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The mechanism of plastic flow in amorphous solids involves nucleation-controlled shear transformations,
triggered under stress from fertile sites. However, the origin of these sites is still a matter of debate. In this
paper, we show that the connection between local plastic activity and coordination defects in amorphous
systems depends on the nature of the interatomic interactions. In particular, the directionality of the bonds, as
quantified by the three-body term in Stillinger-Weber-like interactions, affects not only the role of local defects,
but also the size of the plastic rearrangements, and the global stress-strain behavior. We study the effect of
structure changes due to different quenching rates as well. We conclude the paper by a comparison between
amorphous plasticity and the Peierls-Nabarro theory of plasticity in crystals.
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I. INTRODUCTION

The microscopic origin of the plastic deformation in
amorphous solids is not so well understood as plasticity in
crystals. In crystals, the plastic deformation is supported by
linear defects, the dislocations, whose interactions and nucle-
ation processes are now well known �1�. Moreover, the regu-
larity of the lattice in crystals allows to perform exact calcu-
lations, as for the Peierls-Nabarro Theory of yield stress �2,3�
where the width of the dislocation and the directionality of
the bonds is shown to play a crucial role in the quantitative
value of the critical stress for dislocation motion. In the case
of amorphous solids, the nature of defects is currently iden-
tified as local shear �4�, shear transformation �5�, or shear
transformation zone �6�, with a spatial organization triggered
under an external stress, which is still a matter of active
debate �6–14�. The nucleation of these active sites, as well as
their interaction during plastic deformation is not well under-
stood: is it possible to identify a local structural criterion for
plasticity �12–17�, or are the plastic rearrangements mainly
triggered by long range interactions �8,12�? What are the
mechanisms responsible for the propagation of the plastic
rearrangements? Do they propagate through elastic cascades
�11,12�, statistical interactions �6,7�, collective instability �4�,
or history-dependent structural changes in the material
�10,18�? Moreover, the stress-strain behavior is sometimes
characterized by strain softening and inhomogeneous plastic
flow. However, the microscopic origin of the strain softening
in disordered solids is not yet understood �13,15,19–23�.

In this paper, we study the elastoplastic response of a
model glass in the athermal limit, with the help of quasistatic
classical simulations. The model glass is inspired by classical
descriptions of amorphous silicon �A-Si�. It is described
through empirical interactions with two and three-body inter-
actions �24�, and is submitted to an external shear. Tuning
the three-body contribution in the interatomic interactions
allows us to study the systematic effect of local order and
directionality of the bonds on the mechanical response of the
system. Different quenching rates have also been compared
for the preparation of the initial configurations, in order to

enhance the effect of the initial structure on the mechanical
response. The paper is organized as follows: in the first part
we describe the numerical details, in the second part we
compare the global stress-strain behavior of our different
samples, we then propose a method to analyze quantitatively
the local plastic rearrangements in the system. In the last
part, we insist on the different roles played by local coordi-
nation defects and on their restricted connection with local
plastic rearrangements. Finally, we conclude by providing a
qualitative comparison with the Peierls-Nabarro theory of
plastic yield in crystals.

II. PREPARATION OF THE AMORPHOUS SILICON
MODEL AND COMPUTATIONAL DETAILS

We consider a model amorphous silicon �A-Si� consisting
of 32 768 atoms contained in a cubic box with lengths Lx
=Ly =Lz of approximately 87 Å. In order to generate the
amorphous structure we use a procedure similar to that out-
lined in Refs. �26,27�. An initial Si crystalline configuration
is heated up to the liquid state and equilibrated at 3500 K;
afterward, we perform a quench with quenching rates be-
tween 1011 and 1014 K /s. When a temperature of about 10 K
is reached, the quenching procedure is stopped and a poten-
tial energy minimization with respect to the atomic positions
is performed. The minimization is done using the Polak-
Ribiere version of the conjugate gradient algorithm, using
the backtracking method described in Nocedal and Wright’s
numerical optimization �29�. The minimization is stopped
when all the force components are below 10−3 eV /Å. In the
heating, quenching, and minimization procedures the Si at-
oms interact via the Tersoff potential �25�. In this way we
obtain the initial configurations that we use in the study of
the mechanical response of A-Si.

