . �A12�

Equation �A12� shows that R is again unitless, as it was for
the full coarse graining case. This is provided the constraint
kernels Fk are chosen unitless as in the example above.

As following Eq. �26�, taking a differential of Eq. �A12�
shows that the I−�kI�Fk�� Ip are entropies, in that they
change monotonically with time, as also is the order R. Ad-
ditionally, all information quantities in Eq. �A11� obey posi-
tivity. Then each extra information constraint I�Fk� decreases
the gain in order from the answer �Eq. �23�� for �R in the
absence of constraints. This is in the negative time direction,
as indicated. Hence, in the positive time direction it allows
the order change �R to be negative, as required, but not so
negative as in the absence of constraints. This satisfies the
intuition expressed at the beginning of this appendix.

Equation �A11� seems to allow a paradox, whereby with
proper choice of constraint kernels Fk�x� the local loss of
order �R�x� can be made to be zero. However, Eq. �A12�
shows that this can only be accomplished in the trivial case
where the total system order R is zero to begin with.
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