In order to analyze the effect of the local order on the
plastic response we have considered the mechanical behavior
of A-Si where the Si-Si interaction is described by the
Stillinger-Weber �SW� potential �24�, where we have tuned
the prefactor of the three-body term �. We have studied the
mechanical response of the system for values of � ranging
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from 17 to 40 �for the usual SW potential �=21�. In this way
we can tune the bond directionality, favoring local order, in
our system. In order to obtain initial 0 K configurations of
A-Si for different values of � we have annealed the initial
Tersoff configuration, generated with the procedure de-
scribed above, using a Berendsen thermostat �30� at 100 K
for 10 ps for all the considered values of � and SW potential.
Then the thermostat has been switched off and the system
has been minimized with the same procedure used for the
Tersoff potential. Extra 0 K configurations of A-Si have also
been obtained by applying a Berendsen barostat while an-
nealing the initial Tersoff configurations at 100 K and during
the subsequent minimization procedure up to 0 K. The Ber-

endsen barostat ensures that an optimal volume of the box is
found, which gives a very low residual pressure. Other initial
A-Si configurations have been generated by applying the
same procedure, but annealing at 120 K instead of 100 K.
The radial distribution functions corresponding to the initial
configurations with different � and quenching rates are
shown in Fig. 1. As it can be seen in Fig. 1�a� almost all the
curves show a higher peak at r=2.34 Å, corresponding to
the first-neighbors distance. Smaller peaks appear at r
=3.8 Å and r=5.8 Å. A smaller shoulder at r=3.35 Å is
also observed, which corresponds to the tendency of the SW
potential to form fivefold coordinated defects. Regarding the
effect of the quenching rate on the structure of the initial
configurations, we see that the height of the first peak, lo-
cated at r=2.34 Å, tends to increase and that of the first
minimum, located at r�2.88 Å, tends to decrease by de-
creasing the quenching rate. This is a signature of a more
solidlike structure for low enough quenching rates; on the
other hand, if the starting liquid configuration is quenched
very fast �e.g., quenching rate 1014 K /s� the first minimum
is sensibly larger than zero and the shoulder is much more
pronounced, resembling a more liquidlike structure. These
preliminary considerations are quite important for the under-
standing of the role played by the structure in the plastic
response of the system. The main structural properties of the
amorphous configurations we have obtained are reported in
Table I �for several values of � and quenching rate
1011 K /s� and in Table II �for different quenching rates and
�=21�. After having presented the method we used to gen-
erate the initial configurations, we briefly comment on the
choice of the Tersoff potential for the initial quenching pro-
cedure. This was motivated from a previous work from Ref.
�27� in which this potential is employed with success to ob-
tain A-Si structures in reasonable agreement with experimen-
tal structure factors. Moreover, even at quenching rate of
1011 K /s the Stillinger-Weber potential is known to lead to
configurations too close to the liquid state showing a large
angle deviation as well as an excess of fivefold coordinated
defects which lead to an extra peak in the radial distribution

TABLE I. Comparison of structural properties for A-Si for different values of the prefactor � of the
three-body term of the SW potential. The configurations are obtained with a quenching rate of 1011 K /s.

Property �=17 �=19 �=21 �=23.5 �=26.25 �=40

Average coord. 4.35 4.11 4.08 4.06 4.05 4.00

Average angle 107.06 108.53 108.81 108.93 109.02 109.21

Angle Dev. 17.54 12.92 11.92 11.43 11.03 9.72

C44 �GPa� 25.63 29.38 34.24 39.38 44.35 64.88

B0 �GPa� 107.28 99.3 100.59 103.48 106.81 121.12

� 0.389 0.365 0.347 0.331 0.318 0.273

Density �g /cm3�
Without barostat 2.30277 2.30277 2.30277 2.30277 2.30277 2.30277

With barostat 2.33915 2.2953 2.248433

Pressure �GPa�
Without barostat −1.82 −0.096 0.638 1.38 2.1 5.07

With barostat −0.011168 0.01331 −0.1142
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FIG. 1. �Color online� Radial distribution for different values of
� and quenching rate 1011 K /s �a�, and for different quenching
rates and �=21 �usual SW potential� �b�.
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function �31� which is not observed in the experiments �32�.
We have studied the plastic response of A-Si for the dif-

ferent initial configurations by applying a shear strain in the
x direction in the quasistatic limit. To reach this limit, we
apply successive stepwise incremental homogeneous el-
ementary shear strains of step size ��=10−3 �corresponding
to an elementary displacement of �x=2��Ly =0.1745 Å�.
After each strain step, the sample is then relaxed by using the
same minimization procedure as described above. This pro-
cedure assumes that the system has enough time to relax
between two consecutive shear steps, that is the case in a
quasistatic loading at very low temperature. It has been
proven recently that this procedure is the exact quasistatic
limit of a finite shear rate deformation at very low tempera-
ture �33�. For each configuration, we have considered a se-
ries of 250 elementary strain displacements, corresponding
to a total displacement of 50% of the length of the system. In
the following, we will refer to shear strain as the ratio �x /Ly,
so that the maximum strain applied is 50%. The preparation
of the initial configurations and the quasistatic shear dynam-
ics has been done using the open source LAMMPS molecular
dynamics simulation package �34�, enabling us to perform
parallel calculations on the different configurations.

III. STRESS-STRAIN RELATIONSHIP

In order to probe the elastic and plastic response of the
system for different values of the prefactor � of the three-
body term of the SW potential we have computed the shear
stress as a function of the applied strain for all the values �
considered. The stress tensor ��� was computed in the re-
laxed minimized configuration from the derivative of the to-
tal energy E,

��� = −
1

V
�

i
�
j	i

�E

�rij
� rij

� , �1�

where V=LxLyLz is the total volume of the box and rij
� is the

component along the � direction of the position vector be-
tween atoms i and j. Since we apply the strain along the x
direction we are interested in the shear stress in the xy plane,
i.e., �xy. Figures 2�a� and 2�b� show the evolution of the
shear stress as a function of the applied strain for several
values of � and for different quenching rates, respectively.

The general trend seen in Fig. 2�a� is that the shear stress
increases as a function of �. In the low strain regime all the
curves display a linear behavior, whose slopes correspond to
the values of the elastic constants C44 found for the different
values of � �see Table I�: the higher the value of the three-
body contribution the higher the slope is, thus the more rigid
is the system. This is simply due to the fact that a higher
prefactor in the three-body term produces higher energies
associated to the angle distortions. The initial linear regime
in the stress-strain relationship does not necessarily corre-
spond to an elastic behavior because when the shear is ap-
plied some local irreversible rearrangements can take place
in the system �4,26�. These rearrangements correspond to
plastic events. They have been identified by applying a re-
verse strain step on the system and measuring the corre-
sponding energy dissipation, as detailed in Sec. IV. In order
to more clearly relate the stress-strain behavior to the micro-
scopic dynamics of the system we have shown in Fig. 3 �left�
the displacement field in a narrow z region of the system
during an elementary strain step and for �=40. At low strains
�Fig. 3�a�� the displacements are heterogeneous although
mainly reversible and linear with the applied strain. When

TABLE II. Comparison of structural properties for A-Si for dif-
ferent quenching rates with �=21.

Property 1011 K /s 1012 K /s 1013 K /s 1014 K /s

Average coord. 4.08 4.12 4.19 4.39

Average angle 108.81 108.50 108.1 106.96

Angle Dev. 11.92 13.69 15.52 19.46

C44 �GPa� 34.24 32.04 29.98 27.66

B0 �GPa� 100.59 105.19 108.71 118.57

� 0.347 0.362 0.374 0.392

Density �g /cm3� 2.30277 2.32238 2.32238 2.32238

Pressure �GPa� 0.638 1.34 1.019 −0.8787
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FIG. 2. �Color online� Shear stress vs shear strain for different
values of � and quenching rate 1011 K /s �a�, for different quench-
ing rates and �=21 �usual SW potential� �b�, and for different initial
pressures—see Table I �c�.
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the shear strain is increased some local irreversible rear-
rangements can be identified. Figure 3�b� shows a typical
quadrupolar irreversible �plastic� event in the bottom part of
the system. During the deformation, the plastic events tend to
increase in number and after the breakdown point �or yield
point�, i.e., the location where the stress is maximum, they
eventually give rise to elementary shear bands, spanning the
whole system size. Note that several shear bands can appear
during the plastic deformation, for example around 22% just
after the previously described quadrupolar event, or as dis-
played in Fig. 3�c� at strain 40% when another large stress
drop is observed. As it can be seen, the shear band is due to
an alignment of vortices along the shear direction, as usual in
disordered systems �4,28�.

The three prototypical displacement configurations shown
in Fig. 3 for �=40 are quite generic, and the same kind of
patterns has been seen for the other values of � that we have
studied. The dependence of the yield strain �strain at which
the stress is maximum� and of the flow stress �average value
of the shear stress in the last 10% of the shear-stress curves,
in the plastic plateau� on � and on the quenching rate are
shown in Fig. 4. As it can be seen from Fig. 2, it is difficult
to extract a univocal value of the flow stress because for such
a small system size �4� the plateau of the stress-strain curves
exhibits large fluctuations and steps, which are a signature of
a high plastic activity and of the occurrence of shear bands.
In particular the stress tends to increase in some cases for
high strains �for example the flow stress for �=21 is larger
than that for �=23.5� giving rise to the dip in the flow stress
vs � curve as seen in Fig. 4�a�. There is however a clear
tendency for both the yield strain and the flow stress to in-

crease with �, and the value of �=21 appears as an inflexion
point for the yield and for the flow stresses, suggesting two
different kinds of mechanical behaviors for small ��
21� or
large ��	21� values. Noticeably, at the yield point the stress
has an abrupt drop for high values of �, while by decreasing
� this drop becomes less sharp and for low � no drop at all is
observed; in the latter case the stress increases smoothly with
the strain as it has been already observed in the case of a
purely two-body interaction �4�. The same qualitative behav-
ior is observed by varying the quenching rate. If the system
is cooled down slowly from the liquid an amorphous solid is
formed and a drop in the stress is found at the yield point,
which becomes smoother for higher cooling rates. At the
highest cooling rate we have used �1014 K /s�, the stress-
strain curve becomes very smooth, suggesting the impor-
tance of the detailed structure in the mechanical response of
the system. Finally, the study of the initial pressure depen-
dence shows a tendency for the flow to be stabilized when
the initial pressure is smaller, especially for higher values of
�-see Fig. 2�c�.

IV. DETERMINATION OF PLASTIC REARRANGEMENTS

In order to identify the plastic events in our system we
have developed a method that allows us to determine which
are the plastically active regions in the sample on the basis of
the comparison between initial and reverse configurations at
each strain step. The reverse configuration at strain step �i is
obtained by starting from the minimized configuration at
strain �i+1 and by performing a backward minimization at
strain �i. The backward minimization corresponds to an elas-
tic relaxation and the comparison between the initial and
reverse configuration defines the plastic energy,

Ei
plastic = Ei

ini − Ei
rev, �2�

where Ei
ini is the energy of the initial configuration at �i, and

Ei
rev is the energy of the reverse configuration at the same
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FIG. 3. Displacement field during an elementary strain step ��
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strain �i. In order to spatially identify a plastic event, and
discuss the localization and the spatial organization of plastic
events into shear bands, we introduce a quantity that we call
the “atomic plastic energy.” This local quantity is computed
on each atom during a forward and backward deformation as
an irreversible sum over the pair and three-body contribu-
tions. It is defined as

PEat�ia� = ��
ja

�Via,ja
2b ��i

ini� − Via,ja
2b ��i

rev��2

+ �
ja

�
ka

�Vja,ia,ka

3b ��i
ini� − Vja,ia,ka

3b ��i
rev��2	1/2

, �3�

where Via,ja
2b is the two-body energy due to the interaction

between atoms ia and ja, and Vja,ia,ka

3b is the three-body con-
tribution from the triplet ja , ia ,ka in which ia is the central
atom. The local quantity PEat�ia� is not affected by block
motions �translations or rotations�, but it reflects irreversible
changes in the bond length and/or angle. In order to obtain a
continuous field from the atomic plastic energy we used a
coarse-graining procedure similar to Ref. �35�. We thus de-
fine a density of plastic energy PE�r� by

PE�r� = �
ia

PEat�ia�
 1

���2�3/2exp −
�r − ria

�2

�2 � �4�

where � is the characteristic Gaussian width ��2.6 Å�
which corresponds approximately to the first neighbor dis-
tance. Typical examples of PE�r� on a plane are shown in
Figs. 3�d�–3�f� for shear strains of 1.6%, 22%, and 40%,
respectively, in the case �=40. Elementary plastic events are
identified from the local maxima of the density PE�r�, and
we define their intensities by summing of the density of plas-
tic energy �Eq. �4�� over their basin. A basin �36� is formed
by the region of space traversed by all the paths along the
gradient direction �� PE�r� that terminate at the same local
maximum of PE�r�. Therefore the basins associated to dif-
ferent local maxima �the attractors of PE�r�� form disjoint
regions of space over which PE�r� can be summed.

In order to practically determine the attractors of PE�r� as
well as their basins and the corresponding intensity, we used
a simple methodology already described in Ref. �37� in
which we write the density of plastic energy on a �100
100100� 3D grid before performing a finite difference
analysis. First the attractors are determined as the local
maxima on the grid. The corresponding basin is then ob-
tained by finding the grid points belonging to all the possible
paths that start from an attractor grid point and along which
the density PE�r� decreases. Because we use a finite grid, a
single grid point close to the basin’s surfaces can be shared
by several basins. In this case the density on the grid point is
equally divided between the basins it belongs to.

Following this procedure a set of elementary events is
found for each configuration. Figure 5�a� gives an example
of the spatial repartition of the density region for the basin of
highest intensity for �=40 at shear strain 40%. In Fig. 5�b� a
similar plot for both the two basins of highest intensity is
shown. As it is suggested by the large number of maxima
with very low plastic energy densities seen in Fig. 3�d�, our

scheme may lead to a large number of elementary events
�typically several hundreds� per configuration which may not
all be significant to address the overall plastic properties of
the amorphous material. To avoid the analysis of a large
number of elementary events at each configuration we ap-
plied two additional criteria from which we selected only the
most significant elementary events to which we will refer in
the following as “plastic events.” Our first criterion reflects
the fact that at low shear strain, the reversible nonaffine field
is associated to a large ensemble of attractors and basins of
low intensity which lead to insignificant value of the plastic
energy, due to numerical accuracy even after the reverse de-
formation �Ei

plastic�1 meV�. To get rid of these low inten-
sity attractors which are typically represented by the two-
dimensional projection in Fig. 3�d�, we first ordered all the
elementary events as a function of their intensity �i.e., the
density summed over their basin�. Then, we systematically
discarded the low intensity elementary events starting from
the lowest intensity event until we found an intensity differ-
ence from one event to the next one of at least +0.03 eV.
This energy step in the intensity distribution of the elemen-
tary events indeed indicates the occurrence of a higher plas-
tic activity with respect to the “sea” of events associated to
the numerical accuracy accompanying the reversible non-
affine displacement field. Its value corresponds roughly to
the contribution to the variation of energy due to forces
within the numerical accuracy �10−3 eV /Å� during a coop-
erative displacement of a few tens of Å �39�. In our data, this
value clearly separates large scale events to a sea of minor
events, in the beginning of the deformation. Using this crite-
rion the elementary events shown in a 2D projection in Fig.
3�d� are discarded while the most relevant ones as for ex-
ample the main event shown in Fig. 3�e� are considered for
further analysis. However, at large strains, all the elementary
events can bear rather large intensities without large intensity
difference between events. These tiny differences are not
necessarily associated to small reversible displacements and
numerical accuracy. In this case, the application of our first
criterion may wrongly discard significant plastic events. To
ensure that all significant events are always present in our
analysis, we applied a second criterion which includes in the
list of plastic events all the elementary events whose attrac-
tors are located at less than 3.4 Å �slightly larger than the

1st attractor 2nd attractor

(a) (b)

Z

X

Y

FIG. 5. �Color online� �a� Region of high plastic energy density
for the most intense plastic event found at �=40 and shear strain
40%; the color code ranges from blue to dark red �black to gray in
the black and white version� which corresponds to a variation rang-
ing from 20% of the maximum density, to the maximum density.
The shear band here spans the plane �X ,Z� �b� Region of high
plastic energy density for the two most intense plastic events for the
same configuration as in �a� with the same color code.
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size of the first neighbors shell� from an atom that displays a
nonaffine displacement larger than 0.05 Å. This arbitrary
value for the nonaffine displacement has been chosen by
comparing the total PE�r� energy integrated over all the ba-
sins with the total dissipated energy Ei

plastic. It allows to con-
sider all events contributing significantly to the dissipated
energy, especially for high stresses, in the second part of the
deformation process �39�.

V. ANALYSIS OF THE PLASTIC REARRANGEMENTS

The evolution of the total number of plastic events with
the applied strain is shown in Fig. 6. From this figure, it is
clear that the total number of plastic events decreases by
increasing � and/or by decreasing the quenching rate. Fur-
thermore we can identify a region at low strains where the
number of plastic events does not increase significantly by
increasing the applied strain. This allows to define a strain
threshold �see inset� beyond which the increase of the num-
ber of plastic events is approximately linear with the applied
shear strain. Interestingly this strain threshold increases with
� in accordance with the increase of the yield stress with �
shown in Fig. 4�a�, and decreases with the quenching rate in
accordance with the decrease of the yield stress with the
quenching rate shown in Fig. 4�b�. This indicates that the
triggering of plastic rearrangements requires to overcome
some energetic barriers which are possibly reduced by the
application of the shear strain, but always increase with �, or
with a lower quenching rate. The sole number of plastic
events, however, does not provide enough information on the

mechanisms ruling the plastic response of A-Si. The plastic
energy defined in Eq. �2� gives a measure of the energy dis-
sipated in plastic rearrangements. If at a certain applied strain
there are events contributing to a large increase in the plastic
energy, we expect to find a corresponding large variation in
the shear stress at that particular strain value. This is con-
firmed by looking at the behavior of the cumulative plastic
energy as a function of the shear strain, displayed in Fig. 7
that can be compared to stress drops displayed in Fig. 2.

For low values of � the plastic energy is very low at small
shear strains and then it increases smoothly and linearly for
larger applied strains. For larger � we notice a dramatic in-
crease of the plastic energy at the yield strain. The magnitude
of this increase is larger for larger � and reflects the strain
softening observed in Fig. 2. We can also see that the fluc-
tuations of the plastic energy in the high strain regime be-
come more pronounced by increasing �; such a behavior can
be ascribed to the occurrence of localized plastic events and
shear bands carrying a larger amount of plastic energy. A
similar trend is found by decreasing the quenching rate. This
kind of information cannot be deduced by simply looking at
the evolution of the number of plastic events of Fig. 6, which
shows only a smooth linear increase even for large values of
� or for small quenching rates, but must be related to the
change in the nature of the plastic events with the applied
strain.

We analyze now in detail the size and the spatial distribu-
tion of plastic events. We can estimate the size of a plastic
event by using the method used to identify a plastic event,
and looking at the decay of the intensity of an attractor as a
function of the distance after angular average. We fit it with
an exponential function whose exponential decay factor
gives a measure of the size of the basin of the attractor, that
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FIG. 6. �Color online� Cumulative number of plastic events as a
function of the applied shear strain for different values of � for a
A-Si system prepared with a quenching rate of 1011 K /s �a� and for
different quenching rates with �=21 �b�. The black lines are linear
fits to the curves at large strains. In the insets, the strain threshold,
defined from the linear fits of the curves at large strain.
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we assume to be approximately the typical size of the corre-
sponding plastic event. Repeating this procedure for all the
attractors and averaging over all of them at each strain, we
obtain the evolution of the average size of the plastic events
with the applied shear strain, which is shown in Fig. 8. It can
be seen that the average size tends to saturate at large strains,
although large fluctuations are still visible. Moreover, the
size of the plastic events generally decreases by increasing �.
Apart from �=17 �Fig. 8�a�� and for quenching rate
1014 K /s �Fig. 8�b��, we observe a maximum in the size that
is approximately located at the yield point. This indicates
that at that point large plastic events occurs in the system,
most probably arranged in a shear band, which is consistent
with the microscopic dynamics as shown in the displace-
ments in Fig. 3. For �=17 the behavior is quite different,
with few peaks located at different values of strain; in fact, in
this case, many shear bands and large localized events occur
at different places in the system and for relatively small ap-
plied strain, allowing to a progressive but almost homoge-
neous global deformation. This is very different for large �.
Combining the information from Fig. 6–8 we can argue that
for low values of � and/or for high quenching rates the plas-
tic response is dominated by many large plastic events for
which the rate of plastic energy is roughly constant �approxi-
mately linear increase of plastic energy with shear strain�,
while for larger values of � and/or smaller quenching rates
the plastic events become rarer and smaller in size, but they
carry a large amount of plastic energy once the yield point
has been reached. In other words, the elastic energy is accu-
mulated and released abruptly at the yield strain for large �

and or small quenching rates; on the other hand, for small �
and/or large quenching rates the plastic energy is widespread
through many more plastic rearrangements.

It is interesting at this point to compare the quantitative
values obtained here in the case of amorphous solids with the
estimation of the yield stress given by Peierls and Nabarro
�2,3� in case of a single dislocation moving in a crystal. The
Peierls stress �xy

� is given by

�xy
� = Ae−2�W/b, �5�

where A=2C44 / �1−�� �� is the Poisson ratio�, W is the dis-
location width and b is the Burgers vector, given by the
interatomic spacing. We will consider in our case that W is
given by the average size of the plastic events in the plastic
flow part of the stress-strain curve. The Peierls stress is the
force per unit surface needed to move a dislocation within a
plane of atoms. It corresponds to the barrier needed to spread
the plastic deformation along the solid. It can therefore be
associated to the yield stress in our analysis. Although Eq.
�5� was introduced in the context of dislocation theory in
crystals we can try to apply it to our case for the motion of
shear bands in amorphous solids in order to establish a rela-
tionship between the yield stress and the width of a shear
band and to characterize the effect of the local order �through
the parameter �� on this relation. Therefore our assumption
is that the isolated shear band behaves in a dislocationlike
fashion. From the data of Tables I and II combined with the
measurements of the yield stress �Y and of the width W, we
get an estimation of b��� given by Eq. �5�. The results are
reported in Table III for different values of � and of the
quenching rate.

Surprisingly enough, we see from Table III that the com-
puted values of b are all in the same range b

TABLE III. Yield stresses �Y, width of the plastic event at the
yield point W and corresponding values of b obtained by using Eq.
�5� for different values of � for a A-Si system prepared with a
quenching rate of 1011 K /s, and for different values of the quench-
ing rate at �=21.

�
W

�Å�
�Y

�GPa�
b

�Å�

17 6.11 2.01 1.64

19 6.11 2.80 1.75

21 5.63 4.23 1.75

23.5 5.13 5.47 1.67

26.25 4.73 6.64 1.59

40 4.57 10.13 1.59

Quench rate
W

�Å�
�Y

�GPa�
b

�Å�

1011 K /s 5.63 4.23 1.75

1012 K /s 5.39 3.53 1.61

1013 K /s 5.39 3.0 1.56

1014 K /s 5.30 2.32 1.45
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FIG. 8. �Color online� Average size of plastic events as a func-
tion of the applied shear strain for different values of � for a A-Si
system prepared with a quenching rate of 1011 K /s �a� and for
different quenching rates with �=21 �b�. In order to reduce the
statistical noise each data point has been averaged over ten shear
steps.
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=1.6 Å�10%, independently of the value of � and of the
quenching rate. Moreover, b is comparable �while always
smaller� to the interatomic distance. This result supports thus
the description of plasticity in amorphous solids as a dislo-
cationlike mechanism, where the elementary processes are
strongly dependent on the local order, especially through
their effective width W. In the following section we will
study the connection between the location of elementary
plastic events and structural defects in our samples.

VI. CORRELATION BETWEEN COORDINATION
DEFECTS AND PLASTIC EVENTS

The coordination number of each atom is calculated by
counting the number of neighbors within a cutoff radius of
2.9 Å, which is consistent with the tail of the first neighbor
shell as seen in the radial distribution functions. The percent-
age of fourfold, threefold and fivefold coordinated atoms is
plotted in Figs. 9 and 10 as a function of the applied shear
strain for different values of � and for different quenching
rates, respectively. The coordination number that is the most

representative of the system allows to define, by opposition,
the structural defects. For the system at rest and ��17, the
majority of atoms is fourfold coordinated. We will thus con-
sider in the following threefold and fivefold coordinated at-
oms as sites of structural defects. However, these percentages
evolve with the applied strain. Generally the number of de-
fects increases with the shear strain. It is not the case for pure
two-body interactions, as in Lennard-Jones glasses. This in-
crease is rather sharp at the yield strain when the system
experiences more irreversible rearrangements. The percent-
age of defects created and the most dominant defects vary
strongly with �. For lower values of � we observe a pre-
dominance of fivefold coordinated atoms, while for higher
values of �, threefold coordinated atoms dominate, since a
stronger three-body term favors the atoms being far apart, in
qualitative agreement with the findings of Ref. �26�. The en-
vironment of atoms is thus strongly � dependent, and the
defects created are not always “liquidlike” in contradiction to
the schematic description in Ref. �15�. Interestingly, for �
=17 the number of defects overcomes the number of fourfold
coordinated atoms already at a shear strain of 20% �in this
case the percentage of defects reaches 60% after a deforma-
tion of 50%�, while for the larger values of � studied the
fourfold coordinated atoms are always larger in number. If
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FIG. 9. �Color online� Percentage of fourfold �a�, threefold �b�,
and fivefold �c� coordinated atoms as a function of the shear strain
for several values of � for a A-Si system prepared with a quenching
rate of 1011 K /s. These coordination numbers were calculated by
fixing a cutoff of 2.9 Å.
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FIG. 10. �Color online� Same as Fig. 9 for different quenching
rates with �=21.
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we increase the quenching rate we also see from Fig. 10 that
the number of defects increases. This is in agreement with
the more disordered structure obtained by preparing the sys-
tem with a faster quenching. In particular, fivefold defects
become dominant for large quenching rates. The occurrence
of plastic events might thus be related to the increase of the
number of defects in the structure, for all the values of �
studied here �38�.

We want now to quantify the propensity for a plastic
event to localize near a structural defect, as a function of �
and of the quenching rate. For this purpose it is not sufficient
to simply count the number of plastic events localizing on
defect sites, since different structures may have different
densities of defects. Therefore we must consider the ratio
between the percentage of plastic events located on defect
sites and the percentage of the corresponding defects. More
precisely we introduce, at each applied strain �i, the follow-
ing “correlation function” C��i�:

C��i� =
ppe

defn

pdefn , �6�

where ppe
defn is the percentage of plastic events that localize

on defects or nearest neighbors and pdefn is the percentage of
global defects, i.e., the ratio between the number of defects
or nearest neighbors of defects and the number of atoms. By
using definition �6� we can follow the evolution of the cor-
relation between plastic rearrangements and defects as a
function of the applied strain. If C��i�	1 the plastic events
at strain �i are preferentially localized on defects or nearest
neighbors of defects. A value of C��i�
1 means that plastic
events tend to avoid these sites. If C��i�=1 the plastic events
and the defects at strain �i have no explicit correlation. The
evolution of C��i� for different values of � and for different
quenching rates is shown in Figs. 11�a� and 11�b�, respec-
tively. The large fluctuations displayed by the curves in Fig.
11 at low strains are due to the fact that only few plastic
events occur at small shear strains, while the statistics is
better for larger strains. The initial correlation decreases by
increasing the applied strain and at the yield point the curves
tend to flatten. The plateau at large strains is generally an
increasing function of � �or a decreasing function of the
quenching rate�, indicating that correlations between plastic
rearrangements and defects are stronger for a larger three-
body term and/or for a more ordered structure. For lower
values of � and/or higher quenching rates, the larger number
of defects present in the structure �see Fig. 9� makes the
correlation unclear between the localization of plastic events
and defects. In fact, for �=17 it can be seen that a value of
C�1 is approached at high shear strains, i.e., the connection
between plastic events and structural defects becomes
blurred. This is even clearer for the highest quenching rate
we have considered in Fig. 11�b�, for which the correlation
function is practically constant and very close to 1 for the
whole strain range. For the other values of � we have studied
C	1 over the whole range of strains, meaning that plastic
events tend to localize preferentially close to defects. Instead,
the effect of the quenching rate on the localization is weaker:
for the quenching rates we have considered in Fig. 11�b� only

the smallest reveals an appreciable correlation, while values
of C close to 1 are approached at larger quenching rates.

VII. DISCUSSION AND CONCLUSIONS

The mechanical response of disordered systems at small
scales has a broad range of applications, ranging from the
elaboration of materials for nanoelectronic devices with con-
trolled microstructure, to the prediction of damage in macro-
molecular glasses and granular assemblies. In this paper, we
insist on the role played by local order on the plastic re-
sponse of amorphous solids. We have seen that a systematic
increase of the three-body interactions through the parameter
� in the empirical interatomic potential used to generate our
systems induces a monotonous change in the mechanical re-
sponse of the system: increase of the yield stress and of the
yield strain, decrease of the average size of the plastic events,
decrease of the cumulative number of plastic event, increase
of the energy dissipated at the yield stress with a strong
localization of the plastic rearrangements and heterogeneous
flow, systematic increase of the spatial correlation between
local plastic rearrangements, and structural defects. An
analogous dependence can be seen by decreasing the quench-
ing rate at a given value of �, although it is less sensitive.

This behavior can be qualitatively compared with the
Peierls-Nabarro description of plasticity in crystals, where
the width of the dislocation, and thus the directionality of
bonds, is shown to play a crucial role in the yield stress. We
have shown here that the Peierls-Nabarro description, in-
volving the elastic constants and the width of the plastic
events at the yield point, is in good agreement with our data
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FIG. 11. �Color online� Correlation function between plastic
events and defects, as defined in Eq. �6�, as a function of the applied
shear strain for different values of � for a A-Si system prepared
with a quenching rate of 1011 K /s �a� and for different quenching
rates with �=21 �b�.
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and allows to define a Burgers vector that is independent of �
as well as of the quenching rate. The Burgers vector is
smaller but comparable to the bond length. The systematic
decrease of the size of the plastic events when the three body
term increases gives rise to a large increase of the yield stress
as a function of the directionality of the bonds and of local
order. This formal analogy with the Peierls-Nabarro theory in
crystals suggests the existence of an underlying lattice in the
amorphous material, and should be a challenge for further
study. However, it must be noted that the diffusive dynamics
of plastic events in amorphous materials, and the dynamics
of dislocations is quite different, as already mentioned in �4�.

Finally, the evolution of the total stress as a function of
the applied strain thus appears as a consequence of the spa-
tial organization of plastic events of different sizes: the stress
released is a measurement of the energy dissipated during the
irreversible process. However, the origin of this spatial orga-
nization is still lacking. We have shown in this paper that,
while the spatial localization of plastic rearrangements can
be related to the presence of a local structural defect �such as
a coordination defect� for strong directionality of local
bonds, such a correspondence cannot be clearly identified
when the directionality of the local bonds is low. In a previ-
ous paper �10�, we have shown that for pure two-body inter-
actions, as in Lennard-Jones glasses, there is no simple con-
nection between the presence of this kind of structural defect

and the occurrence of a plastic event at that place. Other
people have proposed to look to other kinds of structural
changes, like the “bound directionality,” but it is not clear
whether these structural changes are at the origin, or are the
consequences of plastic rearrangements �13�. Moreover, the
usual criterion of plasticity involving stress components �von
Mises, Tresca, Druger-Prager� are not valid at small scale.
The best local criterion of plasticity in Lennard-Jones glasses
involved a measurement of the local Elastic Moduli �10�. It
would be interesting to study now the validity of all these
criteria as a function of the local order, as monitored by �
and by the quenching rate. This would also help us to under-
stand the dynamics of the plastic events in the system.

This work has been done at very small temperature, in
order to enhance the effect of the geometrical disorder on the
mechanical response of amorphous solids. It is sufficient for
example to describe the mechanical response of macroscopic
assembly of beads, such as colloidal systems �33�. For mo-
lecular glasses, the effect of the temperature can be very
important and will deserve further study.
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